
A spatial logic with time and quantifiers?

Laura Bussi, Vincenzo Ciancia, and Fabio Gadducci

Department of Computer Science, University of Pisa, Italy
laura.bussi@phd.unipi.it, fabio.gadducci@unipi.it

CNR-ISTI, Pisa, Italy
l.bussi@isti.cnr.it, v.ciancia@isti.cnr.it

Abstract. Spatial logics are formalisms for expressing topological prop-
erties of structures based on geometrical entities and relations. In this pa-
per we consider SLCS, the Spatial Logic for Closure Spaces, recently used
for describing features of images and video frames. We extend SLCS in
two directions. We first introduce first-order quantifiers, ranging on both
individuals and atomic propositions. We then equip the logic with tem-
poral operators, and provide a linear-time semantics over finite traces.
The resulting formalism allows to state properties about geometrical en-
tities whose attributes change along time. For both extensions, we prove
the equivalence of their operational semantics with a denotational one.

1 Introduction

Spatial logics are formalisms for expressing topological properties of structures
based on geometrical entities and relations, and as such have been extensively
studied since the first half of the last century [1]. Recently, such logics have been
further explored for the modelling of computational devices, ranging from collec-
tive adaptive [13, 14] and cyber-physical systems [24, 22] to pattern synthesis [5].

Introduced in [16], the Spatial Logic for Closure Spaces (SLCS) uses as
models a generalisation of topological spaces, known as pretopological or Čech
closure spaces. These spaces include interesting structures such as binary re-
lations/simple graphs. And since images can be interpreted as graphs, whose
structure is given by pixels with a chosen adjacency relation, the SLCS model
checker VoxLogicA [7] has been used for the analysis of 2D/3D pictures, in par-
ticular for the problem of “contouring” in medical imaging [4, 6].

SLCS has proved to be quite expressive in characterising the structural prop-
erties of a graph. However, it does not possess operators for constructing named
references to “individuals” — be these points, regions, atomic propositions, or
agents moving in space. For instance, one might ask if there is a region X of an

? Supported by University of Pisa project PRA 2022 99 “FM4HD”, MUR project
PRIN 20228KXFN2 “STENDHAL”, CNR (Italy) and SRNSFG (Georgia) bilateral
project CNR-22-010 “Model Checking for Polyhedral Logic”, and European Union
- Next Generation EU - MUR project PNRR PRI ECS00000017 PRR.AP008.003
“THE - Tuscany Health Ecosystem”. The authors thank Diego Latella and Mieke
Massink for fruitful discussions on spatio-temporal logics and their applications.

image, satisfying a given logical property, which in some time will become larger
than another one. This kind of analysis has immediate applications in medical
imaging for lesion tracking, focussing on the temporal evolution of a lesion in
a series of snapshots of a patient’s situation (a “longitudinal study”). In this
work, we develop the ideas of [16] and [10], adopting the same setting of [17] to
model spatio-temporal situations. First of all, we provide a precise correspon-
dence between spaces and relations, streamlining various results discussed in the
literature on SLCS. We also present a succinct syntax of SLCS, including just the
backward ~ρ and forward ~ρ reachability operators, which reflect the well-known
until operator of temporal logic and have efficient model checking algorithms
in VoxLogicA. Such operators allow to state properties of points of space akin
to there is a finite path from point x1 to some point x2, such that x2 satisfies
a given formula φ2, and the path passes only through points satisfying another
formula φ1. Taking inspiration from [10], we introduce two extensions of SLCS.
The first one concerns first-order quantification, which may predicate on points
of a space and the atomic propositions they may satisfy. The second introduces
temporal operators, similar in spirit to [14]. Finally, these extensions are merged,
distilling an expressive and flexible quantified spatio-temporal logic.

A running example: video stream analysis. The logic we propose allows to state
properties involving the identity of a node, in a graph whose structure does not
change, yet the propositions holding at each node may. Throughout the paper, we
illustrate its expressiveness by a simple example: the analysis of video streams,
demonstrated using the well-known Pac-Man™ videogame. The example is taken
from [11], where only purely spatial properties were considered.

Pac-Man is a 2D video game released by the Japanese firm Bandai-Namco
in 1980. It has a simple, yet interesting structure: the main character of the
game, Pac-Man, moves inside a maze. Along the corridors, several peach dots
are placed, together with four energiser pellets positioned in the corners. Fur-
thermore, four coloured ghosts (Inky, Blinky, Pinky, and Clyde) try to capture
Pac-Man, moving in the maze according to different routines. A twist happens
when Pac-Man eats an energiser pellet: in this case, the ghosts’ colours turn to
blue, and they can be caught by Pac-Man instead. The aim of a single level is
to eat all the dots and pellets, avoiding to be captured by a ghost.

Despite its simplicity, the Pac-Man videogame is a clear example of appli-
cability of our logical framework. The spatial structure does not change along
time: the graph underlying each video frame is always the same. Instead, atomic
properties associated to a node/pixel, that is, the colours, vary along time: for
example, Pac-Man is represented by yellow-coloured pixels that are inside the
maze (note that there are other areas with the same colour, representing the
remaining lives, see Figure 1). Such a setting is useful in real-world applications.
Consider, for instance, lesion tracking in medical imaging. The input data are
snapshots of a patient at different times. After what is called the co-registration
phase, all images have the same structure (resolution and physical dimensions).
In other words, the underlying graph never changes, while the colours of the
pixels, i.e. the atomic propositions, change along the temporal axis.

Related work The task to investigate quantification in modal logic interpreted
over spaces was already tackled in various works. An important example are
the works by Awodey and Kishida [2, 21], where first order modal logic is pro-
vided with a topological interpretation. The proposed approach is quite different
from ours: in this case, sheaves are used to combine denotational semantics of
modal logic and first order logic, and quantification is permitted only over points.
Moreover, this approach applies only to topological spaces.

Spatio-temporal reasoning has also been a topic of interest along years, and
various approaches have been proposed to combine space and time. Products
of modal logics have been considered to this end [8]. Products of modal logics
give rise to multi-modal logic languages, where different modal operators can
be used to reason about different aspects of a model (in this case, the spatial
and temporal aspects). Despite the fact that we also consider products of modal
logics, the cited proposal is quite different. Again in this case, only topological
structures are considered, and the temporal fragment is interpreted over the pair
(N, <), thus being equivalent to the classic PTL temporal logic. In our case, in-
stead, we only consider interpretation over finite traces. A comprehensive study
of spatio-temporal approaches to modal logics is given by [17], where various
kinds of spaces (e.g. Euclidean or Aleksandroff) are considered. This work of-
fers an interesting study of the tradeoff between expressivity and complexity of
various spatio-temporal logic, and it is our main reference for state-of-the-art
languages that combine space and time. Still, the topic of the considered logics
is topological spaces, thus lacking the generality that we aim to have.
Closer to our proposal, and in some sense orthogonal to it, is the one developed
in [14], where branching time operator where introduced and no quantification
was considered. In this case, the language was developed to reason about evolv-
ing smart systems (e.g. bike sharing systems), thus a branching time logic was
adopted for the temporal part. We drop this kind of approach in favour of lin-
ear time operators, which are more likely to be useful in a setting of medical
imaging, where we state properties about a set of images on a single timeline.

