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Abstract. In this paper we study a distributed control problem for a phase-

field system of conserved type with a possibly singular potential. We mainly
handle two cases: the case of a viscous Cahn–Hilliard type dynamics for the

phase variable in case of a logarithmic-type potential with bounded domain and

the case of a standard Cahn–Hilliard equation in case of a regular potential
with unbounded domain, like the classical double-well potential, for exam-

ple. Necessary first order conditions of optimality are derived under natural
assumptions on the data.

1. Introduction. The present contribution is concerned with the study of a dis-
tributed control problem for a conserved phase field type PDE system (cf. [7] and
[8]) in QT := (0, T )× Ω,

∂tϑ+ `∂tϕ−∆ϑ = u, ∂tϕ−∆µ = 0, µ = τ∂tϕ−∆ϕ+W ′(ϕ)− γϑ (1.1)

where Ω is the domain where the evolution takes place, T is some final time, ϑ de-
notes the relative temperature around some critical value that is taken to be 0
without loss of generality, and ϕ is the order parameter. Moreover, ` and γ are pos-
itive coefficients proportional to the latent heat, and u is some source term, playing
the role of the distributed control here. The parameter τ ∈ [0, 1] denotes a viscosity
coefficient that will be taken to be strictly positive or non-negative in the subse-
quent analysis in view of different results. Finally, W ′ represents the derivative of a
double-well potential W, and the typical example is the classical regular potential
Wreg defined by

Wreg(r) =
1

4
(r2 − 1)2 , r ∈ R. (1.2)
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However, different choices of W are possible, and a thermodynamically significant
example is given by the so-called logarithmic double-well potential, namely

Wlog(r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− cr2 , r ∈ (−1, 1) (1.3)

where c > 0 is large enough in order to kill convexity. More generally, the potential
W could be just the sum W = β̂ + π̂, where β̂ is a convex function that is now
allowed to take the value +∞ in our case and π̂ is a smooth perturbation (not
necessarily concave).

The mathematical literature on the well-posedness of the PDE system (1.1) is
quite vast and so we quote here only the papers [5], [9, 28, 29], and [24] dealing
respectively with the cases of regular, singular, and non-smooth potentials and also
with the long-time behavior of solutions.

Moreover, initial conditions like ϑ(0) = ϑ0 and ϕ(0) = ϕ0 and suitable boundary
conditions must complement the above equations. As far as the latter are concerned,
we take for simplicity the homogeneous Neumann boundary conditions, respectively,
that are

∂nϑ = ∂nϕ = ∂nµ = 0 on ΣT := (0, T )× Γ (1.4)

where Γ is the boundary of Ω and ∂n is the (say, outward) normal derivative. We
note that the last two boundary conditions are very common in the literature and
that the first one could be replaced by an inhomogeneous one, for example. Let
us note that by using the third boundary condition in (1.4) we obtain a classical
feature of the Cahn–Hilliard equations, that is the so-called mass conservation:∫

Ω

ϕ(t) =

∫
Ω

ϕ(0) ∀t ∈ [0, T ] .

The aim of this paper is to study a related optimal control problem for the system
(1.1), (1.4), the control being associated to the forcing term u that appears on the
right-hand side of the first equation (1.1), and it is supposed to vary in some control
box Uad. We would like to force the averaged temperature and phase variable to
be closed to some fixed values ϑQ and ϕQ and their final values at time T to be
closed to ϑΩ and ϕΩ, respectively. In order to do that we choose the following cost
functional

J (u) :=
κ1

2

∫
Q

(ϑ− ϑQ)2 +
κ2

2

∫
Q

(ϕ− ϕQ)2

+
κ3

2

∫
Ω

(ϑ(T )− ϑΩ)2 +
κ4

2

∫
Ω

(ϕ(T )− ϕΩ)2 (1.5)

where (ϑ, ϕ) is the state corresponding to the control u, and the desired tempera-
tures ϑQ ∈ L2(Q), ϑΩ ∈ L2(Ω), the target phases ϕQ ∈ L2(Q), ϕΩ ∈ L2(Ω), and
the constants κi ≥ 0, i = 1, . . . , 4, are given. In this case, the optimal control (if it
exists) balances the smallness of the various differences depending on the value of
the coefficients κi.

Thus, the control problem we address in this paper consists in minimizing the
cost functional J depending on the state variables ϑ and ϕ, which satisfy the above
state system, over all the controls belonging to the control box

Uad :=
{
u ∈ L∞(Q) : umin ≤ u ≤ umax a.e. in Q

}
(1.6)

where umin and umax are given bounded functions.
The main novelty of the present contribution consists in the fact that we can

deal with quite general potentials W (even singular) in the phase equation and
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with a quite general cost functional J . Up to our knowledge, indeed, the literature
on optimal control for Caginalp type phase field models is quite poor and often
restricted to the case of regular potentials, or dealing with approximating problems
when first order optimality conditions are discussed. In this framework, let us
quote the papers [22, 23] and references therein, as well as [2, 3, 12, 13, 14, 18,
19, 20, 26, 30, 32] for different types of phase field models. Moreover, up to our
knowledge, no optimal control analysis has been performed yet in the literature in
case of conserved Capinalp type systems. However we can quote the recent results
[10, 16, 17] handling single Cahn–Hilliard type dynamics with different boundary
conditions and also singular or non-smooth potentials.

The paper is organized as follows. In the next section, we list our assumptions,
state the problem in a precise form and present our results. In Sections 3 and 4,
respectively, we show the well-posedness and regularity results of the state and
linearized systems and the existence of an optimal control. The rest (and main
part) of the paper is devoted to the derivation of first order necessary conditions
for optimality.

2. Statement of the problem and results. In this section, we describe the
problem under investigation and present our results. As in the Introduction, Ω is
the body where the evolution takes place. We assume Ω ⊂ R3 to be open, bounded,
connected, of class C1,1, and we write |Ω| for its Lebesgue measure. Moreover,
Γ and ∂n still stand for the boundary of Ω and the outward normal derivative,
respectively. Given a finite final time T > 0, we set for convenience

Qt := (0, t)× Ω and Σt := (0, t)× Γ for every t ∈ (0, T ] (2.1)

Q := QT , and Σ := ΣT . (2.2)

Now, we specify the assumptions on the structure of our system. We assume that

β̂ : R→ [0,+∞] is convex and lower semicontinuous with β̂(0) = 0, (2.3)

π̂ : R→ R is a C3 function and π̂ ′ is Lipschitz continuous (2.4)

and observe that (2.4) implies that

|π̂(r)| ≤ ĉ (r2 + 1) for every r ∈ R (2.5)

with a precise constant ĉ. We set for convenience

W := β̂ + π̂, β := β̂
′

and π := π̂ ′ (2.6)

and denote by D(β) and D(β̂) the domains of β and β̂ , respectively. We assume
then that

D(β) is an open interval and β|D(β)
is a C2 function. (2.7)

We remark that both the regular potential (1.2) and the logarithmic potential
(1.3) satisfy the above assumptions on β and π. Another possible choice of β is
given by

β(r) := 1− 1

r + 1
for r > − 1 (2.8)

and it corresponds to the function β̂ defined by

β̂(r) := r − ln(r + 1) if r > −1 and β̂(r) := +∞ otherwise (2.9)

with β̂ taking the minimum 0 at 0, as required by assumption (2.3). Such an
operator β yields an example of a different behavior for negative and positive values,
singular near −1 and with a somehow linear growth at +∞.
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Moreover, if βε denotes the Yosida regularization of β at level ε, it is well known
that both β and βε are maximal monotone operators and that βε is even Lipschitz
continuous in the whole of R. Furthermore (see, e.g., [4, Prop. 2.6, p. 28]), we have

|βε(r)| ≤ |β(r)| and βε(r)→ β(r) for r ∈ D(β). (2.10)

Next, in order to simplify notations, we set

V := H1(Ω), H := L2(Ω), W := {v ∈ H2(Ω) : ∂nv = 0} (2.11)

and endow these spaces with their natural norms. We have the dense and continuous
embeddings W ⊂ V ⊂ H ∼= H ′ ⊂ V ′ ⊂ W ′. We denote by 〈·, ·〉X′,X the duality
pairing between two Banach spaces X ′ and X, by (·, ·)Y the scalar product in a
generic Hilbert space Y , and by (·, ·) the scalar product in H. Then, we have
〈u, v〉V ′,V = (u, v) and 〈u,w〉W ′,W = (u,w) for all u ∈ H, v ∈ V , and w ∈ W . The
symbol ‖ · ‖X stands for the norm in a generic Banach space X or in power of it,
while ‖ · ‖p is the usual norm in both Lp(Ω) and Lp(Q), for 1 ≤ p ≤ ∞. Finally, for
v ∈ L2(0, T ;X) the function 1 ∗ v is defined by

