
Training Data Cleaning for Text Classification

Andrea Esuli and Fabrizio Sebastiani
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
Via Giuseppe Moruzzi, 1 – 56124 Pisa, Italy

andrea.esuli@isti.cnr.it, fabrizio.sebastiani@isti.cnr.it

ABSTRACT
In text classification (TC) and other tasks involving super-
vised learning, labelled data may be scarce or expensive to
obtain. Semi-supervised learning and active learning are two
strategies whose aim is maximizing the effectiveness of the
resulting classifiers while minimizing the required amount
of training effort; both strategies have been actively in-
vestigated for TC in recent years. Much less research has
been devoted to a third such strategy, training data clean-
ing (TDC), which consists in devising ranking functions that
sort the original training examples in terms of how likely it
is that the human annotator has misclassified them, thereby
providing a convenient means for the human annotator to re-
vise the training set so as to improve its quality. Working in
the context of boosting-based learning methods we present
three different techniques for performing TDC and, on two
widely used TC benchmarks, evaluate them by their capa-
bility of spotting misclassified texts purposefully inserted in
the training set.

1. INTRODUCTION
In many applicative contexts involving supervised learning,
labelled data may be scarce or expensive to obtain. In such
situations, once we have trained the classifiers with the avail-
able training data (and tested them on the test data, and/or
applied them to the unlabelled data that need to be clas-
sified), we are often left with the issue of how to improve
the effectiveness of the existing classifiers, given that the
amount of humanpower needed to perform further labelling
is limited. One potential solution is to apply semi-supervised
learning techniques (see e.g., [15]), which leverage on the
availability (as it is often the case) of large quantities of un-
labelled data, often sampled from the same distribution as
the training and test data. A second solution is to apply
active learning techniques (see e.g., [19]) which rank a set of
unlabelled examples in terms of how much further informa-
tion they would carry, once manually labelled, for retraining
a (hopefully) better classifier. One difference between semi-
supervised learning and active learning is that, while the

former requires no humanpower to be devoted to further la-
belling, the latter does require it, but attempts to minimize
it, by focusing the human labelling effort on the examples
deemed most promising or informative.

Both semi-supervised learning and active learning have been
widely studied in the context of text classification (TC) and
other IR tasks involving supervised learning. There is in-
stead a third route to solving the above problem that has
been studied much less, namely, (computer-assisted) train-
ing data cleaning (TDC). Similarly to active learning, TDC
techniques attempt to minimize the additional effort re-
quired from human annotators; however, while in active
learning the human annotator is asked to label new unla-
belled examples, in TDC he/she is required to double-check
the manually labelled examples, looking for possible misclas-
sified ones. Indeed, training data often contain misclassified
items, sometimes as a result of lack of experience on the
part of the junior annotators who have performed the la-
belling, sometimes as a result of tight time constraints under
which the labelling activity has been performed. In the same
way as a good active learning technique top-ranks the un-
labelled examples that, once labelled, would prove the most
informative for the training process, a good TDC technique
top-ranks the training examples with the highest likelihood
of being misclassified. This allows the human annotator to
improve the quality of the training set by double-checking
the labels attached to the training examples, starting with
the ones most likely to be erroneous, and working down the
ranked list until s/he sees fit.

We present three different techniques for performing TDC in
TC, and test them using a boosting-based supervised learn-
ing device that generates confidence-rated predictions. The
reason we are using this device is that, as will be apparent
in Sections 2 and 3, it has two features that allow us to
exemplify our TDC techniques particularly well, i.e., (i) it
allows for a notion of confidence in the classifier’s classifica-
tion decisions; and (ii) the classifier it generates is actually
a classifier committee.

1.1 Outline of the paper
The rest of the paper is organized as follows. Section 2 gives
a brief description of the supervised learning device that we
use in our experiments, focusing on the features that are
important for understanding the three TDC techniques we
study; these latter are presented in Section 3. In Section
4 we describe the results of our tests in which, using two

popular TC benchmarks, evaluate these techniques by their
capability of spotting misclassified texts that we have pur-
posefully inserted in the training set for experimental pur-
poses. Section 5 describes related research efforts, compar-
ing them with the research described in this paper. Section
6 concludes, pointing at avenues for further research.