Synopsis. The structure of the paper follows. Section 2 gives an overview of the
models currently used for SLCS and we recast them uniformly, making precise
the correspondence with binary relations/simple graphs. Section 3, presents a
succinct version of SLCS, which is equipped with existential quantifiers in Sec-
tion 4 and with linear-time operators in Section 5. Finally, Section 6 proposes a
quantified spatio-temporal logic. Each section gives the correspondence between
the semantics with respect to a single spatial path/temporal trace and a de-
notational one, and it is rounded up with an instance of our running example.
Section 7 closes the paper, summing up our results and hinting at future works.

2 Some notions on spaces and relations

We recall some notions related to spaces, used as domains of interpretation
of various logics (see [1]) including SLCS, and discuss their links with binary
relations/simple graphs, making precise remarks scattered in papers on SLCS.

2.1 Preliminaries on spaces

We open by listing some basic properties and definitions for spaces.

Definition 1. A space C is a pair (S,C) such that S is a set of points and
C : 2S → 2S is a function satisfying C(∅) = ∅ and C(X ∪ Y) = C(X) ∪ C(Y)
for X,Y ⊆ S. A space is complete if C(

⋃
i∈I Xi) =

⋃
i∈I C(Xi) for any I.

If S is finite then a space (S,C) is always complete. Given a space (S,C) and
a subset X ⊆ S, we denote the complement S\X of X in S as Xc. And while C is
called the closure operator, its dual is the interior I(X) = C(Xc)c = S\C(S\X).

Definition 2. A space (S,C) is pre-topological if X ⊆ C(X) holds for all X ⊆
S; it is Alexandrov if it is pre-topological and complete; and it is topological if
it is pre-topological and C(C(X)) ⊆ C(X) holds for all X ⊆ S.

The notions above are standard from the literature on topology. In the lit-
erature on spatial logics, pre-topological and Alexandrov spaces are called Cêch
closure spaces and quasi-discrete Cêch closure spaces, respectively.

Note that for any space we can define a sort of inverse C−1 = (S,C−1), for
C−1(X) =

⋃
x∈X{y | x ∈ C({y})}, which is complete by definition. In order

to identify those cases where a space and its inverse interact properly, we take
inspiration from modal algebras and introduce the notion of conjugate spaces.

Definition 3. Two spaces (S,C1) and (S,C2) are conjugate if they satisfy X ⊆
I1(C2(X)) ∩ I2(C1(X)).

Remark 1. The law for conjugate spaces can be stated as “C1(X) ⊆ Y iff X ⊆
C2(Y)”, which explicitly tells that the two closures are the respective inverses.

Proposition 1. Let C be a complete space. Then C and C−1 are conjugate.

Proof. We just need to prove that for any X,Y we have that C(X) ∩ Y = ∅ iff
X ∩C−1(Y) = ∅. Now, let us assume that C(X)∩Y = ∅ and there exists x such
that x ∈ X ∩C−1(Y). Thus x ∈ X and x ∈ C−1(Y). By definition, x ∈ C−1(Y)
implies that there exists y ∈ Y such that x ∈ C−1({y}), that is, y ∈ C({x}),
hence y ∈ C(X) since C is complete, thus y ∈ C(X) ∩ Y , a contradiction. The
inverse direction is analogous.

Remark 2. Note that we cannot drop the completeness requirement for C in the
proposition above. Consider e.g. the set N of natural numbers and a function
C : 2N → 2N such that C(X) = ∅ if X is either empty or finite, and C(X) = N if
X is infinite. Clearly, (N, C) is a space, albeit not complete. Now, we have that
C({n}) = ∅ for all n ∈ N, so that C−1({m}) = {n | m ∈ C({n})} = ∅ for all
m ∈ N, which implies that C−1(Y) = ∅ for all Y ⊆ N. Thus, for any infinite set
X ⊆ N, we have that C(X) ∩ Y = Y while X ∩ C−1(Y) = ∅.

2.2 Spaces vs. relations

There is a reason to focus on complete spaces, namely, the fact that they have
a tight connection with binary relations (i.e. simple graphs/unlabelled Kripke
frames). In the following we consider relations on a set S: we identify them as
functions R : S → 2S and denote 2R : 2S → 2S the lifting 2R(X) =

⋃
x∈X R(x).

Now, each space C = (S,C) induces a relation RC : S → 2S defined as
RC(x) = C({x}). Note that for any finite X ⊆ S it holds 2RC (X) = C(X), and
the equality holds also for infinite X if C is complete. Vice versa, each relation
R : S → 2S induces a complete space CR = (S,CR) defined as CR(X) = 2R(X).

Lemma 1. Let R : S → 2S be a relation. Then RCR(x) = R(x) for all x ∈ S.
Let C be a complete space. Then CRC (X) = C(X) for all X ⊆ S.

Thus, interpreting logics on complete spaces is the same as using as models
the underlying relations. What is also noteworthy is that some laws holding for
complete spaces turn out to state structural properties of such relations.

Proposition 2. Let C be a complete space and RC the associated relation. Then

– C satisfies X ⊆ C(X) iff RC is reflexive

– C satisfies C(C(X)) ⊆ C(X) iff RC is transitive

– C satisfies X ⊆ I(C(X)) iff RC is symmetric

Proof. The first two items are kind of obvious thanks to Proposition 1. Thus,
let us now look at the third property. For RC being symmetric means that for
all x, y it holds that y ∈ RC(x) iff x ∈ RC(y) or, equivalently, that y 6∈ RC(x)
iff x 6∈ RC(y). Satisfying X ⊆ I(C(X)) means that X ⊆ C(C(X)c)c. Recall
now that for a complete space we have 2RC (X) = C(X), and for the sake of
calculations consider the relation D(x) = S \RC(x). Thus, axiom X ⊆ I(C(X))
can be expressed as X ⊆ C(

⋂
x∈X D(x))c =

⋂
z∈

⋂
x∈X D(x)D(z).

(=⇒) Let us assume that there exist x, y such that x ∈ RC(y) and y ∈ D(x).
Assuming X = {x}, the axiom becomes x ∈

⋂
z∈D(x)D(z). Since y ∈ D(x), the

axiom implies x ∈ D(y), which contradicts x ∈ RC(y).