(1 ∗ v)(t) :=

∫ t

0

v(s) ds for t ∈ [0, T ] (2.12)

(note that the symbol ∗ is usually employed for convolution products).
Secondly, we introduce a well-known tool, which is useful to deal with a Cahn–

Hilliard type equation (see, e.g., [11, Sect. 2]). We define the operator

A : V → V ′ by 〈Av, z〉V ′,V =

∫
Ω

∇v · ∇z for every v, z ∈ V (2.13)

and set

vΩ :=
1

|Ω|
〈v, 1〉V ′,V for every v ∈ V ′. (2.14)

Recalling our assumption on Ω, namely, boundedness, smoothness, and connected-
ness, we see that the restriction of A to the set of functions v ∈ V satisfying vΩ = 0
(see (2.14)) is one-to-one and that v̄ ∈ V ′ belongs to the range of A if and only if
v̄Ω = 0. Therefore, we can define

domN := {v̄ ∈ V ′ : v̄Ω = 0} and N : domN → {v ∈ V : vΩ = 0} (2.15)

by setting: for v̄ ∈ domN and v ∈ V with vΩ = 0, the equality v = N v̄ means
Av = v̄, i.e., N v̄ is the solution v to the generalized Neumann problem for −∆
with datum v̄ that satisfies vΩ = 0. This yields a well-defined isomorphism, and the
following relations hold∫

Ω

∇N v̄ · ∇v = 〈v̄, v〉V ′,V for v̄ ∈ V ′ with v̄Ω = 0 and v ∈ V (2.16)

〈ū,N v̄〉V ′,V = 〈v̄,N ū〉V ′,V =

∫
Ω

(∇N ū) · (∇N v̄)

for ū, v̄ ∈ V ′ with ūΩ = v̄Ω = 0 (2.17)

1

MΩ
‖v̄‖2V ′ ≤ ‖v̄‖2∗ := 〈v̄,N v̄〉V ′,V ≤MΩ‖v̄‖2V ′ for all v̄ ∈ V ′ with v̄Ω = 0

(2.18)

for some constant MΩ ≥ 1, whence also

|〈v̄, v〉| ≤M1/2
Ω ‖v̄‖∗‖v‖V for all v̄ ∈ V ′ with v̄Ω = 0 and v ∈ V . (2.19)
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The first inequality in (2.18) is related to the following Poincaré inequality

‖v‖2V ≤MΩ(‖∇v‖H + |vΩ|)2 for every v ∈ V (2.20)

while (2.17) implies that we have

d

dt
‖v̄(t)‖2∗ = 2〈∂tv̄(t),N v̄(t)〉V ′,V for a.a. t ∈ (0, T ) (2.21)

for every v̄ ∈ H1(0, T ;V ′) satisfying v̄Ω(t) = 0 for t ∈ (0, T ).
At this point, in order to get useful results both for the state system and the

linearized one, that we will need later for the optimal control analysis, we intro-
duce the following (more general) PDE system which contains the state system as
particular case.

Given ϑ0 and ϕ0 such that

ϑ0 ∈ H, τ1/2ϑ0 ∈ V (2.22)

ϕ0 ∈ V, β̂(ϕ0) ∈ L1(Ω), m0 := (ϕ0)Ω ∈ D(β) (2.23)

and

v ∈ L2(Q), λ ∈ H1(0, T ;H) ∩ L∞(Q), (2.24)

we look for a triplet (ϑ, ϕ, µ) satisfying

ϑ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) (2.25)

τ1/2ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.26)

ϕ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), τ1/2ϕ ∈ H1(0, T ;H) (2.27)

µ ∈ L2(0, T ;V ), τ1/2µ ∈ L2(0, T ;W ) (2.28)

〈∂tϑ+ `∂tϕ, z〉V ′,V + 〈Aϑ, z〉V ′,V = (v, z) ∀z ∈ V , a.e. in (0, T ) (2.29)

〈∂tϕ, z〉V ′,V + 〈Aµ, z〉V ′,V = 0 ∀z ∈ V , a.e. in (0, T ) (2.30)

µ = τ∂tϕ−∆ϕ+ β(ϕ) + λπ(ϕ)− γϑ a.e. in Q (2.31)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 a.e. in Ω (2.32)

where the abstract operator A is defined by (2.13). Note that the initial conditions
(2.32) make sense since (2.25) and (2.27) entail that ϑ, ϕ ∈ C0([0, T ];H). We also
point out that the boundary condition for ϕ is included in (2.27) (cf. (2.11) as well),
while those for ϑ and ϕ are contained in equations (2.29)–(2.30) due to the definition
(2.13) of A. Finally, let us underline that (2.30), (2.32) and (2.23) easily yield

(∂tϕ)Ω = 0, ϕΩ = m0 a.e. in (0, T ). (2.33)

Our first result, whose proof is sketched in Section 3, ensures well-posedness with
the prescribed regularity, stability and continuous dependence in suitable topologies.

Theorem 2.1. Assume (2.3)–(2.7) and (2.22)–(2.24). Then, the problem (2.29)–
(2.32) has a unique solution (ϑ, ϕ, µ) satisfying (2.25)–(2.28) and the estimate

‖ϑ‖H1(0,T ;V ′)∩L∞(0,T ;H)∩L2(0,T ;V ) + τ1/2‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖ϕ‖H1(0,T ;V ′)∩L∞(0,T ;V )∩L2(0,T ;W ) + τ1/2‖ϕ‖H1(0,T ;H)

+ ‖µ‖L2(0,T ;V ) + τ1/2‖µ‖L2(0,T ;W ) ≤ C1 (2.34)

holds true for some constant C1 that depends only on Ω, T , the structure (2.3)–
(2.7) of the system, ‖λ‖H1(0,T ;H)∩L∞(Q), the norms of the initial data associated

to (2.22)–(2.23) and ‖v‖2. Moreover, if vi ∈ L2(Q), i = 1, 2, are given and
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(ϑi, ϕi, µi) are the corresponding solutions, then the continuous dependence esti-
mate holds true

‖ϑ1 − ϑ2‖L2(0,T ;H) + ‖(1 ∗ ϑ1)− (1 ∗ ϑ2)‖L∞(0,T ;V )

+ ‖ϕ1 − ϕ2‖C0([0,T ];V ′)∩L2(0,T ;V ) + τ‖ϕ1 − ϕ2‖C0([0,T ];H)

≤ C ′ ‖(1 ∗ v1)− (1 ∗ v2)‖L2(0,T ;H) ≤ C ′′ ‖v1 − v2‖L2(0,T ;H) (2.35)

with constants C ′ and C ′′ that depend only on `, γ, Ω, T , ‖λ‖L∞(Q), and ‖π′‖L∞(R).

Some further regularity of the solution is stated in the next result, whose proof
is given in Section 3.

Theorem 2.2. The following properties hold true.
i) Assume (2.3)–(2.7) and (2.22)–(2.24). Moreover, let v ∈ L∞(Q)

ϕ0 ∈W, β(ϕ0) ∈ H, −∆ϕ0 + β(ϕ0) + λ(0)π(ϕ0) ∈ V (2.36)

ϑ0 ∈ V ∩ L∞(Ω) . (2.37)

Then, the unique solution (ϑ, ϕ, µ) given by Theorem 2.1 also satisfies

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ∩ L∞(Q) (2.38)

ϕ ∈W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) (2.39)

µ ∈ L2(0, T ;W ∩H3(Ω)) ∩ L∞(0, T ;V ), (2.40)

τ1/2ϕ ∈W 1,∞(0, T ;H), τ1/2µ ∈ L∞(0, T ;W ), (2.41)

and the initial value (pointwise) problem

∂tϑ+ `∂tϕ−∆ϑ = v a.e. in Q (2.42)

∂tϕ−∆µ = 0 a.e. in Q (2.43)

µ = τ∂tϕ−∆ϕ+ β(ϕ) + λπ(ϕ)− γϑ a.e. in Q (2.44)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 a.e. in Ω. (2.45)

Besides, the following estimates hold true

‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )∩L∞(Q) ≤ C2 (2.46)

‖ϕ‖W 1,∞(0,T ;V ′)∩H1(0,T ;V )∩L∞(0,T ;W ) + τ1/2‖ϕ‖W 1,∞(0,T ;H) ≤ C3 (2.47)

