
A Flexible Framework
for a Correct Database Design

Donatella Castelli, Serena Pisani

Istituto di Elaborazione dell’Informazione
Consiglio Nazionale delle Ricerche

Via S. Maria, 46 Pisa, Italy
{castelli,serena}@iei.pi.cnr.it

Abstract. This paper presents a flexible database schema transforma-
tional framework. Flexibility is achieved by adopting a generic model
for describing database schemas and a transformational language able
to represent all the correctness preserving schema transformations. This
framework, originally defined for schema design, is also applicable for
supporting other activities related to the database life-cycle. As an il-
lustrative example, this paper shows how it can be used to support a
database reverse engineering process.

1 Introduction

The correctness of a database design is often obtained by fixing the set of schema
transformational operators that can be used for carrying out the design and by
associating a set of applicability conditions to each of these operators. These
conditions must be checked when the operators are applied. If they are satisfied,
then the design step is guaranteed to be correct. A drawback of this solution is
that the set of schema transformational operators is often too rigid: the operators
work for particular models and they can only execute particular refinement steps.

This paper proposes a correctness preserving schema transformational fra-
mework that, unlike to the previous proposals [2,3,4,5,12], is also adaptable to
different situations. This framework relies on a database schema model, called
Database Schema (DBS) [6] and a design language, called Schema Refinement
Language (SRL). SRL consists of a set of primitives (with associated the set of
their applicability conditions) for transforming DBS schemas and a composition
operator. A rule is given for deriving the applicability conditions of any trans-
formations from the applicability conditions of its component transformations.
The composition operator renders the language complete, i.e., able to express
all the schema transformations.

The genericity of the model employed and the completeness of the transfor-
mational language render the framework suitable for different kinds of database
applications. This paper shows how the SRL framework can be exploited to point
out incorrect database reverse engineering processes.

The next three sections of this paper introduce the design framework. In
particular, Section 2 presents DBS and the primitive operators of SRL. Section

W. Litwin et al. (Eds.): ADBIS’98, LNCS 1475, pp. 339–350, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

340 D. Castelli and S. Pisani

3 introduces the composition operator. Section 4 introduces the rule for deriving
the applicability conditions of a composed schema transformation. This rule is
given in detail in the Appendix. Section 5 shows how the framework introduced
can be exploited in a database reverse engineering process. Finally, Section 6
contains concluding remarks.

2 Schema Refinement Language

The Schema Refinement Language (SRL) assumes that the whole design relies on
a single notation which is sufficiently general to represent semantic and object
models. This notation, illustrated briefly through the example in Figure 11,
allows to model the database structure and behavior into a single module, called
Database Schema (DBS). This module encloses classes, attributes, is-a relations,
integrity constraints and operations specifications. A graphical representation of
the schema StoneDB is given in Figure 4(a).

database schema StoneDB
class exterior of MARBLE with (e name:NAME; e tech char:TECH CHAR)
class interior of MARBLE with (i name:NAME; i tech char: TECH CHAR)
constraints

∀ m · m∈(interior∪exterior) ⇒ ∃ n · n=(e name∪i name)(m)
initialisation

exterior, interior, e tech char, i tech char, e name, i name := empty
operations

assign tech char(n,t) = pre n∈ran(e name∪i name) ∧ t∈TECH CHAR
then i tech char := i tech char <+ {(x,t) | i name(x)=n} ‖

e tech char := e tech char <+ {(x,t) | e name(x)=n}

Fig. 1. A Database Schema

The notation of Database Schema is formalised in terms of a formal model
introduced within the B-Method [1]. This formalisation allows to exploit the B
theory and tools for proving expected properties of the DBS schemas.

The SRL primitive operators that transforms DBS schemas are given in Table
1. The equality conditions that appear as a parameter in the add/rem transfor-
mations specify how the new/removed element can be derived from the already
existing/remaining ones. These conditions are required since only redundant
components can be added and removed in a refinement step. The language does
not permit to add or remove schema operations. It only permits to change the
way in which an operation is defined. Note that the operation definitions are
also automatically modified as a side effect of the transformations that add and
remove schema components. In particular, these automatic modifications add
appropriate updates for each of the new schema components, cancel the occur-
rences of the removed components and apply the proper variable substitutions.
1 <+ stands for the overriding between relations; ‖ represents the parallel assignment.