2. PRELIMINARIES
This work attempts to identify good TDC techniques for text
classification (aka text categorization – TC), and for multi-
label text classification (MLTC) in particular. Given a set of
textual documents D and a predefined set of classes (aka la-
bels, or categories) C = {c1, . . . , cm}, MLTC can be defined
as the task of estimating an unknown target function Φ :
D×C → {−1,+1}, that describes how documents ought to

be classified, by means of a function Φ̂ : D×C → {−1,+1}
called the classifier1; here, +1 and−1 represent membership
and non-membership of the document in the class. Each
document may thus belong to zero, one, or several classes
at the same time. As usual, we accomplish MLTC by gener-
ating m independent binary classifiers Φ̂j : D → {−1,+1},
one for each cj ∈ C, entrusted with the task of deciding
whether a document belongs or not to class cj .

As the learning device for generating our classifiers we use
a boosting-based learner, called MP-Boost [6]; boosting is
among the classes of supervised learning devices that have
obtained the best performances in several learning tasks and,
at the same time, have strong justifications from compu-
tational learning theory. MP-Boost is a variant of Ad-
aBoost.MH [13] optimized for multi-label settings, which
has been shown in [6] to obtain considerable effectiveness
improvements with respect to AdaBoost.MH.

MP-Boost works by iteratively generating, for each class
cj , a sequence Φ̂j1, . . . , Φ̂

j
S of classifiers (called weak hypothe-

ses). A weak hypothesis is a function Φ̂js : D → R, where
D is the set of documents and R is the set of real num-
bers. The sign of Φ̂js(di) (denoted by sgn(Φ̂js(di))) repre-

sents the binary decision of Φ̂js on whether di belongs to
cj , i.e. sgn(Φ̂js(di)) = +1 (resp., −1) means that di is be-
lieved to belong (resp., not to belong) to cj . The absolute

value of Φ̂js(di) (denoted by |Φ̂js(di)|) represents instead the

confidence that Φ̂js has in this decision, with higher values
indicating higher confidence.

At each iteration s MP-Boost tests the effectiveness of the
most recently generated weak hypothesis Φ̂js on the train-
ing set, and uses the results to update a distribution Dj

s of
weights on the training examples. The initial distribution
Dj

1 is uniform. At each iteration s all the weights Dj
s(di)

are updated, yielding Dj
s+1(di), so that the weight assigned

to an example correctly (resp., incorrectly) classified by Φ̂js
is decreased (resp., increased). The weight Dj

s+1(di) is thus

meant to capture how ineffective Φ̂j1, . . . , Φ̂
j
s have been in

guessing the correct cj-assignment of di (denoted by Φj(di)),
i.e., in guessing whether training document di belongs to
class cj or not. By using this distribution, MP-Boost gen-

erates a new weak hypothesis Φ̂js+1 that concentrates on the

1Consistently with most mathematical literature we use the
caret symbol (ˆ) to indicate estimation.

examples with the highest weights, i.e. those that had proven
harder to classify for the previous weak hypotheses.

The overall prediction on whether di belongs to cj is ob-

tained as a sum Φ̂j(di) =
PS
s=1 Φ̂js(di) of the predictions of

the weak hypotheses. The final classifier Φ̂j is thus a com-
mittee of S classifiers, each classifier casting a weighted vote
(the vote being the binary decision sgn(Φ̂js(di)), the weight

being the confidence |Φ̂js(di)|) on whether di belongs to cj .

For the final classifier Φ̂j too, sgn(Φ̂j(di)) represents the bi-

nary decision as to whether di belongs to cj , while |Φ̂j(di)|
represents the confidence in this decision.

See [6] for more details on these and other aspects of MP-
Boost.