‖µ‖L2(0,T ;W∩H3(Ω))∩L∞(0,T ;V ) + τ1/2‖µ‖L∞(0,T ;W ) ≤ C4 (2.48)

for some constants C2, C3, C4 that depend only on Ω, T , the structure (2.3)–(2.7)
of the system, the norms of the initial data, ‖v‖∞, ‖λ‖H1(0,T ;H)∩L∞(Q) and the
norms of the data in (2.36)–(2.37).
ii) By further assuming that either D(β) ≡ R or τ > 0 and β(ϕ0) ∈ L∞(Ω), we

have that β(ϕ) ∈ L∞(Q) and

‖β(ϕ)‖L∞(Q) ≤ C5 (2.49)

with a constant C5 that depends on C3, C4, and even on τ and ‖β(ϕ0)‖∞ if τ > 0.
iii) Moreover, if λ ≡ 1, vi ∈ L2(Q), i = 1, 2, are given and (ϑi, ϕi, µi) are the

corresponding solutions, then the estimate holds true

‖ϑ1 − ϑ2‖C0([0,T ];H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖C0([0,T ];V )

+ ‖∂t(ϕ1 − ϕ2)‖L2(0,T ;V ′) + τ‖∂t(ϕ1 − ϕ2)‖L2(0,T ;H)

≤ C ′′′‖v1 − v2‖L2(0,T ;H) (2.50)

for some constant C ′′′ that depends only on only on `, γ, Ω, T , C3, C5, β and π.
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By applying Theorem 2.1 and the points i) and ii) of Theorem 2.2 in case v = u
and λ = 1, we deduce the following existence, uniqueness and regularity results for
the state system (1.1) coupled with boundary conditions (1.4) and initial conditions
(2.32).

Corollary 2.3. The following properties hold true.
i) Assume (2.3)–(2.7) and (2.22)–(2.24) with v = u and λ = 1. Then, the fol-

lowing variational formulation of the Cauchy problem associated to the state system
(1.1), (1.4):

〈∂tϑ+ `∂tϕ, z〉V ′,V + 〈Aϑ, z〉V ′,V = (u, z) ∀z ∈ V , a.e. in (0, T ) (2.51)

〈∂tϕ, z〉V ′,V + 〈Aµ, z〉V ′,V = 0 ∀z ∈ V , a.e. in (0, T ) (2.52)

µ = τ∂tϕ−∆ϕ+ β(ϕ) + π(ϕ)− γϑ a.e. in Q (2.53)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 a.e. in Ω (2.54)

has a unique solution (ϑ, ϕ, µ) satisfying (2.25)–(2.28), and the estimate (2.34) hold-
ing true for some constant C1 that depends only on Ω, T , the structure (2.3)–(2.7)
of the system, the norms of the initial data associated to (2.22)–(2.24) and ‖u‖2.
Moreover, if ui ∈ L2(Q), i = 1, 2, are given and (ϑi, ϕi, µi) are the corresponding
solutions, then the estimate (2.35) holds true with constants C ′ and C ′′ that depend
only on `, γ, T and π.
ii) Assume (2.3)–(2.7), (2.22)–(2.24), (2.36)–(2.37) with v = u and λ = 1. Then,

the unique solution of point i) also satisfies the regularity properties (2.38)–(2.40),
the pointwise system (2.42)–(2.45), and the estimates (2.46)–(2.48) with constants
depending on Ω, T , the structure (2.3)–(2.7) of the system, the norms of the initial
data, ‖u‖∞ and the norms of the data in (2.36)– (2.37).
iii) Assuming moreover that either D(β) ≡ R or τ > 0 and β(ϕ0) ∈ L∞(Ω), we

have that β(ϕ) ∈ L∞(Q) and (2.49) is satisfied with a constant C5 that depends on
C3, C4, and even on τ and ‖β(ϕ0)‖∞ if τ > 0.

The well-posedness result for problem (2.51)–(2.54) given by Corollary 2.3 allows
us to introduce the control-to-state mapping S and to address the corresponding
control problem. We define

X := L∞(Q), Y := (C0([0, T ];H) ∩ L2(0, T ;V ))2 (2.55)

S : X → Y, u 7→ S(u) =: (ϑ, ϕ) where

(ϑ, ϕ) is the pair of the first two components

of the unique solution (ϑ, ϕ, µ) to (2.25)–(2.28), (2.51)–(2.54). (2.56)

Next, in order to introduce the control box and the cost functional, we assume that

umin, umax ∈ L∞(Q) satisfy umin ≤ umax a.e. in Q (2.57)

κi ∈ [0,+∞), i = 1, . . . 4,

4∑
i=1

κi > 0, ϑQ, ϕQ ∈ L2(Q), ϑΩ, ϕΩ ∈ H (2.58)

and define Uad and J according to the Introduction. Namely, we set

Uad :=
{
u ∈ X : umin ≤ u ≤ umax a.e. in Q

}
(2.59)
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J := F ◦ S : X → R where F : Y → R is defined by

F(ϑ, ϕ) :=
κ1

2

∫
Q

(ϑ− ϑQ)2 +
κ2

2

∫
Q

(ϕ− ϕQ)2

+
κ3

2

∫
Ω

(ϑ(T )− ϑΩ)2 +
κ4

2

∫
Ω

(ϕ(T )− ϕΩ)2. (2.60)

Here is our first result on the control problem; for the proof we refer to Section 4.

Theorem 2.4. Assume (2.3)–(2.7), (2.22)–(2.23), (2.36)–(2.37) and let Uad and J
be defined by (2.59)–(2.60). Then, there exists u∗ ∈ Uad such that

J (u∗) ≤ J (u) for every u ∈ Uad. (2.61)

Our next aim is to formulate the first order necessary optimality conditions. As
Uad is convex, the desired necessary condition for optimality is

(DJ (u∗), u− u∗)L2(Q) ≥ 0 for every u ∈ Uad (2.62)

provided that the derivative DJ (u∗) exists at least in the Gâteaux sense in L2(Q).
Then, the natural approach consists in proving that S is Fréchet differentiable at
u∗ and applying the chain rule to J = F ◦ S. We can properly tackle this project
under further assumptions on the nonlinearities β and π.

Since assumptions (2.3)–(2.7) force β(r) to tend to ±∞ as r tends to a finite
end-point of D(β), if any, we see that combining the further requirements on the
initial data with the boundedness properties of ϕ and β(ϕ) stated by Corollary 2.3
immediately yields the following result.

Corollary 2.5. Suppose that all the assumptions of Corollary 2.3, point iii) hold
true. Then, the component ϕ of the solution (ϑ, ϕ, µ) also satisfies

ϕ• ≤ ϕ ≤ ϕ• in Q (2.63)

for some constants ϕ• , ϕ
• ∈ D(β) that depend only on Ω, T , the structure (2.3)–

(2.7) of the system, the norms of the initial data associated to (2.22)–(2.23), the
norms ‖u‖∞, ‖ϑ0‖∞, and even on τ and ‖β(ϕ0)‖∞ if τ > 0.

As we shall see in Section 5, the computation of the Fréchet derivative of S
leads to the linearized problem that we describe at once and that can be stated
starting from a generic element u ∈ X . Let u ∈ X and h ∈ X be given. We set
(ϑ, ϕ) := S(u). Then the linearized problem consists in finding (Θ,Φ, Z) satisfying

Θ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) ∩ L∞(Q) (2.64)

Φ ∈W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) (2.65)

Z ∈ L2(0, T ;W ∩H3(Ω)) ∩ L∞(0, T ;V ) (2.66)

τ1/2Φ ∈W 1,∞(0, T ;H), τ1/2Z ∈ L∞(0, T ;W ) (2.67)

and solving the following problem

∂tΘ + `∂tΦ−∆Θ = h a.e. in Q (2.68)

∂tΦ−∆Z = 0 a.e. in Q (2.69)

Z = τ∂tΦ−∆Φ +W ′′(ϕ) Φ− γΘ a.e. in Q (2.70)

∂nΘ = ∂nΦ = ∂nZ = 0 a.e. on Σ (2.71)

Θ(0) = Φ(0) = 0 a.e. in Ω. (2.72)
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Applying Theorem 2.2 in the case v = h, λ = W ′′(ϕ), β(ϕ) = 0, π(ϕ) = ϕ,
ϑ0 = 0 and ϕ0 = 0, we deduce the existence, uniqueness and regularity results for
the linearized system described above. In view of (2.3)–(2.7), the reader can check
that W ′′(ϕ) complies with (2.24).