A Flexible Framework for a Correct Database Design 341

Table 1. SRL language

add.class (class.name, class.name =expr)
rem.class (class.name, class.name =expr)
add.attr(attr.name, class.name, attr.name =expr)
rem.attr (attr.name, class.name, attr.name =expr)
add.isa(class.name1, class.name2)
rem.isa (class.name1, class.name2)
mod.op (op.name, body)

A transformation can be applied when its applicability conditions are veri-
fied. These are sufficient conditions, to be verified before the execution of the
transformation, that prevent from applying meaningless and correctness brea-
king schema design. The criterion for the correctness of schema design is based
on the following definition (for a formal definition see [7]):

Definition (DBS schema refinement relation) A DBS schema S1 refines
a DBS schema S2 if:
(a) S1 and S2 have the same signature;
(b) there exists a 1:1 correspondence between the states modelled by S1 and S2;
(c) the database B1 and B2, modelled by S1 and S2, when initialised and sub-
mitted to the same sequence of updates, are such that each possible query on
B1 returns one of the results expected by evaluating the same query on B2. 2

The applicability conditions consist of the conjunction of simple conditions.
In that follows, these conditions will be called applicability predicates.

Let us outline that the main objective in defining this framework has been the
flexibility. In order to fulfill this objective the model and the schema refinement
language have been provided with very primitive mechanisms.

SRL, as presented above, is not still suitable enough to be used in the real
applications. Indeed, the applied schema transformations are usually more com-
plex of those listed above. In order to overcome this limitation, a composition
operator for SRL is introduced in the next section.

3 Composition Operator

The composition operator permits to define complex transformations from simp-
ler one. The following preliminary definition is needed before introducing the
composition operator (the corresponding formal definition is given in [7]).

Definition (Consistent operation modification) A set of SRL schema
transformations specifies consistent operation modifications if, for each operation
that is modified by more than one transformation, the replacing bodies can be
totally ordered with respect to the refinement relation. 2

Intuitively, this definition means that all the bodies that are specified for the
same operations by different transformations must describe the same general
behaviour. They can only differ for being more or less refined.

342 D. Castelli and S. Pisani

The SRL composition operator can be now defined as follows. Defini-
tion (Composition operator “◦”) Let t1, t2, . . ., tn be a set of SRL
schema transformations that specify consistent operation modifications. Let
<Cl,Attr,IsA,Constr,Op> be a DBS schema where: Cl, Attr, IsA, Constr and
Op are, respectively, the set of classes, attributes, is-a relationships, integrity
constraints and schema operations. Op always contains an operation Init that
specifies the schema initialisation. The SRL schema transformation composition
operator is defined as follows:

t1 ◦ t2 ◦ . . . ◦ tn (<Cl,Attr,IsA,Constr,Op>)=
<Cl∪ACl-RCl,Attr∪AAttr-RAttr,IsA∪AIsA-RIsA,
[RemSubst*](Constr∧AConstr),[RemSubst*]Op′>

where ACl/RCl, AAttr/RAttr and AIsA/RIsA are sets formed, respectively, by
the set of classes, attributes and is-a relationships that are added/removed by t1,
t2, . . ., tn. RemSubst* is the transitive closure of the variable substitutions x:=E
dictated by the conditions that are specified when an element is removed. If we
have, for example, rem.class(c, c=E) ◦ rem.class(d, d=f(c)) ◦ rem.class(e, e=F)
then RemSubst* is the parallel composition of the substitutions c:=E, d:=f(E)
and e:=F. [RemSubst*]X is the expression that is obtained by applying the sub-
stitution RemSubst* to X. For example, [x:=E]R(x) is R(E). This substitution
permits to rephrase integrity constraints and operation definitions by removing
the cancelled schema components. AConstr are the conjunction of the inherent
constraints associated with the new schema components and the conditions that
specify how an added element relates to the remaining ones. Finally, Op′ is the
new set of operation definitions. These result from the modifications that are re-
quired explicitly and from the automatic adjustments caused by the addition and
removal of schema components. When more than one of the component trans-
formations modifies an operation, the more specialised behavior is selected.2

SRL is a complete DBS schema refinement language. This property ensures
that SRL is powerful enough to express every DBS schema transformation. The
following example illustrates how new transformations can be build.