(⇐=) Let us assume that RC is symmetric and that there exists X such
that X 6⊆ I(C(X)). The latter means that there exists y ∈ X such that y 6∈
I(C(X)). So, there exists w ∈

⋂
x∈X D(x) such that y 6∈ D(w), i.e. y ∈ RC(w).

By symmetry w ∈ RC(y), that is, w 6∈ D(y), which contradicts w ∈
⋂
x∈X D(x).

Finally, recall how for a space (S,C) we defined a kind of inverse space
(S,C−1), inspired by the analogous notion for relations: in fact, given R : S →
2S , its inverse R−1 : S → 2S is the relation such that R−1(x) = {y | x ∈ R(y)}.

Proposition 3. Let (S,C) be a space. Then R−1C = RC−1 .

3 Spatial logics

This section recalls syntax and semantics of spatial logics (SL), introduces its
denotational semantics, and makes precise its connection with CTL.

We start by assuming a set P of atomic propositions, ranged over by a, b, . . .

Definition 4. The formulae Φ of SL are given by the grammar

Φ ::= true | a | ¬Φ | Φ ∧ Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ]

We denote the Boolean operators false = ¬true and (Φ∨Φ) = ¬(¬Φ∧¬Φ).

We also denote ~N Φ = ~ρ Φ[false] and ~N Φ = ~ρ Φ[false], which for our models
are the equivalent of next and previous in temporal logics (as made precise later).

Let us now consider the semantics. Since we focus on complete spaces, we
may equivalently describe our models in terms of relations. Thus, a model T is
a four-tuple 〈S,R, P, L〉 such that S is a set of points, R : S → 2S a relation,
P a set of atomic propositions, and L : P → 2S a labelling function. We also
define the standard notion of spatial path in T from point s0 to point sn, i.e., a
sequence s0 . . . sn with n ≥ 1 such that si ∈ R(si−1) for all i = 1 . . . n.

Definition 5. Let T be a model. The semantics of a SL formula Φ with respect
to a point s ∈ S is given by the rules

– s |= true

– s |= a if s ∈ L(a)
– s |= ¬Φ if s 6|= Φ
– s |= Φ1 ∧ Φ2 if s |= Φ1 and s |= Φ2

– s |= ~ρ Φ1[Φ2] if there exists a spatial path ss1 . . . sn in T such that sn |= Φ1

and sj |= Φ2 for all j = 1 . . . n− 1
– s |= ~ρ Φ1[Φ2] if there exists a spatial path s0 . . . sn−1s in T such that s0 |= Φ1

and sj |= Φ2 for all j = 1 . . . n− 1

The derived Boolean operators behave as expected, e.g. s 6|= false for all

states s. We recover the intuitive meaning of ~N Φ (hence, the existence of a
direct connection between two points) as ~ρ Φ[false], since s |= ~ρ Φ[false] is

equivalent to say that s1 |= Φ for some s1 ∈ R(s). Similarly for ~N with respect

to R−1. Finally, note that ~N and ~N distribute over the Boolean disjunction
operator, so that e.g. s |= ~N (Φ1 ∨ Φ2) iff s |= (~N Φ1) ∨ (~N Φ2).

Lemma 2. Let T be a model, s ∈ S a point, and Φ1, Φ2 SL formulae. Then
s |= ~ρ Φ1[Φ2] iff s |= ~N Φ1 ∨ ~N (Φ2 ∧ ~ρ Φ1[Φ2]) (and similarly for ~ρ Φ1[Φ2]).

Proof. Let s |= ~ρ Φ1[Φ2]. It holds if there exists a path ss1 . . . sn in T such that
sn |= Φ1 and sj |= Φ2 for all j = 1 . . . n − 1. Let us assume that n = 1. This is

equivalent to say that s1 |= Φ1, hence s |= ~N Φ1. So, let n > 1. This means that
s1 |= Φ2, sn |= Φ1, and sj |= Φ2 for all j = 2 . . . n−1, which is in turn equivalent

to state that s |= ~N (Φ2 ∧ ~ρ Φ1[Φ2]).

Fig. 1. A sequence of Pac-Man frames: ghosts turn to blue immediately after frame 2.

Example 1. Consider our running example, in particular the first frame of Fig-
ure 1. As said above, we assume we have a set of atomic propositions AP denoting
colours. There is only one area satisfying the formula orange, namely the or-
ange ghost. On the other hand, three different areas satisfy yellow and, for the
moment being, we are not able to distinguish the active Pac-Man from the ones
representing the remaining lives. However, we can already check an interesting
property. So, let ghost = orange ∨ pink ∨ lightBlue ∨ red. The pixels of
a Pac-Man that is going to be caught by a ghost are identified via the formula
yellow ∧ ~ρ ghost[yellow]. Such formula finds all the yellow pixels that are con-
nected, via a path of yellow ones (except the last one, see Definition 5), to a pixel
belonging to a ghost. Indeed, no such pixel exists in the three frames considered.

3.1 Denotational semantics of SL

The denotational meaning of a formula Φ is going to be a set of points in our
model T . The interpretation of the Boolean and the next and previous step
operators is immediate: only the reachability operators need some care.

Definition 6. Let T be a model. The denotational semantics of a SL formula
Φ is given by the rules

– JtrueK = S
– JaK = L(a)
– J¬ΦK = JΦKc = S \ JΦK
– JΦ1 ∧ Φ2K = JΦ1K ∩ JΦ2K
– J ~N ΦK = 2R

−1

(JΦK) = {s ∈ S | R(s) ∩ JΦK 6= ∅}
– J ~N ΦK = 2R(JΦK) = {s ∈ S | R−1(s) ∩ JΦK 6= ∅}
– J~ρ Φ1[Φ2]K = lfpZ (J ~N Φ1K ∪ J ~N (Φ2 ∧ Z)K)
– J ~ρ Φ1[Φ2]K = lfpZ (J ~N Φ1K ∪ J ~N (Φ2 ∧ Z)K)

The semantics associates a set of points to a formula. The interpretation of
the ~N and ~N operators is clearly monotone with respect to subset inclusion, thus
the least fix-point in the semantics of the ~ρ and ~ρ operators are well-defined.

Remark 3. For the sake of simplicity, in Definition 6 we considered ~N and ~N
as primitive operators, instead of derived ones. However, it is easy to see that
J~ρ Φ[false]K = lfpZ (J ~N ΦK ∪ (J ~N (false ∧ Z)K)) = J ~N ΦK, and analogously

J ~ρ Φ[false]K = J ~N ΦK. Also note that J~ρ false[Φ]K = lfpZ (J ~N falseK∪(J ~N (Φ∧
Z)K)) = ∅, and again analogously J ~ρ false[Φ]K = ∅.

