
1. Introduction
The reservoir landslide is a ubiquitous geohazard that features thermo-hydro-mechanical interactions. Once a 
catastrophic collapse occurs, it will represent a serious threat to the safe operation of dams as well as to other 
engineering structures and people living along reservoir banks (Lacroix et al., 2020; Yin et al., 2016). In the 
context of extreme climate, there is growing concern that the changes in temperature, precipitation, and floods 
can adversely affect the operation of infrastructure networks in the reservoir area (Aghakouchak et al., 2018; 
Wasko et al., 2015). Consequently, the past decade has witnessed an increasing frequency of disastrous land-
slides with cascading impacts (Brovkin et al., 2021; Cook et al., 2021; Liu et al., 2020). Taking China's Three 
Gorges Reservoir (TGR) as an example, the cumulative precipitation from May–July 2020 exceeded 500 mm, 
which made 2020 the most severe flood year since 1998, triggering a large number of landslide movements and 
collapses within the area (Wei et al., 2020). Accordingly, various cutting-edge monitoring technologies for land-
slides are expected to help inform with this severe situation.

Remote sensing and ground-based observation techniques can characterize landslide deformation at different 
spatial scales and frequencies but only apply to surface displacements or velocities (Biggs & Wright, 2020; Cenni 
et al., 2021; Hu et al., 2018; Strozzi et al., 2010). Instead, borehole-based geotechnical instrumentation may be a 
useful approach to understand how a landslide develops and evolves. Fiber Bragg grating (FBG), a popular fiber 
optic sensing technology, enables borehole monitoring of strain, temperature and groundwater-related data (Zhu 
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et al., 2017). However, the arrangement of several discrete FBG sensors (i.e., usually less than 10) can only obtain 
discrete subsurface multi-physical information, making it difficult to interpret as a whole (Sun et al., 2014). Distrib-
uted fiber optic sensing (DFOS) can acquire abundant data on temperature, strain and vibration along an optical 
fiber. Nevertheless, establishing an automatic real-time monitoring system is challenging due to the limitations in 
spatial resolution and scanning rates (Shi et al., 2021; Zeni et al., 2015). Consequently, weak-reflection fiber Bragg 
grating (WFBG), combining the advantages of FBG with DFOS (Table S1 in Supporting Information S1), provides 
a high spatial resolution up to several centimeters and acts as a densely spaced sensing array (Li & Zhang, 2018). 
However, very limited literature on landslide multi-physical monitoring using WFBG has been reported.

This paper presents the design, implementation, and performance evaluation of a novel fiber-optic nerve system 
(FONS) to capture subsurface thermo-hydro-mechanical behavior, which has been established on the Outang 
landslide in the TGR region, China. With its large volume of ∼90 million m 3 and perennial motions at ∼100–
500 mm per year, this slow-moving landslide has a long history of conventional in-situ monitoring and represents 
a desirable natural laboratory to better understand multi-physical interactions of such landslides. Herein, we report 
the monitoring results within the whole flood season and produce the spatiotemporal profiles of temperature, 
moisture and strain along a vertical borehole in the landslide. Such a critical dataset also allows us to decipher the 
main driver of accelerated movements through a joint analysis of in-situ displacements and hydrometeorological 
records. This work provides improved insights into the long-term subsurface evolution mechanisms and dynam-
ics of reservoir landslides.

2. Methodology
2.1. WFBG-Based Fiber-Optic Nerve System

In recent years, the DFOS-based temperature profiling method has shed new light on the investigation of subsur-
face hydrogeological characteristics (Bakker et  al.,  2015; Read et  al.,  2013; Sayde et  al.,  2010). This paper 
proposes a novel FONS system based on WFBG technology for acquiring subsurface multi-physical information 
of reservoir landslides, consisting of in-situ monitoring, wireless data transmission, and a data server (Figure 1a). 
Three types of tailored WFBG-based fiber optic cables, acting as underground nerves, are designed to be installed 
in a borehole to dynamically sense the soil temperature, moisture content, and strain profiles. All the WFBGs are 
connected in series with a 1 m spacing. All the measurement- and transmission-relevant equipment is placed in 
a cabinet at the slope surface, allowing for remote real-time monitoring of subsurface thermo-hydro-mechanical 
information (Text S1).