Example. Let us define the transformation illustrated graphically in Figure 2.
This transformation adds a new class, C, as superclass of n already existing
classes, C1, · · ·, Cn, and moves a set of attributes shared with the subclasses
to the new class. The designer can built this transformation as composition of
simple SRL transformations2:

add.superclass(C, (C1, · · ·, Cn), {((a1, · · ·, an), a),· · ·, ((b1, · · ·, bn), b)}) =
add.class(C, C=C1 ∪ · · · ∪ Cn) ◦ add.isa(C1, C) ◦ · · · ◦ add.isa(Cn, C) ◦
add.attr(a, C, a=a1 ∪ · · · ∪ an) ◦
rem.attr(a1, C1, a1=C1� a) ◦ · · · ◦ rem.attr(an, Cn, an=Cn� a)) ◦ · · · ◦
add.attr(b, C, b=b1 ∪ · · · ∪ bn) ◦

2 � indicates the domain restriction.

A Flexible Framework for a Correct Database Design 343

C1
a1 · · ·b1 Cn

an

bn ⇒
C

a
b

6

C1 · · · Cn

Fig. 2. add superclass

rem.attr(b1, C1, b1=C1� b) ◦ · · · ◦ rem.attr(bn, Cn, bn=Cn� b))

The transformation add.superclass can be used as any other SRL transforma-
tion. For example, it can be applied to the database schema StoneDB of Figure 1,
generating the DBS schema of Figure 3, as follows:

add.superclass(marble,(exterior,interior),{((e name,i name),name)})(StoneDB)

The change brought to the static part of the schema are shown in Figure 4.

database schema StoneDB 1
class marble of MARBLE with (name:NAME)
class exterior is-a marble with(e tech char:TECH CHAR)
class interior is-a marble with(i tech char:TECH CHAR)
constraints

∀ m · m∈(interior∪exterior) ⇒ ∃ n · n=name(m)
initialisation

marble, name, exterior, interior, e tech char, i tech char := empty
operations

assign tech char(n,t) = pre n∈ran(name) ∧ t∈TECH CHAR
then i tech char := i tech char <+ {(x,t) | (name�interior)(x)=n} ‖

e tech char := e tech char <+ {(x,t) | (name�exterior)(x)=n}

Fig. 3. StoneDB 1

interior
i name

i tech char

exteriore tech char
e name

(a)

marble name

6

interior exteriori tech char e tech char
(b)

Fig. 4. StoneDB schema

The next section presents the mechanisms that allow to dynamically asso-
ciate, to each of the new defined transformations, its applicability conditions.

344 D. Castelli and S. Pisani

4 Applicability Conditions

The applicability conditions of a composed transformation are sufficient conditi-
ons for ensuring that the application of the transformation to a schema results in
a correct design. These conditions are generated constructively by an algorithm,
called Applicability Condition Generating Algorithm (ACGA), given in Appen-
dix. ACGA generates the applicability conditions by considering the schema
structure and the changes brought by the component transformations.

As far as the applicability conditions of composed transformations, the fol-
lowing property holds [7]:

Property (SRL is a refinement language) Let t1, t2, . . ., tn be SRL
schema transformations and S be a DBS schema. The application of the trans-
formation t1◦t2◦. . .◦tn(S), when its applicability conditions are verified, produces
a refinement of S.2

This property ensures the correctness of any database SRL design.
By reasoning on the applicability conditions generated by the ACGA algo-