Proposition 4. Let T be a model, s ∈ S a point, and Φ a SL formula. Then
s |= Φ iff s ∈ JΦK.

Proof. The proof is immediate for all operators except reachability. Consider
e.g. the next operator: we have that s |= ~N Φ iff s1 |= Φ for some s1 ∈ R(s) iff
R(s)∩JΦK 6= ∅, the latter by inductive hypothesis. And we noted in Remark 3 that

the semantics of the derived operators is respected, i.e. J~ρ Φ[false]K = J ~N ΦK.
Now, recall that by Lemma 2 s |= ~ρΦ1[Φ2] iff s |= ~N Φ1 ∨ ~N (Φ2 ∧ ~ρΦ1[Φ2]).
(=⇒) By induction on the length of the path ss1 . . . sn verifying s |= ~ρΦ1[Φ2].

If n = 1, then s1 |= Φ1, hence s1 ∈ JΦ1K and s ∈ J ~N Φ1K, Otherwise, s1 |=
Φ2 ∧ ~ρΦ1[Φ2] with a path of length n − 1, hence s1 ∈ JΦ2 ∧ ~ρΦ1[Φ2]K and s ∈
J ~N (Φ2 ∧ ~ρΦ1[Φ2]K). In both cases, we have that s ∈ J~ρ Φ1[Φ2]K.

(⇐=) By induction on the number r of recursive steps Z1, Z2 . . . Zr. If

r = 1, then s ∈ J ~N Φ1K, hence there exists s1 ∈ R(S)∩ JΦ1K, thus s1 ∈ R(S) and

s1 |= JΦ1K. For r = n + 1, either s ∈ J ~N Φ1K, and we fall back to the previous

case, or s ∈ J ~N (Φ2∧Zn)K. Hence there exists s1 ∈ R(S)∩ JΦ2K∩ JZnK, so the by
inductive hypothesis s1 |= Φ2∧~ρΦ1[Φ2]. In both cases, we have that s |= ~ρ Φ1[Φ2].

3.2 SL vs. CTL

We make here precise the connection between SL and CTL. The state formulas
for the existential fragment of CTL (ECTL) can be expressed by the grammar

Ψ ::= true | a | ¬Ψ | Ψ ∧ Ψ | ∃OΨ | ∃U(Ψ, Ψ)

Note that this fragment is not as expressive as CTL, since it is missing the
operators ∀OΨ and ∀U(Ψ, Ψ). And while the former is CTL-equivalent to ¬∃O¬Ψ ,
the latter cannot be expressed in the fragment: it requires the operator ∃�.

Let us now prove the equivalence of ECTL with the forward fragment of
SL (FSL), i.e. SL without the backward operator ~ρ. We do not recall here the
semantics for CTL, and we refer the reader to a standard reference such as [3].

The encodings. For any FSL formula Φ we must obtain an ECTL formula JΦK
such that for any model T and state s in T we have that s |=SL Φ iff s |=CTL JΦK.
Clearly, the Boolean operators are mapped one-to-one, while ~ρ Φ1[Φ2] is mapped

into ∃O(∃U(JΦ2K, JΦ1K)). Note that, as a derived operator, ~N Φ is mapped into
∃O(∃U(false, JΦK)), which is CTL-equivalent to ∃OJΦK.

Viceversa, for any ECTL formula Ψ we must obtain a FSL formula
∥∥Ψ∥∥.

As before, the Boolean operators are mapped one-to-one, while instead ∃OΨ is
mapped to ~N

∥∥Ψ∥∥ and ∃U(Ψ1, Ψ2) is mapped to
∥∥Ψ2

∥∥ ∨ (
∥∥Ψ1

∥∥ ∧ ~ρ ∥∥Ψ2

∥∥[
∥∥Ψ1

∥∥]).

Again, for any model T and state s in T we have that s |=CTL Ψ iff s |=SL

∥∥Ψ∥∥.

Encodings are mutually inverse. We proceed by structural induction, assuming
that for the sub-formulae it holds that J

∥∥Ψ∥∥K and Ψ are CTL-equivalent and∥∥JΦK
∥∥ and Φ are SL-equivalent.

Starting from ECTL, we have that

– J
∥∥∃OΨ∥∥K = J ~N

∥∥Ψ∥∥K = ∃O(∃U(false, J
∥∥Ψ∥∥K))

– J
∥∥∃U(Ψ1, Ψ2)

∥∥K = J
∥∥Ψ2

∥∥ ∨ (
∥∥Ψ1

∥∥ ∧ ~ρ ∥∥Ψ2

∥∥[
∥∥Ψ1

∥∥])K = J
∥∥Ψ2

∥∥K ∨ (J
∥∥Ψ1

∥∥K ∧
J~ρ
∥∥Ψ2

∥∥[
∥∥Ψ1

∥∥]K) = J
∥∥Ψ2

∥∥K ∨ (J
∥∥Ψ1

∥∥K ∧ ∃O(∃U(J
∥∥Ψ1

∥∥K, J∥∥Ψ2

∥∥K)))
and the result follows since for the former case ∃U(false, J

∥∥Ψ∥∥K) is CTL-equivalent

to J
∥∥Ψ∥∥K and for the latter case it is the well-known expansion law for ∃U.
Moving from FSL, we have that

–
∥∥J~ρ Φ1[Φ2]K

∥∥ =
∥∥∃O(∃U(JΦ2K, JΦ1K))

∥∥ = ~N
∥∥∃U(JΦ2K, JΦ1K)

∥∥ = ~N (J
∥∥Φ1

∥∥K ∨
(J
∥∥Φ2

∥∥K ∧ ~ρ J
∥∥Φ1

∥∥K[J∥∥Φ2

∥∥K])
The two formulae are SL-equivalent, as shown in Lemma 2.

4 Quantified spatial logics

We now move to a Quantified Spatial Logic (QSL). In the following, we fix a set
of typed variables V = VP] VS ranged over by x, y, xP , yP , xS , yS . . .

Definition 7. The formulae Φ of QSL are given by the grammar

Φ ::= true | a | x | x = y | ¬Φ | Φ ∧ Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ] | ∃x.Φ

Definition 8. Let T be a model. The semantics of a QSL formula Φ with respect
to a point s ∈ S and a substitution η : V ⇀ P] S is given by the rules

– s, η |= xP if s ∈ L(η(xP))
– s, η |= xS if s = η(xS)
– s, η |= x = y if η(x) = η(y)
– s, η |= ∃xP

.Φ if there exists a proposition a1 such that s, η[a1/xP
] |= Φ

– s, η |= ∃xS
.Φ if there exists a point s1 such that s, η[s1/xS

] |= Φ

for η[a1/xP
] and η[s1/xS

] the standard extensions of a substitution η.