Proposition 2.6. Let the assumptions of Theorem 2.2 ii) hold true and let u ∈ X
and (ϑ, ϕ) = S(u). Then, for every h ∈ X , there exists a unique triplet (Θ,Φ, Z)
satisfying (2.64)–(2.66) and solving the linearized problem (2.68)–(2.72). Moreover,
the inequality

‖(Θ,Φ)‖Y ≤ C6‖h‖X (2.73)

holds true with a constant C6 that depend only on Ω, T , the structure (2.3)–(2.7)
of the system, the norms of the initial data associated to (2.22)–(2.23), the norms
‖u‖∞, ‖ϑ0‖∞, and even on τ and ‖β(ϕ0)‖∞ if τ > 0. In particular, the linear map
D : h 7→ (Θ,Φ) is continuous from X to Y.

In fact, we shall prove that the Fréchet derivative DS(u) ∈ L(X ,Y) actually
exists and coincides with the map D introduced in the last statement. This will be
done in Section 5. Once this is established, we may use the chain rule with u := u∗

to prove that the necessary condition (2.62) for optimality takes the form

κ1

∫
Q

(ϑ∗ − ϑQ)Θ + κ2

∫
Q

(ϕ∗ − ϕQ)Φ + κ3

∫
Ω

(ϑ∗(T )− ϑΩ)Θ(T )

+ κ4

∫
Ω

(ϕ∗(T )− ϕΩ)Φ(T ) ≥ 0 for any u ∈ Uad, (2.74)

where (ϑ∗, ϕ∗) = S(u∗) and, for any given u ∈ Uad, the pair (Θ,Φ) is the solution
to the linearized problem corresponding to h = u− u∗.

The final step then consists in eliminating the pair (Θ,Φ) from (2.74). This will
be done by introducing the so-called adjoint problem.

Theorem 2.7. Let the assumptions of Theorem 2.2 ii) hold true and let u∗ and
(ϑ∗, ϕ∗) = S(u∗) be an optimal control and the corresponding state. Then there
exists a unique solution (q, p) with the regularity properties

q ∈ H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) (2.75)

p ∈ H1(0, T ;W ′) ∩ C0([0, T ];H) ∩ L2(0, T ;W ), (2.76)

τ1/2p ∈ H1(0, T ;H) ∩ C0([0, T ];V ) (2.77)

of the adjoint problem

−〈∂tq(t), z〉V ′,V +

∫
Ω

∇q(t) · ∇z + γ

∫
Ω

∆p(t)z =

∫
Ω

g1(t)z

∀z ∈ V, for a.a. t ∈ (0, T ) (2.78)

−〈∂tp(t), w〉W ′,W +

∫
Ω

(τ∂tp(t) + ∆p(t))∆w −
∫

Ω

W ′′(ϕ∗)∆p(t)w

+`

∫
Ω

q(t)∆w − `γ
∫

Ω

∆p(t)w +

∫
Ω

(`g1(t)− g2(t))w = 0

∀w ∈W, for a.a. t ∈ (0, T ) (2.79)
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〈q(T ), z〉V ′,V =

∫
Ω

g3z ∀z ∈ V,

〈p(T ), w〉W ′,W − τ
∫

Ω

p(T )∆w =

∫
Ω

(g4 − `g3)w ∀w ∈W (2.80)

where

g1(t) = κ1(ϑ∗(t)− ϑQ(t)), g2(t) = κ2(ϕ∗(t)− ϕQ(t)),

g3 = κ3(ϑ∗(T )− ϑΩ), g4 = κ4(ϕ∗(T )− ϕΩ).

The proof of the following result will be given in Section 6.

Remark 2.8. Notice that a strong formulation of (2.78)–(2.80) consists in the
following system

−∂tq −∆q + γ∆p = κ1(ϑ∗ − ϑQ) a.e. in Q (2.81)

−∂tp−∆(−τ∂tp−∆p)−W ′′(ϕ∗)∆p− `∂tq = κ2(ϕ∗ − ϕQ) a.e. in Q (2.82)

∂nq = ∂np = ∂n∆p = 0 a.e. on Σ (2.83)

q(T ) = κ3(ϑ∗(T )− ϑΩ),

p(T )− τ∆p(T ) + `q(T ) = κ4(ϕ∗(T )− ϕΩ) a.e. in Ω. (2.84)

Our last result, also proved in Section 6, establishes optimality conditions.

Theorem 2.9. Let u∗ be an optimal control. Moreover, let (ϑ∗, ϕ∗) = S(u∗) and
(q, p) be the associate state and the unique solution to the adjoint problem (2.78)–
(2.80) given by Theorem 2.7. Then we have∫

Q

(u∗ − u)q ≤ 0 for every u ∈ Uad. (2.85)

In particular, we have −q ∈ NK(u∗), where K = [umin, umax] and NK is the normal
cone to the convex set K.

A straightforward consequence of Theorem 2.9 is here stated.

Corollary 2.10. Under the conditions of Theorem 2.9, the optimal control u∗ reads

u∗


= umin a.e. on the set {(t, x) : q(t, x) > 0}
= umax a.e. on the set {(t, x) : q(t, x) < 0}
∈ (umin, umax) elsewhere.

In the remainder of the paper, we often owe to the Hölder inequality and to the
elementary Young inequalities

ab ≤ αa1/α + (1− α) b1/(1−α) and ab ≤ δa2 +
1

4δ
b2

for every a, b ≥ 0, α ∈ (0, 1) and δ > 0 (2.86)

in performing our a priori estimates. To this regard, in order to avoid a boring
notation, we use the following general rule to denote constants. The small-case
symbol c stands for different constants which depend only on Ω, the final time T , the
shape of the nonlinearities and the constants and norms of the functions involved in
the assumptions of our statements. A small-case c with a subscript like cδ indicates
that the constant might depend on the parameter δ, in addition. Hence, the meaning
of c and cδ might change from line to line and even in the same chain of equalities
or inequalities. On the contrary, different symbols (e.g., capital letters) stand for
precise constants which we can refer to.
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3. The state and the linearized systems. This section is devoted to the proofs
of Theorems 2.1 and 2.2, which, in turn, imply the validity of Corollary 2.3 and
Proposition 2.6. As far as Theorem 2.1 is concerned, we notice that the initial-
boundary value problem under study is a quite standard phase field system and
that a number of results on it can be found in the literature (see, e.g., [5, 6, 7, 21,
28], and references therein). Nevertheless, we prefer to sketch the basic a priori
estimates that correspond to the regularity (2.25)–(2.28) of the solution and to
the stability estimate (2.34), for the reader’s convenience. A complete existence
proof can be obtained by regularizing the problem, performing similar estimates
on the corresponding solution, and passing to the limit through compactness and
monotonicity arguments. In particular the potential β̂ should be replaced by its
Moreau–Yosida approximation β̂ε, but, since all estimates we deduce are formal
and independent of ε, we skip the index hereby most of the times.

Concerning the treatment of the unusual term λ(t, x)π(ϕ) in the equation (2.44),
we refer the reader to the analysis carried out in [15] for a Cahn–Hilliard system
with dynamic boundary conditions.

We also give a short proof of (2.35) and (2.50) (whence uniqueness follows as a
consequence) and conclude the discussion on Theorem 2.2.

As already mentioned, we derive just formal a priori estimates. Let’s define the
auxiliary variable e := ϑ + `ϕ. We take z = e in (2.29); then we test (2.30) by
LN (∂tϕ) and (2.31) by −L∂tϕ, being L a positive constant to be chosen later.
Moreover we add to both members of the resulting equality the term L

2 ‖ϕ(t)‖2H +∫
Qt
|ϑ|2; finally, we sum up and integrate over Qt with t ∈ (0, T ). As the terms

involving the product µ∂tϕ cancel out, we obtain

1

2

∫
Ω

|e(t)|2 +

∫ t

0

‖ϑ‖2V + L

∫ t

0

‖∂tϕ‖2∗ + τL

∫
Qt

|∂tϕ|2 +
L

2
‖ϕ(t)‖2V + L

∫
Ω

β̂(ϕ(t))

=
1

2

∫
Ω

|ϑ0 + `ϕ0|2 +
L

2
‖∇ϕ0‖2H + L

∫
Ω

β̂(ϕ0) +

∫
Qt

v e− `
∫
Qt

∇ϑ · ∇ϕ

− L
∫
Qt

λπ(ϕ) ∂tϕ+ γL

∫
Qt

ϑ∂tϕ+
L

2
‖ϕ(t)‖2H +

∫
Qt

|ϑ|2

=:
1

2

∫
Ω

|ϑ0 + `ϕ0|2 +
L

2
‖∇ϕ0‖2H + L

∫
Ω

β̂(ϕ0) +

6∑
i=1

Ii . (3.1)