rithm, it turns out that some of them can be solved without instantiating the
parameters; others can be discharged by simply comparing the values of the
parameters. This suggest us to automatically prune these predicates and asso-
ciate to the instance of a transformation only the simplified set of applicability
predicates. The pruning is done at different stages. When the transformation is
defined, with parameters p1, . . . , pn, the set of applicability predicates is scanned
and, for each predicate Pij of the set, the proof of ∀p1, . . . , pn, S · Pij is attemp-
ted, where S is a DBS schema. If the proof is successful, Pij is inserted in the set
of the applicability predicates that have not to be proved anymore. The second
kind of pruning, is executed when the transformation is instantiated. By reaso-
ning on the structure of any transformations and the values of the parameters,
several applicability predicates are discharged. The ACGA algorithm, reported
in the Appendix, actually implements a mix between the generation of the appli-
cability conditions and the second pruning. The result of the second pruning is
the set of applicability predicates that the designer has to prove for a particular
application of the transformation. Notice that no much effort is usually required
for this proof. This is because the set of applicability predicates returned by
the ACGA algorithm is often very small. Moreover, since the SRL framework
and its application conditions are formalised, an automatic, or at least guided,
discharge of the applicability conditions that are generated is possible.

Let us see an example of dynamic generation of the applicability conditions
of a composed transformation. Table 2 lists the applicability conditions of the
transformation add.superclass, as invoked in the example of Section 33.

Those above are the only applicability conditions that are returned to the
designer. The others are checked and discharged automatically either when the
add.superclass is defined or when the transformation is applied.
3 NewConstr stands for the constraints generated by the ACGA algorithm for each

condition to be proved; C2 is-a-reach C1 is a predicate that indicates, if verified, the
existence of an is-a path between C1 and C2.

A Flexible Framework for a Correct Database Design 345

Table 2. Applicability conditions of the add.superclass

NewConstr ⇒ ¬(marble is-a-reach exterior)
NewConstr ⇒ ¬(marble is-a-reach interior)
NewConstr ⇒ dom(e name∪i name) ⊆ marble
NewConstr ⇒ e name=(exterior�name)
NewConstr ⇒ i name=(interior�name)

5 Exploiting SRL in a Reverse Engineering Process

The genericity of the employed model, the completeness of the SRL language and
the definition of the ACGA algorithm render the transformational framework
a general instrument for supporting a correct database design. The designer
can thus build a personalised set of transformations and use them as primitive
operators. This can be done without giving up the support for correctness.

The above three characteristics provides also the ground for a wider use
of the framework. As an example of possible use, below it is illustrated how
the presented framework can be profitably employed for supporting a reverse
engineering process.

Several approaches, either systematic or informal, are available for carrying
out database reverse engineering processes [10,14]. They permit to produce a
plausible high level model of an existing logical schema by employing different
heuristics and rules. These approaches exhibit different levels of automatic tre-
atments. Generally, the more automatic they are, the more limitations they im-
pose on the original form of the logical schema. Actually, most authors consider
impracticable a rigid compiling approach. They recommend, instead, informal
approaches driven by frequent interactions with the designer that is responsi-
ble of taking semantic decisions. These informal approaches, if more applicable
in practice, are, however, unable of ensuring that the semantic interpretation
embedded in the reverse engineering process is correct. This limitation regards
both the static part of the schema, and, more remarkably, the behavioural part.

In what follow we illustrate, by an example, how the schema transformational
framework, that has been presented in the previous sections, can be used to
overcome the above limitation.

Consider the schema depicted in Figure 5(a). Imagine that this is the logical
schema of a particular database and that the following operation is associated
to this schema.

assign tech char(n,t) = if n∈ran(e name)
then e tech char:=e tech char<+ {(x,t)| e name(x)=n}

Imagine, now, that a reverse engineering approach is applied to this schema
and that the conceptual schema returned after this application is that given in
Figure 5(b).

346 D. Castelli and S. Pisani

interiori name

exteriore tech char
e name

(a)

marble
name
tech char

6

interior exterior

(b)

Fig. 5. Reverse engineering

By observing both the data and the operations during the reverse engineering
process the existence of a superclass of exterior and interior has been extrapo-
lated. The attributes of these two classes have been moved to the superclass4.