For the sake of readability, we showed only the rules for the variables and the
existential operators, and implicitly assumed that equality x = y is well-typed.

Remark 4. Variables may take values either in points or in atomic propositions.
Hence, we have statements such as s, η |= x ∧ y with η(x) a point and η(y) an
atomic proposition, which still has a clear semantics: it holds if s = η(x) and
s ∈ L(η(y)). As recalled, we implicitly have typed equality x =τ y for variables
x, y of the same type τ , which is either S for points or P for atomic propositions.
With respect to [10], we lack an explicit constant this for characterising the
current state, which can be obtained by using a point variable x occurring in a

formula Φ and simply checking s |= ∃x.(x ∧ Φ). In general, the equality xS = a,
meaning that the point associated to xS by a substitution η satisfies proposition
a, is recovered as xS ∧ a. Also lacking are equalities xP = a for proposition a:
they seem less relevant, and could be added with little effort.

Remark 5. A further step along the lines above is to assume that variables take
values in sets of points, i.e. η : V → 2S , obtaining a second-order quantification.
It would simply mean to add an additional type for second-order variables and
possibly a monadic operator ∈, as in x ∈ X. Note that in this case the equality
x = y for point variables could be derived as ∀X . x ∈ X ⇐⇒ y ∈ X.

4.1 Denotational semantics for QSL

The denotational meaning of a QSL formula Φ is going to be a set of points in
our model T . We define our denotational mapping J·Kη as follows.

Definition 9. Let T be a model. The denotational semantics of a QSL formula
Φ with respect to a substitution η is given by the rules

– JxP Kη = L(η(xP))
– JxSKη = {η(xS)}

– Jx = yKη =

{
S if η(x) = η(y)
∅ otherwise

– J∃xP
.ΦKη =

⋃
a∈P JΦKη[a/xP

]

– J∃xS
.ΦKη =

⋃
s∈SJΦKη[s/xS

]

As before, we just showed the rules for variables and existential operators.

Remark 6. It should be no surprise now that the equality J∃x. ~NΦKη = J ~N∃x.ΦKη
holds for any η, and similarly for ~N . Indeed, the shape of a single frame never
changes, hence QSL satisfies what is called the domain-preserving property.

Now, let ⊥ : V ⇀ P] S denote the always undefined substitution.

Proposition 5. Let T be a model, s ∈ S a point, and Φ a closed QSL formula.
Then s,⊥ |= Φ iff s ∈ JΦK⊥.

Remark 7. Quantification over atomic proposition is intended to model the idea
of quantifying over “labels” that identify sets of points sharing similar features,
in such a way that the number of available labels is infinite and model-dependent.
This does not imply that the set of labels that are present in each state is infinite:
it could as well be that, in a system with infinite states, the number of labels
of each state is finite, but no state has the same set of labels. In this situation,
typical e.g. of nominal computations [23], it might not be possible to know in
advance which labels will be present in a state of the model. But this does not
rule out the possibility of asking meaningful questions, such as “is there a point
labelled with xP in the current state, which in the next state will not be labelled
with xP and near to a point labelled with xP ?”, which could be interpreted as
the entity denoted by xP has moved by one step in one instant of time.

Although it is perhaps easier to grasp the intuition when models have a
temporal aspect, the idea is also useful in purely spatial situations. One case
often occurring in computational imaging is that of reasoning about connected
components. Consider a spatial formula φ interpreted over a digital image. No
matter what φ is, the semantics will identify the set of points S on which φ holds.
In many situations one could be interested in questions such as “identify the set of
points S′ that belong to a connected region R of S, which also satisfies ψ”. In our
view, connectedness is not a primitive of the logical language (as connectedness
is just one example of application of quantification over atomic propositions!).
Rather, the model must contain enough information to reason – in this case –
about connected components, by having a different atomic proposition for each
component1. In this situation, one does not know in advance neither how many
components (hence, atomic propositions) will be available, nor the exact set of
labels, but still, existential quantification over atomic propositions can be used.

Example 2. Using the aforementioned encoding of connected component labels
as atomic propositions, we are able to identify entities in a given space. Continu-
ing from Example 1, we now assume that for each frame the set of atomic prop-
erties includes colours as well as the labels of the connected components of the
yellow pixels. We can now characterise in each frame the pixels on the border of
the active Pac-Man as Φ = yellow∧∀xP . (~ρ (xP ∧yellow)[black] =⇒ xP), since
the active Pac-Man cannot reach those outside while these latter are mutually
reachable, and the whole active Pac-Man via the formula yellow ∧ ~ρ Φ[yellow].

5 Spatio-temporal logics

The definitions below have the following rationale. In analysing video frames we
basically deal with sequences of graphs, each one of them a snapshot of an image.
The structure of the graph remains the same: only the labelling changes, i.e the
atomic propositions each point satisfies. Also, note that when we state proper-
ties of sequences of graphs, we often do not even have a way to generate such
sequences. Think e.g. about the scans of the brain: they are given by physicians,
and they are not obtained by a set of rules, since they are just snapshots taken at
certain intervals of time. We might thus have a single trace as model. This is the
reason for the choice of linear time, hence of our Spatio-Temporal Logic (STL):
the following proposals could be easily rephrased in terms of computational trees.

Definition 10. The formulae Φ of STL are given by the grammar

Φ ::= true | a | ¬Φ | Φ ∧ Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ] | OΦ | U(Φ,Φ)

1 In model checking, this is accomplished at model definition time, by including a non-
logical operator which performs a labelling of connected components, taking as input a
Boolean-labelled frame and returning a integer-labelled frame, where each connected
component is identified by a unique integer. See [9] where the on-GPU variant of the
spatial model checker VoxLogicA has been endowed with such a primitive.

A spatio-temporal model S is a four-tuple 〈S, P,R,Λ0〉, where S is a set of
points, P a set of atomic propositions, R : S → 2S a (spatial) relation, Λ0 ⊂ Λ+

a set of temporal traces of length at least 1, for Λ = {L | L : P → 2S} the set of
labelings. We give the semantics of the formulae with respect to a point s and a
finite trace λ. Given a temporal trace λ = L0L1 . . . , Ln, we denote by λ(i) the
sequence LiLi+1 . . ., by λi its i-th component Li, and with l(λ) its length n+ 1.