We can now proceed by estimating the six integrals on the right hand side in (3.1).
Indeed, the last integral on the left-hand side is nonnegative thanks to (2.3) and
the first three terms on the right-hand side are under control, due to (2.22)–(2.23).
By applying the Young inequality we deduce the estimates

I1 ≤
1

2

∫ t

0

‖v‖2H +
1

2

∫ t

0

‖e‖2H (3.2)

I2 ≤
1

2

∫ t

0

‖∇ϑ‖2H + c

∫ t

0

‖∇ϕ‖2H . (3.3)

We treat the third integral by integration by parts in time and taking advantage of
the continuous embedding V ⊂ L4(Ω). Moreover, we account for (2.5) and explicitly
write the corresponding constant ĉ in some terms, for clarity. By allowing the values
of c to depend on L as well, we obtain
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I3 = L

∫
Qt

∂tλ π̂(ϕ)− L
∫

Ω

λ(t) π̂(ϕ(t)) + L

∫
Ω

λ(0) π̂(ϕ(0))

≤ c
∫
Qt

|∂tλ| (|ϕ|2 + 1) + L‖λ‖∞ ĉ (‖ϕ(t)‖2H + 1) + c

≤ L‖λ‖∞ ĉ ‖ϕ(t)‖2H + c

∫ t

0

‖∂tλ‖H(‖ϕ‖24 + 1) + c

≤ L‖λ‖∞ ĉ ‖ϕ(t)‖2H + c

∫ t

0

‖∂tλ‖H‖ϕ‖2V + c . (3.4)

We notice at once that the first summand of the last line is proportional to the term
I5 we introduce and treat later on. Next, in view of (2.19), we have

I4 = γL

∫ t

0

〈∂tϕ, ϑ〉V ′,V ≤
L

4

∫ t

0

‖∂tϕ‖2∗ + γ2LMΩ

∫ t

0

‖ϑ‖2V (3.5)

I6 =

∫
Qt

|e− `ϕ|2 ≤ c
(∫

Qt

|e|2 +

∫
Qt

|ϕ|2
)
. (3.6)

It remains to estimate I5 := (L/2)‖ϕ(t)‖2H and the proportional term of (3.4). We
observe that

‖ϕ(t)‖2H = ‖ϕ0‖2H + 2

∫ t

0

〈∂tϕ,ϕ〉 .

Thus, we have(
(L/2) + L‖λ‖∞ ĉ

)
‖ϕ(t)‖2H ≤

L

4

∫ t

0

‖∂tϕ‖2∗ + c

∫ t

0

‖ϕ‖2V + c . (3.7)

Choosing now L such that 1 − (1/2)− γ2LMΩ > 0, we insert (3.2)–(3.7) in (3.1).
Then, using (2.24) together with a standard version of Gronwall lemma, we obtain
the following estimate

‖e‖L∞(0,T ;H) + ‖ϑ‖L2(0,T ;V ) + ‖ϕ‖H1(0,T ;V ′)∩L∞(0,T ;V )

+ τ1/2‖ϕ‖H1(0,T ;H) + ‖β̂(ϕ)‖L∞(0,T ;L1(Ω)) ≤ c . (3.8)

Hence, by comparison in (2.29) and by virtue of standard regularity results for linear
parabolic equations, we have that

‖∂tϑ‖L2(0,T ;V ′) + ‖ϑ‖L∞(0,T ;H) + τ1/2‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c . (3.9)

In view of (2.33), we can now test (2.30) by N (ϕ−m0) and subtract (2.31) tested
by ϕ − m0. Two terms cancel out and we can integrate by parts in the term
containing −∆ϕ. By rearranging a little, we obtain for a.a. t ∈ (0, T )∫

Ω

βε(ϕ(t))(ϕ(t)−m0) +

∫
Ω

|∇ϕ(t)|2

= −〈∂tϕ(t),N (ϕ(t)−m0)〉V ′,V − τ
∫

Ω

∂tϕ(t)(ϕ(t)−m0)

−
∫

Ω

λ(t)π(ϕ(t)) (ϕ(t)−m0) + γ

∫
Ω

ϑ(t)(ϕ(t)−m0)

≤ ‖∂tϕ(t)‖∗ ‖ϕ(t)−m0‖∗ + τ‖∂tϕ(t)‖H ‖ϕ(t)−m0‖H
+ c‖λ‖∞

(
‖ϕ(t)‖2H + 1

)
+ γ‖ϑ(t)‖H ‖ϕ(t)−m0‖H + c . (3.10)
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Now, we use the fact that m0 lies in the interior of D(β) and consequently (cf. [29,
Appendix, Prop. A1])

βε(r) (r −m0) ≥ δ0 |βε(r)| − C

for every r ∈ R and some positive constants δ0 and C that do not depend on ε.
Hence, thanks to (3.8) we have that

‖βε(ϕ)‖L2(0,T ;L1(Ω)) ≤ c .

Next, by testing (2.31) by 1, it is easy to infer that

|µΩ(t)| ≤ τ‖∂tϕ(t)‖H + ‖βε(ϕ(t))‖L1(Ω) + c
(
‖ϕ(t)‖H + ‖ϑ(t)‖H + 1

)
(3.11)

and so, by using the estimate (cf. (2.30) and (2.18))

‖∇(µ− µΩ)(t)‖2 ≤ c ‖∂tϕ(t)‖V ′ (3.12)

for a.a. t ∈ (0, T ), from (3.8) it follows that

‖µ‖L2(0,T ;V ) ≤ c.

Therefore, we can test (2.31) by βε(ϕ) and integrate in time; we exploit the non-
negativity of the term (−∆ϕ(t), βε(ϕ(t))), for a.a. t ∈ (0, T ), in order to recover
that

‖βε(ϕ)‖L2(0,T ;H) ≤ c
whence, by comparison in (2.31), we have that ‖∆ϕ‖L2(0,T ;H) ≤ c. From these
estimates and by standard elliptic regularity results we infer the desired estimate

‖ϕ‖L2(0,T ;W ) ≤ c .

Let us just comment on the fact that, if we want then to pass to the limit in the
regularization parameter ε, we can use the strong convergence of the corresponding
solution ϕε in L2(0, T ;V ) which is sufficient, along with the weak convergence of
βε(ϕε) in L2(0, T ;H), in order to perform the limit procedure in our system.

Next, we proceed proving estimate (2.35). We first integrate (2.29) with respect
to time and get the equation

〈ϑ+ `ϕ, z〉V ′,V + 〈A(1 ∗ ϑ), z〉V ′,V = (ϑ0 + `ϕ0 + 1 ∗ v, z)
∀z ∈ V , a.e. in (0, T ). (3.13)

Now, we fix vi ∈ L2(Q), i = 1, 2, and consider corresponding solutions (ϑi, ϕi, µi)
with the same initial data. We write (3.13) for both of them and test the difference
by γϑ/`, where ϑ := ϑ1 − ϑ2. At the same time, we write (2.30) for both solutions,
take the difference and choose z = Nϕ, where ϕ := ϕ1−ϕ2. Finally, we take (2.31)
for the two solutions and test the difference by −ϕ. Then, we add the resulting
equalities and integrate over (0, t). Note that two pairs of corresponding terms
cancel. Hence, by setting v := v1 − v2 for brevity, and using the monotonicity of β,
the Lipschitz continuity of π and the boundedness of λ, we have

γ

`

∫
Qt

|ϑ|2 +
γ

2`

∫
Ω

|∇(1 ∗ ϑ)(t)|2 +
1

2
‖ϕ(t)‖2∗ +

τ

2

∫
Ω

|ϕ(t)|2 +

∫
Qt

|∇ϕ|2

≤ γ

`

∫
Qt

(1 ∗ v)ϑ−
∫
Qt

λ
(
π(ϕ1)− π(ϕ2)

)
ϕ

≤ c‖1 ∗ v‖2L2(Q) +
γ

2`

∫
Qt

|ϑ|2 + ‖λ‖∞‖π′‖L∞(R)

∫
Qt

|ϕ|2 . (3.14)
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Now, we exploit a standard compactness inequality, which states that for any δ > 0
there is some constant cδ > 0 such that

‖ζ‖2H ≤ δ‖∇ζ‖2H + cδ‖ζ‖2V ′ for all ζ ∈ V. (3.15)

Indeed, by using it to estimate the last term of (3.14) and owing also to (2.18), we
have that

‖λ‖∞‖π′‖L∞(R)

∫
Qt

|ϕ|2 ≤ 1

2

∫
Qt

|∇ϕ|2 + c‖ϕ(t)‖2∗.