The specially manufactured fiber optic cables were developed by Nanjing University and the technical details 
can be found in Figure S1, Table S2 and S3 in Supporting Information S1. Note that these sensing cables have 
been calibrated in the laboratory before field instrumentation (Text S2 in Supporting Information S1). Typical 
calibration results are shown in Figures S2 and S3 in Supporting Information S1.

For the temperature and moisture sensing cables, the bare fiber is installed in a loose tube to eliminate the 
influence of strain on the cable. For the strain sensing cable, temperature compensation is conducted to obtain 
accurate strain measurements. As soil moisture content is closely related to macroscopic thermophysical char-
acteristics, the actively heated WFBG (AH-WFBG) technique is utilized to monitor soil moisture conditions 
(Cao et al., 2018). The empirical relationship between the soil moisture content and temperature response of the 
soil-embedded sensing cable to heating can be described as (Cao et al., 2015):

𝜃𝜃 = 𝑘𝑘Δ𝑇𝑇 + 𝑏𝑏 (1)

where θ is the volumetric moisture content; ΔT is the temperature increment due to active heating; k and b are two 
constants that can be determined through several sets of calibration tests.

2.2. Principle of WFBG

As illustrated in Figure 1b, WFBG is a particular type of fiber grating with ultra-weak reflectivity, which allows 
near-distributed temperature and strain sensing. When broadband incident light reaches a WFBG, a small part of the 
signal light close to the central wavelength of the WFBG is reflected, and the remaining light travels forward to the 
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next WFBG. The shift in central wavelength of the reflected light maintains a linear relationship with  the  tempera-
ture or strain change (Kersey et al., 1997). Unlike the wavelength-division multiplexing technique of conventional 
FBG, the WFBG utilizes time-division multiplexing for signal transmission. Hence, the quantity of multiplexed 
gratings is no longer limited by the bandwidth of the light source. Intriguingly, thousands of WFBGs with the same 
central wavelength (λ1 = λ2 = ⋯ = λn) can be multiplexed in an optical fiber, forming a densely spaced temperature 
or strain sensing array. Each grating in the array can be localized using the optical time-domain reflectometer tech-
nology owing to the time difference of reflective gratings at different positions (Liu et al., 2021).

Figure 1. Fiber-optic nerve system for characterizing thermo-hydro-mechanical behavior of reservoir landslides. (a) Conceptual map of the fiber-optic nerve system 
(FONS) and illustration of the evolution mechanism of reservoir landslides under different external conditions. The solid/dashed blue arrow indicates the filling/
dropping of the reservoir water level (RWL), inducing the buoyancy and seepage force in the leading part of the slide. The dashed curved aquamarine arrows represent 
surface evaporation under daily and annual atmospheric temperature cycles, as well as rainfall infiltration into layered soils and even migration to slip surfaces. (b) 
Principle of weak-reflection fiber Bragg grating (WFBG) sensing.
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3. Investigated Landslide
The Outang landslide is located on the right bank of the Yangtze River in Fengjie, Chongqing, China (Figure S4 
in Supporting Information S1). As outlined in Figure 2, the landslide covers a total area of 1.77 million m 2 and 
a volume of approximately 90 million m 3, which has been of great concern as one of the largest landslides in 
the TGR area. The landslide can be divided into three subzones (Text S3 in Supporting Information S1). The 
elevation of the front edge is 90–102 m.a.s.l., which is lower than the 145–175 m reservoir water level (RWL) 
in operation. Thus the landslide toe is completely submerged. Below the Quaternary soils, with a thickness of 
10–18 m, is a fractured quartz sandstone layer formed during the Jurassic period, with a thickness of 25–90 m. 
Tens of thin and weak layers (i.e., 0.3–1 m thick) composed of dark gray silt clay with gravel or gray-black carbo-
naceous shale are intercalated in this formation, which has been identified as the possible sliding surfaces of the 
landslide (Wang et al., 2021).