Definition 11. Let T be a spatio-temporal model. The semantics of a STL for-
mula Φ with respect to a point s ∈ S and a temporal trace λ ∈ Λ0 is given by the
rules

– s, λ |= OΦ if 1 < l(λ) and s, λ(1) |= Φ

– s, λ |= U(Φ1, Φ2) if there exists k < l(λ) such that s, λ(k) |= Φ2 and s, λ(j) |=
Φ1 for all j = 0 . . . k − 1

Remark 8. Since we are using finite temporal traces, a few considerations are in
order. As a start, a formula OΦ is satisfiable by a temporal trace if it is of length
at least two, so that last = ¬Otrue actually characterises its last component.
Such an operator allows an easy characterisation for the nesting of temporal
operators, since �♦Φ and ♦�Φ are equivalent to ♦(last ∧ Φ) [19].

A related question is which axioms hold. As an example, ¬OΦ and O¬Φ are
equivalent only for temporal traces of length at least two, since OΦ is always
false for temporal traces of length 1. Instead, the usual unfolding axiom for the
until operator holds, that is, s, λ |= U(Φ1, Φ2) iff s, λ |= Φ2 ∨ (Φ1 ∧ OU(Φ1, Φ2)).

The interaction between spatial and temporal operators needs to be explored.
For example, ~ρ Oa[Ob] is equivalent to O(~ρ a[b]), since the structure of the model
(points and their relations) never changes during the steps of a temporal trace.

5.1 Denotational semantics of STL

The denotational meaning of a formula Φ is going to be a set of points in our
model T . We define our denotational mapping J·Kλ as follows.

Definition 12. Let T be a spatio-temporal model. The denotational semantics
of a STL formula Φ with respect to a temporal trace λ ∈ Λ0 is given by the rules

– JOΦKλ =

{
JΦKλ(1) if 1 < l(λ)
∅ otherwise

– JU(Φ1, Φ2)Kλ = lfpW (JΦ2Kλ ∪ (JΦ1Kλ ∩ JOW Kλ))

As before, we presented the mapping only for the newly introduced temporal
operators. As for the reachability operators, the fix-point for U is well-defined.

Proposition 6. Let T be a spatio-temporal model, s ∈ S a point, λ ∈ Λ0 a
temporal trace, and Φ a STL formula. Then s, λ |= Φ iff s ∈ JΦKλ.

Proof. Similarly to the operators of spatial logics in the proof of Proposition 4,
we will basically proceed by induction on the structure of the formulae, consid-
ering here also the length of the temporal trace. We just look at the additional
temporal operators, noting that it is obvious for the next operator OΦ. Recall,
see Remark 8, that formulae U(Φ1, Φ2) and Φ2∨(Φ1∧OU(Φ1, Φ2)) are equivalent.

(⇐=) By induction on the structure of the formulae and the length of the
temporal trace. If s, λ |= Φ2 ∨ (Φ1 ∧ OU(Φ1, Φ2)), then either s, λ |= Φ2, hence
s ∈ JΦ2Kλ by inductive hypothesis, or s, λ |= OU(Φ1, Φ2), thus s |= Φ1 and
s, λ(1) |= U(Φ1, Φ2), hence s ∈ JΦ1Kλ ∩ JOW Kλ by inductive hypothesis.

(=⇒) By induction on the number r of recursive steps W1, W2 . . . Wr and
the length of the temporal trace. If r = 1, then s ∈ JΦ2Kλ, and we are done by
inductive hypothesis. For r = n + 1, we have that either s ∈ JΦ2Kλ, and we fall
back to the previous case, or s ∈ JΦ2K∩ JOWnKλ, and in particular s ∈ JWnKλ(1),
Thus by inductive hypothesis s, λ |= Φ2 ∧ OU(Φ1, Φ2)).

6 All together now

Recall that with our logics we aim to state properties about the single snap-
shots of a sequence, detailing their changes along time. The Quantified Spatio-
Temporal Logic (QSTL) is obtained just by the combination of all the operators
introduced so far, thus quantifying “globally” along the whole length of a trace.

Definition 13. The formulae Φ of QSTL are given by the grammar

Φ ::= true | a | x | x = y | ¬Φ | Φ∧Φ | ~ρ Φ[Φ] | ~ρ Φ[Φ] | OΦ | U(Φ,Φ) | ∃x.Φ

Definition 14. Let T be a spatio-temporal model. The semantics of a QSTL
formula Φ with respect to a point s ∈ S, a substitution η : V ⇀ P] S, and a
temporal trace λ ∈ Λ0 is given by the rules

– s, η, λ |= true

– s, η, λ |= a if a ∈ λ0(s)
– s, η, λ |= xP if s ∈ λ0(η(xP))
– s, η, λ |= xS if s = η(xS)
– s, η, λ |= x = y if η(x) = η(y)
– s, η, λ |= ¬Φ if s, η, λ 6|= Φ
– s, η, λ |= Φ1 ∧ Φ2 if s, η, λ |= Φ1 and s, η, λ |= Φ2

– s, η, λ |= ~ρ Φ1[Φ2] if there exists a spatial path ss1 . . . sn in T such that
sn, η, λ |= Φ1 and sj , η, λ |= Φ2 for all j = 1 . . . n− 1

– s, η, λ |= ~ρ Φ1[Φ2] if there exists a spatial path s0 . . . sn−1s in T such that
s0, η, λ |= Φ1 and sj , η, λ |= Φ2 for all j = 1 . . . n− 1

– s, η, λ |= OΦ if 1 < l(λ) and s, η, λ(1) |= Φ
– s, η, λ |= U(Φ1, Φ2) if there exists k < l(λ) such that s, η, λ(k) |= Φ2 and
s, η, λ(j) |= Φ1 for all j = 0 . . . k − 1

– s, η, λ |= ∃xP
.Φ if there exists a proposition a1 such that s, η[a1/x], λ |= Φ

– s, η, λ |= ∃xS
.Φ if there exists a point s1 such that s, η[s1/x], λ |= Φ

We can now combine the denotational mappings seen before to get J·Kη,λ,
and to finally obtain our concluding result.

Proposition 7. Let T be a spatio-temporal model, s ∈ S a point, λ ∈ Λ0 a
temporal trace, and Φ a QSTL formula. Then s,⊥, λ |= Φ iff s ∈ JΦK⊥,λ.

Example 3. We shall now discuss a scenario where all the features of the language
are needed. This example is aimed at tracking the identity of objects along the
temporal axis. As said in Remark 7, quantifiers on atomic propositions are used
to assign labels in order to identify entities, being these points or regions. In
Example 2 these labels represent connected components. In this case, instead,
we assume that, for each ghost, the spatio-temporal model encodes the identity
of each “lifespan” (the time between a character first appears on the screen, and
the moment it is caught, or the game finishes) via a unique atomic proposition.
In other terms, for each ghost and each lifespan, a separate atomic proposition
always identifies all the pixels that the ghost occupies on screen.