We now employ the SRL transformational framework to verify the correc-
tness of the reverse engineering process. To do this, we move forward from the
reverse process, i.e., we derive from the two schemas a transformation that, when
applied to the schema in Figure 5(b), produces the logical schema and the ope-
ration defined on it. If such transformation can be safely applied, then we can
conclude that the logical schema is a correct implementation of the conceptual
schema, and, vice versa, that the chosen conceptual schema is a correct spe-
cification of the logical schema. This transformation can be easily defined by
considering the difference between the set of components in the two schemas
and the assumptions on the semantics of the logical schema that have driven the
reverse engineering process:

add.attr(i name, interior, i name=name�interior) ◦
add.attr(e name, exterior, e name=name�exterior) ◦
rem.attr(name, marble, name=(e name∪i name)) ◦
add.attr(e tech char,exterior, e tech char=tech char) ◦
rem.attr(tech char, marble, tech char=e tech char) ◦
rem.isa(interior, marble) ◦ rem.isa(exterior, marble) ◦
rem.class(marble, marble=(interior∪exterior)) ◦
mod.op (assign tech char, if n ∈ rane (name) then

tech char := tech char<+ {(x,t)| e name(x)=n})

Notice that assumptions on the semantics of the application have been used
to define the relations between the two schemas. For example, the above trans-
formation specifies that the new class marble is defined as the union of the classes
interior and exterior.

The applicability conditions of this transformation are obtained by applying
the ACGA algorithm5:

4 In this example, we make the assumption that the both the logical schema and
the conceptual schema are given as DBS schemas. As outlined above, this not a too
restrictive assumption since, in case other models are used, then these can be easily
mapped in terms of the DBS model.

5 NewConstr is the conjunction of all the initial schema constraints and of all those
added by the composed transformation; a attribute-of C stands for the inherent
constraint “a is an attribute of C”.

A Flexible Framework for a Correct Database Design 347

1. (NewConstr-{i name attribute-of interior})⇒dom(name�interior)⊆interior
2. (NewConstr-{e name attribute-of exterior})⇒dom(name�exterior)⊆exterior
3. NewConstr⇒name=e name∪i name
4. (NewConstr-{e tech char attribute-of exterior})⇒ dom(tech char)⊆exterior
5. NewConstr⇒tech char=e tech char
6. NewConstr⇒marble=interior∪for exterior m
7. pre n∈ran(name)∧t∈TECH CHAR then

tech char:=tech char<+ {(x,t)|name(x)=n}
v
if n∈ran(e name) then e tech char:=e tech char<+ {(x,t)|e name(x)=n}

If we try to prove these conditions, we discover that the conditions 4 and 7 are
false. The condition 4 is false since the domain of the attribute tech char is grea-
ter than the set described by the class exterior. The condition 7 is false since the
higher level operation specifies state transformations that are not implemented
by the lower level one. In particular, the overriding set in the former operation
can contain a pair whose first element is any marble object, whereas, in the latter
operation, the first element of the same pair can only be an object of the class
exterior. By reasoning on the failed proofs, we can try to repair the mistake origi-
nated by the reverse engineering process. In this case, for example, the two false
conditions suggest to restrict the domain of the attribute tech char. This can be
done by introducing in the conceptual schema the constraint dom(tech char) =
exterior.

As a consequence, the two applicability predicates that were false on the
previous conceptual schema are now trivially verified.

6 Conclusions

This paper has presented a framework for supporting a correct database design.
Differently form other proposals, this framework is not based on a fixed set of
schema transformational operators stated at priori, but these operators can be
built dynamically according the designer needs. This characteristic and the avai-
lability of a model that can be used to interpret several other database models,
are the elements that mainly contribute to the flexibility of the framework. The
paper has shown an example of how this framework can be exploited, not only
for the design but also for supporting different stages of the database life-cycle.
Other significant uses are possible [8,9]. We have, for example, experimented this
framework for supporting the maintenance of the multimedia database for the
MIAOW system [13]. This database, designed as part of the Marble Industry
Advertising over the World ESPRIT Project (n. 3990), maintains information
about stones and stone actors. The original design of this database consisted of a
sequence of OMT-like schemas [15]. Each schema in the sequence is generated by
ad-hoc transformations. The final schema can be directly mapped into an Illustra
schema [11]. We first interpreted the original design of this database in terms of
our framework. This permitted us to verify the correctness of the original design.

348 D. Castelli and S. Pisani

Then, by interpreting the changes to the conceptual schema, originated by the
change of the requirements, in terms of particular schema transformations, we
were able to predict, for each change, the minimal changes to be operated on the
schemas that documented the design of the MIAOW database. This experience
suggested us improvements to our framework and confirmed its versatility.