This landslide has a long history of conventional in-situ monitoring (Figure 2a). The average surface velocities 
recorded by GNSS from 2011 to 2020 reveal the spatial distribution over the landslide (Text S4 in Supporting 
Information S1). Time-variant cumulative displacements are characterized by a cyclic alternation of short-du-
ration fast-movement and long-duration quasi-static behavior. Despite larger values of cumulative displacement 
in the landslide toe, the velocities in the head part are more conspicuous than those in the toe, implying that the 
rear slope is likely to be the most active subzone in the coming years (Figure S5 in Supporting Information S1). 
Surface displacements exhibit an ongoing step-like growth.

In this framework, the fast-moving rear part of the landslide has been preferably selected as a survey site 
(109°21′21.36″E, 30°57′23.68″N, ∼462 m) to deploy the FONS system we developed. As mentioned above, 
three WFBG sensing cables have been clustered into a bundle and arranged in a vertical borehole with a diameter 
of 110 mm, crossing the sliding mass for capturing soil temperature, moisture, and strain (Figure S6 in Support-
ing Information S1). After the sensing cables were placed, borehole backfilling was performed with a sand-cen-
tered mixture to assure satisfactory coupling of the sensing cables to the surrounding geomaterials (Text S5 in 
Supporting Information S1; Zhang, Shi, et al., 2018; Shi et al., 2019). Detailed data acquisition frequency and 
heating control for the moisture measurement can be found in Text S6 in Supporting Information S1. Thermal 
effects of the AH-WFBG testing on the temperature, moisture and strain measurements can be found in Figure S7 
and Text S7 in Supporting Information S1.

4. Spatiotemporal Distribution of Subsurface Multi-Physical Information
The subsurface temperature profile is characterized by a variable temperature zone within a depth of ∼7 m and 
a nearly constant temperature zone below the depth (Figures 3a and S8). The time-varying surface temperature 
agrees well with the atmospheric temperature records. The temperature response in the variable temperate zone 
was much more sensitive than that in deeper soils. This was attributed to the influence of solar radiation and 
surface evaporation/infiltration at shallower depths (Freifeld et al., 2008). Conversely, the soil temperature in the 
deeper zone has maintained a relatively slight fluctuation within the range of ∼2°C during the monitoring period 
(Text S8 in Supporting Information S1). Remarkably, the temperature response near the depth of ∼20 m to rain-
falls offers interesting insights into the hydromechanical behavior of the slip zone, as discussed later.

As mentioned above, the regular temperature increment data are inverted to estimate the formation's hydroge-
ological information. Given the difficulty in deep borehole sampling and laboratory calibration of fractured 
and intact sandstones, the moisture content along the whole profile in this study has been inferred based on the 
calibration test results of soil samples collected within 0–3 m depths (Figure S3 in Supporting Information S1). 
It is rational to capture subsurface fluid activity despite inevitable estimation errors (Text S9 in Supporting Infor-
mation S1). As illustrated in Figure 3b, the responses of moisture variation at shallower depths are highly consist-
ent with rainfall events, implying precipitation-infiltration recharge at the near-surface zone. This demonstrates 
the sensitivity and effectiveness of moisture measurement using AH-WFBG sensing. Strikingly, we discovered 
variations in moisture content near the depth of 20 m across the monitoring span and linked these variations to 
rainfall events and landslide kinematics (Zhang & Xue, 2019). A narrowband representing the lower moisture 
content was also observed at a depth of 29 m, which spread and thickened in mid-to-late July when it was hot and 
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Figure 2. Geographical, geological, and historical kinematic information of the Outang landslide. (a) Plan view of the landslide with in-place instrumentation and 
spatial distribution of the surface displacements (vector arrows with color). (b) Geological profile of cross-section A–A′. (c) Cumulative displacements with the 
reservoir water levels (RWLs) and rainfalls from 2011 to 2020.
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Figure 3. Spatiotemporal evolution of subsurface multi-physics of the borehole FOS1 and meteorological records. (a) Temperature. (b) Moisture. (c) Strain. The 
positive value represents tensile strain. (d) Atmospheric temperature records and rainfall events from February 10 to September 10, 2021.
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relatively rainless. This might be explained by the impermeable filler at this depth and the existence of a relatively 
sound sandstone with few fractures.