We use this idea to define a logic formula φ that is true at the pixels of
the orange ghost, in the current state, if and only if such ghost will be caught
by Pac-Man in a subsequent state. We shall use the derived operator “some-
where” defined as Fφ = ~ρφ[true]. We define the formula orange ∧ ∃xP .xP ∧
U(true,F(xP ∧ blue ∧ ~Npacman)). Note that, if the formula is true at a point
s, then that point is orange, and there is an atomic proposition xP which holds
in s, thus, by construction, it represents the identity of the current ghost. Fur-
thermore, by definition of U, such atomic proposition is still true at some point
s′ of the space, in some future state, with s′ in contact with a point of Pac-Man,
which entails that the ghost is caught in the same sense of Example 1.

7 Conclusions and future works

We developed a quantified spatio-temporal logic, and showed how this can be
used to state spatial properties, possibly involving the identity of individuals, in
models that evolve along time. The logic thus represents a significant improve-
ment in expressivity with respect to SLCS [16]. Differently from [10], we adopted
linear time operators and an operational semantics based on finite traces. We
also introduced a denotational semantics and proved its equivalence with the
operational one. Despite its simplicity, the Pac-Man example clarifies the useful-
ness of the logic in applicative domains such as video stream analysis and lesion
tracking in medical imaging.

Concerning future works, we plan to investigate decidability and axiomatisa-
tions of the logic. Bisimilarity and minimisation of models can be also of interest,
akin to the work for SLCS in [15]. As far as applications are concerned, we will
aim at developing a prototype spatial model checker combining temporal and
existential operators, and to use it in medical imaging case studies.

References

1. Aiello, M., Pratt-Hartmann, I., Benthem, van, J.: Handbook of Spatial Logics.
Springer (2007)

2. Awodey, S., Kishida, K.: Topology and modality: The topological interpretation
of first-order modal logic. The Review of Symbolic Logic 1(2), 146–166 (2008).
https://doi.org/10.1017/S1755020308080143

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
4. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial

logics and model checking for medical imaging. Software Tools for Technology
Transfer 22(2), 195–217 (2020)

5. Bartocci, E., Gol, E., Haghighi, I., Belta, C.: A formal methods approach to pattern
recognition and synthesis in reaction diffusion networks. IEEE Transactions on
Control of Network Systems 5(1), 308–320 (2016)

6. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N.,
Semini, L. (eds.) FormaliSE@ICSE 2021. pp. 1–12. IEEE (2021)

7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Voxlogica: A spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer (2019)

8. Bennett, B., Cohn, A., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal
logic as a framework for spatio-temporal reasoning. Applied Intelligence 17 (12
2000). https://doi.org/10.1023/A:1020083231504

9. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on gpu. In:
Peters, K., Willemse, T.A.C. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems. pp. 188–196. Springer International Publishing, Cham
(2021)

10. Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M.: On binding in the
spatial logics for closure spaces. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022.
LNCS, vol. 13701. Springer (2022)

11. Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M.: Towards model
checking video streams using VoxLogicA on GPUs. In: Bowles, J., Broccia, G.,
Pellungrini, R. (eds.) DataMod 2021. LNCS, vol. 13268, pp. 78–90. Springer (2022)

12. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients.
p. 365–377. POPL ’00, Association for Computing Machinery, New York, NY, USA
(2000). https://doi.org/https://doi.org/10.1145/325694.325742

13. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673 (2016)

14. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Soft-
ware Tools for Technology Transfer 20(3), 289–311 (2018)

15. Ciancia, V., Groote, J.F., Latella, D., Massink, M., de Vink, E.P.: Minimisation of
spatial models using branching bisimilarity. In: Chechik, M., Katoen, J., Leucker,
M. (eds.) FM 2023. LNCS, vol. 14000, pp. 263–281. Springer (2023)

16. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Dı́az, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer (2014)

17. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combin-
ing spatial and temporal logics: Expressiveness vs. complexity. Journal of Artificial
Intelligence Research 23, 167–243 (2005)

18. Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-
order µ-calculus. Fundamenta Informaticae 118(1-2), 177–205 (2012)

19. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Rossi, F. (ed.) IJCAI 2013. pp. 854–860. IJCAI/AAAI (2013)

20. Hilken, B.P., Rydeheard, D.E.: A first order modal logic and its sheaf models (2001)
21. Kishida, K.: Neighborhood-sheaf semantics for first-order modal logic.

Electronic Notes in Theoretical Computer Science 278, 129–143 (2011).
https://doi.org/https://doi.org/10.1016/j.entcs.2011.10.011

22. Nenzi, L., Bartocci, E., Bortolussi, L., Loreti, M.: A logic for monitoring dynamic
networks of spatially-distributed cyber-physical systems. Logical Methods in Com-
puter Science 18(1) (2022)

23. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cam-
bridge Tracts in Theoretical Computer Science, Cambridge University Press (2013).
https://doi.org/10.1017/CBO9781139084673

24. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Bodden, E., Schäfer, W., van Deursen, A., Zisman, A. (eds.)
ESEC/FSE 2017. pp. 38–48. ACM (2017)

A Some hints from quantified modal algebras

This appendix recalls basic notions of (quantified) modal and conjugate algebras,
which inspired the way we provided our logics with a denotational semantics.

A.1 Boolean and modal algebra

We recall the basics of boolean and modal algebras and discuss some axioms.

Definition 15. A Boolean algebra A is a 6-tuple 〈A,∨, 0,∧, 1,¬〉 such that the
triples 〈A,∨, 0〉 and 〈A,∧, 1〉 are ACI (associative, commutative and with iden-
tity) monoids satisfying the usual distributivity and negation rules.

The usual negation rule means that a ∨ ¬a = 1 and a ∧ ¬a = 0. A Boolean
algebra is equivalently described as a complemented distributive lattice. In par-
ticular a ∨ b = a iff a ∧ b = b and a ≤ b iff ¬b ≤ ¬a. The partial order on A is
induced by a ≤ b if a ∨ b = b, so that 0 is bottom and 1 is top. A well-known
example of such a structure is the boolean algebra of powersets of a set, that
gives rise to the algebra A = 〈P(A),∪, ∅,∩, A,c 〉. We say that a Boolean algebra
A is complete if every subset of A has a least upper bound (LUB).

Definition 16. A modal algebra M is a 7-tuple 〈A,∨, 0,∧, 1,¬,♦〉 such that
the 6-tuple 〈A,∨, 0,∧, 1,¬〉 is a Boolean algebra and ♦ : A → A is a function
satisfying ♦0 = 0 and ♦(a ∨ b) = ♦a ∨ ♦b.

A modal algebra is complete if the underlying Boolean algebra is complete
and ♦(

∨
i ai) =

∨
i ♦ai for any i.