Then, by combining it with (3.14) and applying the standard Gronwall lemma, we
obtain the desired estimate (2.35).

Now, we prove Theorem 2.2. First take the equation (2.29) and test it by ∂tϑ,
then differentiate (2.30) and test it by N (∂tϕ) and finally take the time derivative
of (2.31) and test it by −∂tϕ. Summing up the resulting equations, a cancellation
occurs. So, by integrating over (0, t), we obtain∫
Qt

|∂tϑ|2 +
1

2
‖∇ϑ(t)‖2H +

1

2
‖∂tϕ(t)‖2∗ +

τ

2
‖∂tϕ(t)‖2H +

∫
Qt

|∇∂tϕ|2

+

∫
Qt

β′ε(ϕ)|∂tϕ|2 ≤
1

2
‖∇ϑ0‖2H +

1

2
‖∂tϕ(0)‖2∗ +

τ

2
‖∂tϕ(0)‖2H − (`− γ)

∫
Qt

∂tϕ∂tϑ

+

∫
Qt

v∂tϑ−
∫
Qt

∂tλπ(ϕ)∂tϕ−
∫
Qt

λ(t, x)π′(ϕ)|∂tϕ|2. (3.16)

The monotonicity of βε implies that the last term on the left-hand side is nonneg-
ative. With the help of (2.36)–(2.37) we find out that the norms of the initial data
on the right hand side are bounded: indeed, write (2.30), (2.31) at the time t = 0,
take z = N (∂tϕ(0)) in (2.30) and test (2.31) by −∂tϕ(0), then sum up and obtain

‖∂tϕ(0)‖2∗ + τ‖∂tϕ(0)‖2H ≤ 〈∂tϕ(0),∆ϕ0 − β(ϕ0)− λ(0)π(ϕ0) + γϑ0〉V ′,V

whence
1

2
‖∂tϕ(0)‖2∗ + τ‖∂tϕ(0)‖2H ≤ c

(
‖∆ϕ0 − β(ϕ0)− λ(0)π(ϕ0)‖2V + ‖ϑ0‖2V

)
.

We can then estimate the next term on the right hand side of (3.16) by the ele-
mentary Young inequality and the compactness inequality (3.15). Hence, we easily
have that

− (`− γ)

∫
Qt

∂tϕ∂tϑ+

∫
Qt

v∂tϑ

≤ 1

2

∫
Qt

|∂tϑ|2 + δ

∫
Qt

|∇∂tϕ|2 + cδ

∫ t

0

‖∂tϕ‖2∗ + c

∫
Qt

|v|2 . (3.17)

The last two integrals in (3.16) can be treated by means of the regularity assump-
tions on λ and π along with the compactness inequality applied to the embedding
V ⊂ L4(Ω) as well. We infer that

−
∫
Qt

λt(t, x)π(ϕ)∂tϕ−
∫
Qt

λ(t, x)π′(ϕ)|∂tϕ|2

≤
∫ t

0

‖λt‖H‖π(ϕ)‖4‖∂tϕ‖4 + c

∫
Qt

|∂tϕ|2

≤ δ‖∇∂tϕ‖2L2(0,t;H) + cδ‖∂tϕ‖2L2(0,t;V ′) + c

∫ t

0

‖λt‖2H
(
1 + ‖ϕ‖2L∞(0,T ;V )

)
.
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Consequently, taking δ small enough we obtain

‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖ϕ‖W 1,∞(0,T ;V ′)∩H1(0,T ;V )

+ τ1/2‖ϕ‖W 1,∞(0,T ;H) ≤ c . (3.18)

At this point, we go back to (2.29) and observe that a comparison of terms entails
‖Aϑ‖L2(0,T ;H) ≤ c, whence (cf. (2.13))

‖ϑ‖L2(0,T ;W ) ≤ c

and (2.42) holds. Now, since ∂tϕ is bounded in L2(0, T ;L6(Ω)), v is in L∞(Q) and
ϑ0 ∈ L∞(Ω), from (2.42) and the parabolic regularity theory (cf. [25, Thm. 7.1,
p. 181]) it is straightforward to infer that

‖ϑ‖L∞(Q) ≤ c .
In view of (3.18) and recalling the estimates (3.10)–(3.12) we easily conclude that

‖βε(ϕ)‖L∞(0,T ;L1(Ω)) + ‖µ‖L∞(0,T ;V ) ≤ c .
Next, by comparison in (2.31) we obtain that the term −∆ϕ+ βε(ϕ) is bounded in
L∞(0, T ;H), then it is now a standard matter to check that both ‖βε(ϕ)‖L∞(0,T ;H)

and ‖∆ϕ‖L∞(0,T ;H) are bounded, whence ‖ϕ‖L∞(0,T ;W ) ≤ c on account of (3.18) as

well. Moreover, as we are working in 3D and W is complactly embedded in C0(Ω),
from, e.g., [31, Sect. 8, Cor. 4] it follows that ϕ is bounded in C0([0, T ];C0(Ω)) =
C0(Q). Finally, we observe that from (3.18) and (2.30) it is easy to deduce that

‖µ‖L2(0,T ;W∩H3(Ω)) + ‖τ1/2µ‖L∞(0,T ;W ) ≤ c

and consequently ‖τ1/2µ‖L∞(Q) ≤ c. This proves i).
For the second statement ii), we can write (2.31) in the form

τ∂tϕ−∆ϕ+ ξ = f := µ+ γϑ− λ(t, x)π(ϕ), with ξ = β(ϕ), a.e. in Q (3.19)

and observe that τ1/2f is bounded in L∞(Q) on account of the result i) just proved.
Then, we can use the same estimate already performed in [13], i.e., we can multiply
the approximation of (3.19)

τ∂tϕε −∆ϕε + ξε = f with ξε := βε(ϕε), a.e. in Q (3.20)

by |ξε|p−1 sign ξε, where βε is the Yosida regularization of β at level ε > 0 and p > 2
is arbitrary, and integrate over Qt. Indeed, a standard argument shows that ϕε
converges to ϕ in the proper topology as ε tends to zero, so that ii) immediately
follows whenever we prove that ξε is bounded in L∞(Q) uniformly with respect to ε.
This estimate leads plainly to

τ1/2‖β(ϕ)‖L∞(Q) ≤ c .
Hence, in case τ > 0, the proof of ii) of Theorem 2.2 is completed. In case τ = 0 and
assuming that D(β) ≡ R, the boundedness of ‖β(ϕ)‖L∞(Q) is an easy consequence

of the facts that ϕ is bounded in C0(Q) and the real function β is bounded on
bounded sets.

We need now to prove iii), that is the continuous dependence estimate (2.50), and
a preliminary remark is needed. As pointed out before its statement, Corollary 2.3
depends only on Theorem 2.1 and on the points i) and ii) of Theorem 2.2. The same
holds for Corollary 2.5 as a consequence. Therefore, in proving (2.50), we can use
(2.63) for every solution. In particular, we can assume W ′ and W ′′ to be Lipschitz
continuous and bounded without loss of generality. Let’s define v := v1 − v2. We
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test the difference of (2.29) corresponding to different solutions (ϑi, ϕi), i = 1, 2, by
ϑ := ϑ1 − ϑ2, the difference of (2.30) corresponding to different solutions (ϑi, ϕi),
i = 1, 2, by MN (∂tϕ) := MN (∂t(ϕ1 − ϕ2)), the difference of (2.31) corresponding
to different solutions (ϑi, ϕi), i = 1, 2, by −M∂tϕ := −M∂t(ϕ1 − ϕ2), with M
chosen equal to `/γ in order to cancel two terms in the sum. We integrate over
(0, t) and sum the three resulting equations up, thus obtaining

1

2
‖ϑ(t)‖2H +

∫
Qt

|∇ϑ|2 +M

∫ t

0

‖∂tϕ‖2∗ +Mτ

∫ t

0

‖∂tϕ‖2H

+
M

2
‖∇ϕ(t)‖2H =

∫
Qt

v ϑ−
∫
Qt

M(W ′(ϕ1)−W ′(ϕ2))∂tϕ . (3.21)

Now, we have that ∫
Qt

v ϑ ≤ 1

2
‖v‖2L2(0,T ;H) +

1

2
‖ϑ‖2L2(0,t;H)

and the last integral on the right hand side of (3.21) can be estimated by using
(2.18), (2.47) and (2.49) as follows (where the values of c can depend on M):