Distinctive strain variations are found at depths of approximately 10 and 20 m (Figure 3c). An apparent tensile 
strain was witnessed at a depth of 20 m, with a peak value of 2,856 με. Specifically, a dramatic change in strain 
occurred on July 6, when the daily rainfall of 153.7 mm reached a new high this year. A similar phenomenon was 
also observed at a depth of 10 m during the same period, with a maximum strain of 1,584 με. The strain rate data 
reflecting the stress state (i.e., compressive or tensile) of the sensing cable are closely related to the landslide 
stability conditions (Scaringi et al., 2018). The magnitude of the peak strain rate in this study exceeded 500 με/d 
at the shallower slip surface and even more than 1,000 με/d at the deeper slip surface (Figure S9 in Supporting 
Information S1). It can be deduced that these two bands of strain accumulation were two critical slip surfaces 
(Kogure & Okuda, 2018; Zhang, Zhu, et al., 2018).

Altogether, these results show that the soil temperature had slightly decreased, whereas moisture content increased 
at a depth of 20 m when frequent rainfall events occurred (Figure 3). This has been attributed to precipitation 
infiltration from the surface to deep soils and water migration toward this main slip surface (mid-May to early 
July 2020), indicating the rise of pore water pressure at this location. Part of the overburden layers around ∼20 m 
depth absorbs pore fluid derived from rainfall recharge, forming an unconfined seasonal aquifer. The shear band 
composed of clay-like materials could act as an impermeable barrier that accumulates migrated pore fluid, thus 
resulting in the significant strength degradation of the geomaterials (Seguí & Veveakis, 2021). This is the reason 
why the temperature of the overburden layers decreased, especially near the depth of ∼20 m. When large shear 
deformation had occurred and the rainfall was less or lighter in mid-late July, the moisture in the slip zone moved 
backward to the adjacent layers. However, variations in temperature and moisture at the secondary slip surface 
(at 10 m depth) were not remarkable due to a shorter thermo-hydro transport pathway subject to meteorological 
impacts.

5. Identification of Driving the Accelerated Movement
To further confirm the slip surface position, we compared the results regarding deep-seated deformation at this 
section of the landslide. Figure 4b depicts that the nearby inclinometer has detected the slip surface at a depth of 
∼24 m (Luo & Huang, 2020), which validates the identification that the slip surface was revealed by our borehole 
deployment. The depth discrepancy is considered acceptable considering the complex microrelief and difference 
in stratigraphy. Note that the inclinometer failed to work due to the dislocation of the inclinometer casing induced 
by excessive shear movements in the rainy season of 2014, which was a common problem for field monitoring 
in this region. This, in turn, demonstrates the advantage of near-distributed strain sensing over conventional 
displacement measuring techniques in accurate and long-term monitoring of subsurface deformation.

Furthermore, strain measurements are utterly dependent on deformation patterns of the sliding mass (Figure 3c). 
Our previous studies on the kinematic method for estimating shear displacements show that the relative posi-
tions of the cable and the sliding surface determine the strain distribution mode (Zhang, Zhu, et al., 2018; Sang 
et al., 2019). In this study, the strain near the main slip surface at the rear slope represents a normal distribution 
with a peak value, consistent with the proposed kinematic model with an acute angle between the cable axis 
(downward) and the sliding direction (Figure S10 in Supporting Information S1). Strikingly, we also observed 
the evolution of another peak strain at a depth of ∼10 m, which was inferred as the secondary slip surface newly 
generated and had not been revealed by the inclinometer I5. The data confirms that the deformation of this layer 
developed synchronously with that of the main slip surface (Figures 4a and 4d). Given that the landslide sliding 
zones in the TGR area feature silty clay with gravel (Wang et al., 2021; Yin et al., 2016), the material composition 
at this level provides another evidence on whether it is a secondary slip surface. Further tracking and multi-source 
sensor measurements will allow for a more comprehensive knowledge of this shallow slip surface.