Monotonicity of ♦ is implied by the second axiom, which also yields that
♦1 = 1. If M is finite (i.e. the set A is finite), then M is obviously complete.

We define the usual derived operator �a = ¬♦¬a. Note that �1 = 1, �a∧b =
�a ∧�b, and � is monotone with respect to the induced partial order

Remark 9. Modal algebras provide denotational models for propositional modal
logics. Assuming a semantical function [·] mapping a formula into an element of
the modal algebra chosen as model, the formula φ is valid in the logics if [φ] = 1.
Also, note that [φ =⇒ ρ] = 1 is equivalent to prove that [φ] ≤ [ρ], assuming
that [·] preserves the operators ¬ and ∨ (hence, all the operators).

It is immediate that the axiom K, i.e. �(φ =⇒ ρ) =⇒ (�φ =⇒ �ρ),
holds in any modal algebra. By Boolean manipulation the formula is equivalent
to (�φ ∧ (�(φ =⇒ ρ)) =⇒ �ρ. Hence, it suffices to prove that in a modal
algebra it holds (�a∧�(a =⇒ b)) ≤ �b. Due to the distributivity of �, this is
equivalent to prove that �(a ∧ b) ≤ �b, which holds by monotonicity.

Also, note that what is called the necessitation rule for modal logics based
on K holds, since a = 1 implies �a = �1 = 1.

Definition 17. LetM be a modal algebra whose partial order is ≤. Its necessity
and iteration axioms are M = a ≤ ♦a, 4 = ♦♦a ≤ ♦a, and B = a ≤ �♦a.

Axioms are given in terms of the ♦ operator, but they can be rewritten using
the � operator, with the reversed inequality. Hence, M and 4 can be equivalently
expressed in terms of � as �a ≤ a and �a ≤ ��a, respectively, as well as B is
equivalent to ♦�a ≤ a. Note that assuming M and 4 implies that ♦♦a = ♦a.

Remark 10. Axioms M , 4, and B are known as reflexivity, transitivity, and sym-
metry axioms, respectively, since for modal algebras arising from Kripke frames
those are the properties imposed on the underlying relation [?]. Modal algebras
satisfying M and 4 are called closure algebras and are models of S4, while those
satisfying all three axioms are called monadic algebras and are models of S5.

A.2 Quantified modal algebras

While modal algebras represent models for propositional modal logics, moving
to first order quantification require the introduction of cylindric operators, a
well-known abstraction for existential quantifiers [?].

Cylindric operators. We fix a Boolean algebra A and a set of variables V .

Definition 18 (cylindric Boolean algebras). A cylindric operator ∃ over A
and V is a family of monotone operators ∃x : A→ A indexed by elements in V
such that for all a, b ∈ A and x, y ∈ V it holds a ≤ ∃xa, ∃x∃ya = ∃y∃xa, and
∃x(a ∧ ∃xb) = ∃xa ∧ ∃xb.

Let a ∈ A. The support of a is the set of variables sv(a) = {x | ∃xa 6= a}.

An element of the algebra stands for a formula possibly containing free vari-
ables. We restrict our attention to elements a with finite support, i.e., such that
sv(a) is finite: this means that a is a formula containing a finite set of variables.

Now we fix a modal algebra M with underlying Boolean algebra A.

Definition 19 (cylindric modal algebras). A cylindric operator ∃ over M
and V is a cylindric operator over A and V such that for all a ∈ A and x ∈ V
it holds ∃x♦a = ♦∃xa.

Remark 11. The inequalities ∃x♦a ≥ ♦∃xa and ∃x♦a ≤ ♦∃xa are known as
Barcan formula and converse Barcan formula in the literature [?]. The axiom in
Definition 19 is thus only one of the possible choices, and it boils down to require
what is called “domain preservation”, namely, the domain is preserved along the
evolution. Instead, ∃x♦a ≤ ♦∃xa witnesses a possible domain restriction, while
analogously we may have a domain increase with the reverse ∃x♦a ≥ ♦∃xa.

The axiom implies sv(♦a) ⊆ sv(a), since ∃xa = a implies ∃x♦a = ♦∃xa = ♦a.

Soft modal algebras. We now show how to build a modal algebra that admits
cylindric operators. Let us fix a modal algebra M with underlying Boolean
algebra A and a set of variables V .

Proposition 8. Let D be a set of elements, F the set of functions η : V → D,
and Γ the set of functions γ : F → A . The 7-tuple F = 〈Γ,∨, 0,∧, 1,¬,♦〉
is a modal algebra, whose operators and constants are lifted from M. If M is
complete, so is F .

For example, 0 in F is the function such that 0(η) = 0 for all η, and so on.
In particular, note that γ1 ≤ γ2 means that γ1(η) ≤ γ2(η) for all η.

Let us now additionally fix a set D, and given η : V → D, we denote as
η[d/x] the function coinciding with η except for x, where η[d/x](x) = d.

Proposition 9. Let D be finite. The cylindric operator ∃ over F and V is
defined as (∃xγ)(η) =

∨
d∈D γ(η[d/x]).

If M is complete, the finiteness of D can be dropped.

Remark 12. By definition, ∃xγ = γ means that for all η we have
∨
d∈D γ(η[d/x]) =

γ(η), which is equivalent to say that for all d we have γ(η[d/x]) = γ(η). Intu-
itively, if γ represents a formula possibly containing free variables, x cannot be
among them. Conversely, x ∈ sv(γ) if there is a function η and elements b, c ∈ D
such that γ(η[b/x]) 6= γ(η[c/x]), intuitively meaning that x does occur free in γ.

A.3 Conjugate modal algebras

Algebras that employ more than one modal operator are said to be multimodal.
We focus here on a particular kind of such algebras, called conjugate algebras.

Definition 20. A conjugate algebra D is a 8-tuple 〈A,∨, 0,∧, 1,¬,♦1,♦2〉 such
that both 7-tuples 〈A,∨, 0,∧, 1,¬,♦1〉 and 〈A,∨, 0,∧, 1,¬,♦2〉 are modal algebras
and moreover it holds a ≤ �1♦2a ∧�2♦1a.

A conjugate algebra is complete if both the underlying modal algebras are so.

What is noteworthy is a well-known characterisation via just the ♦ operators.

Lemma 3. D is a conjugate algebra iff it holds ♦1a ∧ b = 0⇔ a ∧ ♦2b = 0.

Remark 13. The lemma is stated by using the more standard notion of the axiom
on ♦. An alternative, friendlier version is ♦1a ≤ b ⇔ a ≤ �2b. The proof of
the equivalence between the two axioms is straightforward, and it exploits the
following law holding in Boolean algebras, namely a ∧ b = 0 iff a ≤ ¬b.