References

1. J.R. Abrial. The B-Book. Cambridge University Press, 1996.
2. P. Assenova and P. Johannssen. Improving Quality in Conceptual Modelling by

the Use of Schema Transformation. Lecture Notes in Computer Science, n.1157,
pp.277-291, Springer-Verlag, 1996.

3. C. Batini, G. Di Battista and G. Santucci. Structuring Primitives for a Dictionary
of Entity Relationship Data Schemas. IEEE Transactions on Software Engineering,
19(4), April 1993.

4. P. Van Bommel. Database design by computer-aided schema transformations. Soft-
ware Engineering Journal, pp.125-132, July 1995.

5. P. Mc. Brien and A. Poulovassilis. A Formal Framework for ER Schema Transfor-
mation. Lecture Notes in Computer Science, n.1331, pp.408-421, Springer-Verlag,
1997.

6. D. Castelli and E. Locuratolo. ASSO: A Formal Database Design Methodology.
Information Modelling and Knowledge Bases VI, H. Jaakkaola et al.eds., IOS-
Press, 1995.

7. D. Castelli and S. Pisani. A Transformational Approach to Database Design. IEI-
CNR Technical Report, 1998.

8. D. Castelli and S. Pisani. Ensuring Correctness of personalised schema refinement
transformations. Proc. International Workshop on Verification, Validation and In-
tegrity Issue in Expert and Database Systems, 1998, to appear.

9. D. Castelli. A strategy for Reducing the Effort for Database Schema Maintenance.
Proc. Second Euromicro Conf. on Software Maintenance and Reengineering, pp.29-
35, Florence, 1998.

10. S. Ghannouchi, H. Ghezala and F. Kamoun. A Generic Approach for Data Reverse
Engineering taking into Account Application Domain Knowledge. Proc. Second
Euromicro Conf. on Software Maintenance and Reengineering, pp.21-28, Florence,
1998.

11. Illustra Server Release 3.2, 1995.
12. K.J. Lieberherr, W.L. Hürsch and C. Xiao. Object-Extending Class Transformati-

ons. Formal Aspects of Computing, 6, pp.391-416, 1994.
13. MIAOW Multimedia Database: Revised Design and Implementation. MIAOW-

CNR-REP-001-007. 1996.
14. W. J. Premerlani and M. R. Blaha. An Approach for Reverse Engineering of Re-

lational Databases. Communication of the ACM, 37(5), pp.42-49, 1994.
15. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-

Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New Jersey 07632,
1991.

A Flexible Framework for a Correct Database Design 349

Appendix: The Applicability Condition Generating Algo-
rithm

The Applicability Condition Generating Algorithm (ACGA) takes as input a
set of SRL transformations {t1, t2, . . ., tn}, their applicability conditions, the
set ver appl, specified below, and a DBS schema <Cl,Attr,IsA,Constr,Op>. It
returns a set of applicability predicates. The description of the algorithm is given
using an informal notation and makes use of the following abbreviations:

– ACl/Attr/IsA, RCl/Attr/IsA, AConstr and RemSubst* are described in De-
finition 3;

– Attr(C), AAttr(C) and RAttr(C) indicate the set of attributes that are ,
respectively, defined on the class C in the initial schema, added to C and
removed from C by the composed transformation;

– C1 is-a C2 stands for the inherent constraint “C1 is a subclass of C2”;
– ver appl is the set of applicability conditions that are proved to be verified

when the composed transformation is defined.

The algorithm consists of four steps. For sake of brevity, only the step 4 is
reported explicitly. The first step initialises the set appl◦ which maintains the
applicability predicates returned by the algorithm. The second step generates a
first group of applicability predicates. These require that the component trans-
formations specify consistent modifications. The third step generates a tempor-
ary set appl of applicability predicates to be proved. This set is scanned in the
fourth step. If a predicated of this set is found to be false, then appl◦ is set to
“false” and the algorithm is terminated. Each predicate of the set that cannot be
discharged by the checks operated by the algorithm it is inserted in the set appl◦.