−
∫
Qt

M(W ′(ϕ1)−W ′(ϕ2))∂tϕ

≤ M

2

∫ t

0

‖∂tϕ‖2∗ + c‖W ′(ϕ1)−W ′(ϕ2)‖2L2(0,T ;V )

≤ M

2

∫ t

0

‖∂tϕ‖2∗

+ c

(
‖ϕ‖2L2(0,T ;H) +

∫
Qt

|(W ′′(ϕ1)−W ′′(ϕ2))∇ϕ1|2 +

∫
Qt

|∇ϕW ′′(ϕ2)|2
)

≤ M

2

∫ t

0

‖∂tϕ‖2∗ + c

(
‖ϕ‖2L2(0,T ;H) +

∫
Qt

|ϕ|2|∇ϕ1|2 + ‖W ′′(ϕ2)‖2∞
∫
Q

|∇ϕ|2
)

≤ M

2

∫ t

0

‖∂tϕ‖2∗ + c

(
‖ϕ‖2L2(0,T ;V ) + ‖ϕ1‖2L∞(0,T ;W 1,4(Ω))

∫ T

0

‖ϕ‖24

)

≤ M

2

∫ t

0

‖∂tϕ‖2∗ + c
(

1 + ‖ϕ1‖2L∞(0,T ;W )

)
‖ϕ‖2L2(0,T ;V ).

Hence, thanks to the already shown estimate (2.35), from (3.21) we infer that

1

2
‖ϑ(t)‖2H +

∫
Qt

|∇ϑ|2 +
M

2

∫ t

0

‖∂tϕ‖2∗ +Mτ

∫ t

0

‖∂tϕ‖2H +
M

2
‖∇ϕ(t)‖2H

≤ 1

2
‖ϑ‖2L2(0,t;H) + c‖v‖2L2(0,T ;H).

Then, by applying the Gronwall lemma we end up with the desired estimate (2.50).
This concludes the proof of Theorem 2.2.

4. Existence of an optimal control. The following section is devoted to the
proof of Theorem 2.4. We use the direct method, observing first that Uad is
nonempty. Then, we let {un} be a minimizing sequence for the optimization
problem and, for any n, we take the corresponding solution (ϕn, ϑn, µn) to prob-
lem (2.42)–(2.45). Then, {un} is bounded in L∞(Q) and estimates (2.46)–(2.48)
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hold for (ϕn, ϑn, µn). Therefore, we have for a subsequence

un → u weakly star in L∞(Q)

ϑn → ϑ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L∞(Q)

ϕn → ϕ weakly star in W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

τ1/2ϕn → τ1/2ϕ weakly star in W 1,∞(0, T ;H)

µn → µ weakly star in L∞(0, T ;V ) ∩ L2(0, T ;W ∩H3(Ω))

τ1/2µn → τ1/2µ weakly star in L∞(0, T ;W )

and β(ϕn) converges to some ξ weakly star in L∞(0, T ;H). Then, in view of (2.59)
it is clear that u ∈ Uad, the initial conditions for ϑ and ϕ are satisfied, and we
can easily conclude by standard arguments. Very shortly, {ϕn} converges strongly,
e.g., in L2(Q) and a.e. in Q (for a subsequence) by the Aubin-Lions compactness
lemma (see, e.g., [27, Thm. 5.1, p. 58]), whence π(ϕn) converges to π(ϕ) is the same
topology and β(ϕn)→ ξ = β(ϕ) by the weak-strong convergence property (see, e.g.,
[1, Lemma 1.3, p. 42]). Thus, (ϑ, ϕ, µ) satisfies problem (2.42)–(2.45). On the other
hand, F(ϑn, ϕn) converges both to the infimum of J and to F(ϑ, ϕ). Therefore,
u is an optimal control.

5. The control-to-state mapping. As sketched in Section 2, the main point is
the Fréchet differentiability of the control-to-state mapping S. This involves the
linearized problem (2.68)–(2.72), whose well-posedness is stated in Proposition 2.6.

Here is the main result of this section.

Theorem 5.1. Let u ∈ X and let S(u) be the pair (ϑ, ϕ) of the first two components
of the unique solution (ϑ, ϕ, µ) to (2.25)–(2.28), (2.51)–(2.54) with u = u. Then,
S is Fréchet differentiable at u and the Fréchet derivative [DS](u) is precisely the
map D ∈ L(X ,Y) defined in the statement of Proposition 2.6.

Proof. We fix u ∈ X and the corresponding state (ϑ, ϕ) and, for h ∈ X with
‖h‖X ≤ Λ, for some positive constant Λ, we set

(ϑh, ϕh) := S(u+ h) and (ζh, ηh, ξh) := (ϑh − ϑ−Θ, ϕh − ϕ− Φ, µh − µ− Z)

where (Θ,Φ, Z) is the solution to the linearized problem corresponding to h. We
have to prove that ‖(ζh, ηh)‖Y/‖h‖X tends to zero as ‖h‖X tends to zero. More
precisely, we show that

‖(ζh, ηh)‖Y ≤ c‖h‖2L2(Q) (5.1)

for some constant c, and this is even stronger than necessary. First of all, we fix
one fact. As both ‖u‖∞ and ‖u + h‖∞ are bounded by ‖u‖∞ + Λ, we can apply
Corollary 2.5 and find constants ϕ•, ϕ

• ∈ D(β) such that

ϕ• ≤ ϕ ≤ ϕ• and ϕ• ≤ ϕh ≤ ϕ• a.e. in Q. (5.2)

Now, let us prove (5.1) by writing the problem solved by (ζh, ηh). We clearly have

∂tζ
h −∆ζh + `∂tη

h = 0 a.e. in Q (5.3)

∂tη
h −∆ξh = 0 a.e. in Q (5.4)

ξh = τ∂tη
h −∆ηh +W ′(ϕh)−W ′(ϕ)−W ′′(ϕ) Φ− γζh a.e. in Q. (5.5)

Moreover, ζh, ηh, and ξh satisfy all homogeneous Neumann boundary conditions
and ζh, ηh satisfy homogeneous initial conditions. At this point, we multiply (5.3)

by ζh + `ηh and sum it up to (5.4) tested by ˜̀Nηh and to (5.5) tested by −˜̀ηh,
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with ˜̀ a positive constant to be chosen later. The terms involving ξh cancel each
other. Thus, integrating the resulting equality over (0, t), we obtain

1

2
‖(ζh + `ηh)(t)‖2H +

∫
Qt

|∇ζh|2 +
˜̀

2
‖ηh(t)‖2∗ +

τ ˜̀

2
‖ηh(t)‖2H

+˜̀
∫
Qt

|∇ηh|2 = −`
∫
Qt

∇ζh · ∇ηh −
∫
Qt

˜̀Ihηh −
∫
Qt

γ ˜̀ζhηh , (5.6)

where we have defined

Ih =W ′(ϕh)−W ′(ϕ)−W ′′(ϕ)Φ =W ′′(ϕ)ηh +
1

2
W ′′′(ϕ̃h)(ϕh − ϕ)2 ,

ϕ̃h being some function whose values lie between those of ϕh and ϕ̄. In particular,
the analogue of (5.2) holds for ϕ̃h, so that W ′′′(ϕ̃h) is bounded. The same is
true for W ′′(ϕ). Now we can deduce an estimate for the right-hand side of (5.6)
by accounting for the Young and Hölder inequalities, the compactness inequality
(3.15) and the continuous embedding V ⊂ L4(Ω). We first observe that

− `
∫
Qt

∇ζh · ∇ηh ≤ 1

2

∫
Qt

|∇ζh|2 +
`2

2

∫
Qt

|∇ηh|2.

Therefore, letting ˜̀> `2/2, setting L = ˜̀− `2/2, defining eh = ζh + `ηh and adding
the term L

∫
Qt
|ηh|2 to both sides, we have that

1

2
‖eh(t)‖2H +

1

2

∫
Qt

|∇ζh|2 +
˜̀

2
‖ηh(t)‖2∗ +

˜̀τ

2
‖ηh(t)‖2H + L

∫ t

0

‖ηh‖2V

≤ −
∫
Qt

˜̀Ihηh − γ ˜̀
∫
Qt

ζhηh + L

∫
Qt

|ηh|2

≤
∫
Qt

(
˜̀W ′′(ϕ) + L

)
|ηh|2 +

˜̀

2

∫
Qt

W ′′′(ϕ̃h)(ϕh − ϕ)2ηh +

∫
Qt

γ`˜̀(ηh)2

−
∫
Qt

γ ˜̀ηheh

≤ c
∫
Qt

|ηh|2 + c

∫ t

0

‖ϕh − ϕ‖24 ‖ηh‖H + c

(∫
Qt

|ηh|2 +

∫
Qt

|eh|2
)

≤ L

2

∫ t

0

‖ηh‖2V + c

(∫ t

0

‖ηh‖2∗ +

∫ t

0

‖eh‖2H
)

+

∫ t

0

‖ϕh − ϕ‖4V .