To deconvolute complexity between accelerated deformation and predisposing factors for this landslide, we exam-
ined the relationship between surface/subsurface kinematics and the RWL fluctuations/rainfalls (Figures 4c–4e). 
Results show that the slide moved at a very slow rate before July 6, accompanied by a prolonged drawdown 
and slight fluctuations of the RWL (Figure 4e). This suggests that the changes in RWL have little effect on the 
deformation in the rear part, which is thoroughly different from the motions in the toe that are primarily driven by 
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Figure 4. Surface and subsurface kinematics in the rear part of the landslide and potential drivers. (a) Strain in Borehole 
FOS1. (b) Displacement measured by the probe inclinometer I5 adjacent to Borehole FOS1 (adapted from Luo & 
Huang, 2020). (c) Surface displacement recorded by GNSS. (d) Strain of sliding surfaces. (e) Daily rainfalls and RWL 
fluctuations. (f) Hourly rainfall intensity of three rainstorm scenarios during the monitoring period, is inset into (d).
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the reservoir scheduling (Wang et al., 2021). We noted an immediate acceleration of the surface and subsurface 
deformation due to the torrential rainfall on July 6. Accordingly, we conclude that the deformation in the rear 
slope was dominated by continuous/heavy rainfall.

To determine whether a large amount of rainfall drives accelerated movement, we considered the hourly intensity 
of three torrential rain events and compared their temporal characteristics, given the precipitation classification 
from the China Meteorological Administration (Table S4 in Supporting Information S1; Figure 4f). Results indi-
cate that rainfalls with an extreme intensity on July 6 and 7 triggered abrupt surface and subsurface deforma-
tion. In contrast, the rainfall on August 26, representing a relatively uniform intensity, simply precipitated slight 
surface motions. It, therefore, seems that with similar rainfall amount and identical duration, short high-inten-
sity storms are the main driver of deformation acceleration rather than prolonged low-intensity rainstorms (Fan 
et al., 2020). Yet the latter is normally considered a precursor of rainfall-induced landslides. The reason for this 
fascinating finding is the unique terrace landform and local agricultural activities provide a positive contribu-
tion to the infiltration and migration of rainwater to deeper layers and moisture accumulation around the slip 
surface. Coupled with the formation and propagation of large tension cracks in the active rear slope (Text S10 and 
Figure S11 in Supporting Information S1), this situation strongly favors a large amount of rainwater catchment 
and infiltration processes (Nereson et al., 2018; Zhang & Xue, 2019). Additionally, asymmetric distributions 
of peak rainfall intensities that occurred on July 6 and July 7 were superimposed (Figure 4f), thus significantly 
affecting the whole landslide dynamics.

6. Do We Need Near-Distributed Thermo-Hydro-Mechanical Monitoring?
Temperature is rarely used to interpret landslide stability, yet more attention should be paid to long-term moni-
toring of subsurface temperature (Shibasaki et al., 2016; Tang et al., 2019). Multiple pieces of evidence have 
suggested that evolutionary temperature is implicated in pore fluid activity in rock and soil masses, which offers 
a possibility to predict and assess landslide stability (Seguí et al., 2020). A major advantage of near-distributed 
thermo-hydro-mechanical monitoring is to accurately locate the slip surface and produce spatiotemporal profiles 
of temperature, moisture and strain. Intriguingly, a multi-field monitoring system can be constructed with only 
one homologous monitoring technology (i.e., fiber-optic), which greatly enhances the robustness and integra-
tion  of the system, and avoids the dilemma of multi-source sensing data fusion (Zhu et al., 2017).

Another benefit is that these critical data allow us to learn and decipher the multi-physical evolution characteristics 
of reservoir landslides. The time- and depth-varying dataset can provide improved insights into the subsurface ther-
mo-hydro-mechanical link among external conditions, hydromechanical dynamics and geotechnical deformation 
(Zhang & Xue, 2019), leading to a better understanding of the evolution mechanism of reservoir landslides.