Step 4 of the Applicability Condition Generating Algorithm

appl:=appl-ver appl;
repeat

p:=extract(appl); appl:=appl-p;
case type(p) of x∈Cl then if not(x∈(ACl∪Cl)) then appl◦:=false

% This predicate is false if x is not in the initial schema and there is no transformation
in the composition that adds the class x. It is true otherwise.

or x 6∈Cl then if not(x 6∈Cl) then appl◦:=false
% This predicate is false if the class x is in the initial schema. It is true otherwise.

or x∈Attr(C) then if not(x∈Attr(C)) then appl◦:=false
% This predicate is false if the x is not an attribute of C in the initial schema. It is
true otherwise.

or x 6∈Attr then if not(x 6∈Attr) then appl◦:=false
% This condition is false if the attribute x is in the initial schema. It is true otherwise.

or x∈IsA then if not(x∈IsA) then appl◦:=false
% This predicate is false if the is-a relationship x is not in the initial schema. It is true
otherwise.

or x 6∈IsA then if not(x 6∈IsA) then appl◦:=false
% This predicate is false if the is-a relationship x is in the initial schema. It is true
otherwise.

or Free(E)⊆(Cl∪Attr)

350 D. Castelli and S. Pisani

then if not(Free(E)-(ACl∪AAttr))⊆(Cl∪Attr) then appl◦:=false
% The predicate is false if the free variables in E are not added variables or they do
not belong to the initial schema. It is true otherwise.

or x 6∈Free(E) then if not(x 6∈Free(E)) then appl◦:=false
% The predicate is false if x is a free variable of E. It is true otherwise.

or ¬∃C∈Cl·(C,C1)∈IsA ∨ (C1,C)∈IsA
then if C1 ∈(Cl∩ACl∩RCl) then do nothing

else if (∃C∈(Cl∪ACl) · ((C1,C)∈(AIsA-RIsA) ∨ (C,C1)∈(AIsA-RIsA))) ∨
(∃C∈Cl · ((C,C1)∈(IsA-RIsA) ∨ (C1,C)∈(IsA-RIsA))) ∨
(∃ C∈Cl · ((C,C1)∈(IsA∩AIsA∩RIsA) ∨ (C1,C)∈(IsA∩AIsA∩RIsA)))

then appl◦:=false
% The predicate has not to be checked if the class C1, that is removed, belongs to the
initial schema and it is added by a transformation in the composition. It is false, if
there are not removed is-a relationships that involve C1.

or ¬∃a∈Attr(C1) then if C1 ∈(Cl∩ACl∩RCl) then do nothing
else if (∃a∈(AAttr(C1)-RAttr(C1))) ∨

(∃a∈(Attr(C1)∩AAttr(C1)∩RAttr(C1))) ∨
(∃a∈(Attr(C1)-RAttr(C1))) then appl◦:=false

% The predicate has not to be checked if the class C1, that is removed, belongs to
the initial schema and it is added by a transformation in the composition. It is false if
there are not removed attributes defined on C1.

or Constr⇒C2 ⊆C1

then if ∃C3,· · ·,Cn ∈(Cl∪ACl)·(C1=C2∪C3 ∪ · · · ∪Cn)∈AConstr
then do nothing
else appl◦:=appl◦∪{(Constr∧(AConstr-{C2 is-a C1}))⇒C2 ⊆C1};

% The predicate is true if there is a transformation in the composition that adds the
class C1 and defines it as the union C2 and other classes.

or Constr⇒ ¬(C1 is-a-reach C2)
then appl◦:=appl◦∪{(Constr∧AConstr)⇒ ¬(C1 is-a-reach C2)};

or Constr⇒x=E then if x=E∈AConstr then do nothing
else appl◦:=appl◦∪{(Constr∧AConstr)⇒x=E};

or Constr⇒dom(F)⊆C
then appl◦:=appl◦∪{(Constr∧(AConstr-{a attribute-of C | ∃a·

a=F∈AConstr}))⇒dom(F)⊆C};
or body1 vbody2

then appl◦:=appl◦∪{[RemSubst*]body1 v[RemSubst*]body2}
% The variable substitutions must be taken into account when evaluating the refine-
ment relation.
until appl=∅ ∨ appl◦=false;
return appl◦;

	Introduction
	Schema Refinement Language
	Composition operator
	Applicability conditions
	Exploiting SRL in a reverse engineering process
	Conclusions