Now, we recall that estimate (2.50) holds for the pair of controls u+h and u and for
the corresponding states (ϑh, ϕh) and (ϑ, ϕ). Therefore, we can proceed and obtain∫ t

0

‖ϕh − ϕ‖4V ≤ c‖ϕh − ϕ‖4L∞(0,T ;V ) ≤ ‖h‖
4
L2(Q).

Then, the application of the Gronwall lemma closes the estimate and yields

‖eh(t)‖2H +

∫
Qt

|∇ζh|2 + ‖ηh(t)‖2∗ + τ‖ηh(t)‖2H +

∫ t

0

‖ηh‖2V ≤ c‖h‖4L2(Q) (5.7)

for a.a. t ∈ (0, T ). In order to conclude the proof of (5.1), we need an estimate
in C0([0, T ];H) and so we test (5.4) by ηh and add it to (5.5) tested by ∆ηh.
Integrating over (0, t) and using Young’s inequality with (5.7), we obtain

1

2
‖ηh(t)‖2H +

τ

2

∫
Ω

|∇ηh(t)|2 +
1

2

∫
Qt

|∆ηh|2 ≤ c
∫
Qt

|Ih− γ(eh− `ηh)|2 ≤ c‖h‖4L2(Q)
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and by comparison, we also get

‖ζh(t)‖2H ≤ c‖h‖4L2(Q)

for a.a. t ∈ (0, T ), which concludes the proof since ‖h‖L2(Q) ≤ c ‖h‖X .

Remark 5.2. We have choosen X = L∞(Q) by (2.55). However, the L∞ norm
has been used just at the beginning of the proof and some modification is possible.
In particular, we can make the more suitable choice X = L2(Q) and perform the
same argument to prove the directional differentiability of S in all the directions
h ∈ L∞(Q). Indeed, u ∈ L∞(Q) since u ∈ Uad. We point out that this modification
does not have any bad consequence in the results of the next section, since the
necessary condition we prove only uses the directional differentiability of J = F ◦S,
which still holds in the modified framework.

6. Necessary optimality conditions. In this section, we derive the optimality
condition (2.85) stated in Theorem 2.9. We start from (2.62) and first prove (2.74).

Proposition 6.1. Let u∗ be an optimal control and (ϑ∗, ϕ∗) := S(u∗). Then (2.74)
holds.

Proof. This is essentially due to the chain rule for Fréchet derivatives, as already
said in Section 2, and we just provide some detail.

It follows that F is Fréchet differentiable in Z := C0([0, T ];H)× C0([0, T ];H)
and that its Fréchet derivative [DF ](ϑ, ϕ) at any point (ϑ, ϕ) ∈ Z acts as follows

[DF ](ϑ, ϕ) : (h1, h2) ∈ Z 7→κ1

∫
Q

(ϑ− ϑQ)h1 + κ2

∫
Q

(ϕ− ϕQ)h2

+ κ3

∫
Ω

(ϑ(T )− ϑΩ)h1(T ) + κ4

∫
Ω

(ϕ(T )− ϕΩ)h2(T ) .

Therefore, Theorem 5.1 and the chain rule ensure that J is Fréchet differentiable
at u∗ and that its Fréchet derivative [DJ ](u∗) at any optimal control u∗ is specified
by

[DJ ](u∗) : h ∈ X 7→ κ1

∫
Q

(ϑ− ϑQ)Θ + κ2

∫
Q

(ϕ− ϕQ)Φ

+ κ3

∫
Ω

(ϑ(T )− ϑΩ)Θ(T ) + κ4

∫
Ω

(ϕ(T )− ϕΩ)Φ(T )

where (Θ,Φ) is the solution to the linearized problem corresponding to h. Therefore,
(2.74) immediately follows from (2.62).

The next step is the proof of Theorem 2.7. As far as existence is concerned, we
can derive a basic formal estimate. We take as test functions z = q in (2.78), w = p
in (2.79) and add the equalities we obtain. Then, we integrate over (t, T ) using the
final conditions (2.80). This computation leads to

1

2

∫
Ω

|q(t)|2 +

∫
Rt

|∇q|2 +
1

2

∫
Ω

|p(t)|2 +
τ

2

∫
Ω

|∇p(t)|2 +

∫
Rt

|∆p|2

=
1

2

∫
Ω

|g3|2 +
1

2

∫
Ω

|g4 − `g3|2 − (γ + `)

∫
Rt

q∆p

+

∫
Qt

(W ′′(ϕ∗)− `γ)p∆p+

∫
Rt

g1q −
∫
Qt

(`g1 − g2)p (6.1)
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where Rt := (t, T ) × Ω. We observe that W ′′(ϕ∗) is uniformly bounded in view
of Corollary 2.5 and due to the properties (2.3)–(2.7) of β. Hence, recalling the
definitions of g1, . . . , g4 and owing to the Young inequality (2.86), we easily infer
that

1

2

∫
Ω

|q(t)|2 +

∫
Rt

|∇q|2 +
1

2

∫
Ω

|p(t)|2 +
τ

2

∫
Ω

|∇p(t)|2 +
1

2

∫
Rt

|∆p|2

≤ c
(∫

Qt

|p|2 +

∫
Qt

|q|2 + ‖ϑ∗‖2C0([0,T ];H) + ‖ϕ∗‖2C0([0,T ];H)

)
+ c

(
‖ϑQ‖2L2(Q) + ‖ϕQ‖2L2(Q) + ‖ϑΩ‖2H + ‖ϕΩ‖2H

)
.

Therefore, we can apply the Gronwall lemma and deduce that

‖q‖C0([0,T ];H)∩L2(0,T ;V ) + ‖p‖C0([0,T ];H)∩L2(0,T ;W ) + τ1/2‖p‖C0([0,T ];V ) ≤ c . (6.2)

This procedure implies in particular the uniqueness of the solution, due to the
linearity of the problem: indeed, we can replace all gi’s in (6.1) by 0 for the difference
of two solutions. Moreover, in the light of (6.2) we can compare the terms of (2.78)
and (2.79) and deduce the estimate

‖∂tq‖L2(0,T ;V ′) + ‖∂tp+ τ∆∂tp‖L2(0,T ;W ′) ≤ c (6.3)

which enables us to recover the full regularity of the solution in (2.75)–(2.77). There-
fore, it is clear how to give a rigorous proof based on a Faedo–Galerkin scheme, by
choosing a basis of eigenfuntions related to the operator −∆ with Neumann ho-
mogeneous boundary conditions (cf. (2.13)). This approximation scheme would
provide a sequence {(qn, pn)} of approximating solutions obtained by solving just
linear systems of ordinary differential equations. Namely, by performing the above
estimates on (qn, pn) exactly in the same way as we did, and using standard com-
pactness results, one finds a weak limit (q, p) in the topologies associated to (6.2),
(6.3) and it is immediately clear that (q, p) is a variational solution of the problem
we want to solve. Hence, Theorem 2.7 actually holds.

At this point, we are ready to prove Theorem 2.9 on optimality, i.e., the necessary
condition (2.85) for u∗ to be an optimal control in terms of the solution (q, p) of
the adjoint problem (2.78)–(2.80). So, we fix an arbitrary u ∈ Uad and use the
variational formulations of both the linearized problem (corresponding to h = u−u∗)
and the adjoint problem.

We test (2.68) by q, (2.69) by p, use (2.70), and we take z = −Θ in (2.78) and
w = −Φ in (2.79), respectively. Then, we add all the equalities we obtain to each
other. Most of the terms cancel out and we infer that∫

Q

κ1Θ(ϑ∗ − ϑQ) +

∫
Q

κ2Φ(ϕ∗ − ϕQ) +

∫
Ω

κ3Θ(T )(ϑ∗(T )− ϑΩ)

+

∫
Ω

κ4(ϕ∗(T )− ϕΩ) =

∫
Q

(u− u∗)q ≥ 0 .

As u ∈ Uad is arbitrary, this implies the pointwise inequality (2.85) and the proof
of Theorem 2.9 is complete.
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