Figure 1a also outlines the evolution processes of a reservoir landslide. This figure illustrates the cyclic ther-
mo-hydro-mechanical processes within the slope, which may promote weakening and progressive failure of rock 
and soil masses. For a giant reservoir landslide, the periodic RWL fluctuations that accompany seasonal alter-
nation of atmospheric temperature and precipitation are external conditions of the thermo-hydro-mechanical 
characteristics (Hugentobler et al., 2020). In case of rapid dropdown of the RWL, a suspended groundwater table 
emerges since the pore water pressure is difficult to dissipate immediately. The landslide toe then undergoes 
an unloading process, resulting in outward seepage force that tends to destabilize the slope. The Outang land-
slide is a typical giant landslide explicitly showing this seepage-driven characteristic with a dragging effect (Yin 
et al., 2016). Large tension cracks developed in the active rear slope further propagated and became longer, wider 
and deeper, which played a crucial role in providing channels for rainwater rapid infiltration and migration. This 
facilitated the increase of pore water pressure at slip surfaces and reduction in shear strength of the soil. This 
synergistic effect of dragging and pushing promotes the accelerated movement of giant reservoir landslides in 
the TGR area.

7. Conclusions
In this work, we describe the design, implementation, and evaluation of a fiber-optic nerve system for monitoring 
a reservoir landslide using weak-reflection fiber Bragg gratings. The system has been installed and operated at the 
active rear part of the Outang landslide in the TGR region, China. This high-resolution monitoring system enables 
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us to obtain a critical subsurface multi-physical dataset regarding temperature, moisture, and strain remotely and 
in real-time. The dataset allows us to produce the spatiotemporal evolution profiles of multi-physical information, 
making it possible to witness the processes of subsurface thermo-hydro-mechanical interactions and improve the 
understanding of the causes, triggers and mechanisms of reservoir landslides.

The measured results were encouraging for investigating how a giant reservoir landslide evolved. We have 
successfully confirmed the main slip surface and identified a secondary slip surface newly generated in the rear 
slope. The response of temperature and moisture near the main slip surface representing pore fluid migration 
explains the accelerated shear movement (Nereson et al., 2018; Schulz et al., 2018). We have argued that the 
surface and subsurface kinematics in the upper part is strictly related to large-amount rainfalls and then deci-
phered that short-duration high-intensity storms accounted for the abrupt motion on 6 July 2021, contradicting 
the expected relationship.  Temporal patterns of rainfall events highlight the notable contribution of extreme 
precipitation to landslide triggering, and the significance of high-precision satellite precipitation products for 
early warning (Ravuri et al., 2021; Thomas et al., 2019). Worryingly, evidence that extreme rainfall events are 
increasing at a global scale has significantly strengthened in recent years (especially for sub-daily extreme rain-
fall), which may trigger cascading geohazards and challenge the accurate prediction and early warning of reser-
voir landslides (Westra et al., 2014; Hu et al., 2022; Zhang et al., 2021; Zheng et al., 2021). Thus, the combination 
of multidisciplinary approaches is helpful to advance the characterization and analyses of landslide dynamics (Hu 
et al., 2020). Frequent extreme weather events in recent years have stimulated the formation of secondary sliding 
surfaces in many landslides in the TGR region. The impact of unique terrace landforms and human activities in 
this region on geohazard evolution was previously underestimated, and some phenomena have not been explained 
by our current knowledge. Our data will allow us to investigate subsurface multi-physical characteristics from 
daily to annual scales and relate the cyclic thermo-hydro-mechanical external conditions to creeping motion and 
progressive failure. The system can be coupled with remote sensing and other ground-based technologies to build 
a space-sky-ground-subsurface integrated monitoring framework for reservoir landslides (Xu et al., 2020).

Data Availability Statement
Data to support this study are available on repository: https://doi.org/10.5281/zenodo.6541529.
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