3. THREE TECHNIQUES FOR TRAINING
DATA CLEANING

In the following, by a TDC technique we will mean a tech-
nique that, given a training set Tr and a class cj , produces
a ranking rj(Tr) in which the elements of Tr are sorted
in decreasing order of their likelihood of being mislabelled
for cj . Different techniques correspond to different ways of
estimating this likelihood.

We now present three alternative TDC techniques. For each
cj ∈ C, the first technique (that we dub the confidence-based
technique – CON, in short) consists in (i) training the clas-

sifier Φ̂j on Tr; (ii) reclassifying Tr by means of Φ̂j ; and

(iii) ranking Tr in increasing order of Φ̂j(di) · Φj(di) value.

Note that, while Φj(di) is a value in {-1,+1}, Φ̂j(di) is a

value in (−∞,+∞), so Φ̂j(di) ·Φj(di) is also in (−∞,+∞);

a positive (resp., negative) value of Φ̂j(di) ·Φj(di) indicates
correct (resp., incorrect) classification, while a high (resp.,

low) absolute value of Φ̂j(di) ·Φj(di) indicates that this clas-
sification decision has been taken with high (resp., low) con-
fidence. The CON technique thus corresponds to (a) top-

ranking the examples di ∈ Tr that Φ̂j has misclassified, in
decreasing order of the confidence |Φ̂j(di)| with which Φ̂j

has taken its decision, and (b) appending to this list the ex-

amples di ∈ Tr that Φ̂j has correctly classified, in increas-
ing order of the confidence |Φ̂j(di)|. The rationale of this

technique is that, if Φ̂j has misclassified a training example
di with high confidence, this means that the cj-assignment
made to di by the human annotator is highly at odds with
the cj-assignments that the human annotator has made for
the other training examples, which indicates that the human
annotator may well have misclassified di for cj .

For each cj ∈ C, the second technique (that we dub the
nearest neighbours technique – NN) consists in ranking the
training examples in terms of how inconsistent their cj-
assignment is with the cj-assignments of their k nearest
neighbours, for a predefined k. More formally, this tech-
nique consists in (i) computing, for each di ∈ Tr, the value

ζ(di, cj) =
X

dz∈Trk(di)

sim(di, dz) · Φj(dz) (1)

where sim(·, ·) denotes a measure of similarity between doc-
uments and Trk(di) denotes the k training examples most
similar to di; and (ii) ranking Tr in increasing order of

ζ(di, cj) · Φj(di) value. For class cj , the examples di with
cj-assignments highly consistent with the cj-assignments of
their neighbours will have high ζ(di, cj)·Φj(di) values, which
means that the top-ranked examples (which are the ones
with the lowest ζ(di, cj) ·Φj(di) values) will be the ones with
cj-assignments most dissimilar from those of their closest
neighbours. Equation (1), of course, is that of the standard
distance-weighted k-NN learning device (see e.g., [16, 17]),
the only difference being that, while in the standard case
Φj(dz) ranges on {0,1}, in our case it ranges on {-1,+1},
which means that neighbours with a negative cj-assignment
weigh negatively, instead of having no effect, on ζ(di, cj).
This variant of the k-NN learning device is discussed in [8].

For each cj ∈ C, the third technique (that we dub the
committee-based technique – COM) consists in (i) training

the classifier Φ̂j on Tr; (ii) reclassifying Tr by means of

Φ̂j ; and (iii) ranking Tr in increasing order of ∆(Φ̂j(di)) ·
sgn(Φ̂j(di)) ·Φj(di) value, where ∆(Φ̂j(di)) is a measure of

the disagreement among the S members of Φ̂j on whether
di belongs to cj or not. This technique is based on the in-
tuition that the examples most in need of double-checking
are the ones which Φ̂j has misclassified (i.e., are such that

sgn(Φ̂j(di)) · Φj(di) = −1) with the most widespread agree-
ment among its S members; in other words, if the informa-
tion that a training example provides to the training process
is so inconsistent with that provided by the other training
data as to have the members of the generated classifier com-
mittee misclassify the example, and with widespread agree-
ment, then it is likely that the example might be mislabelled.
This technique will thus top-rank the training examples that
the committee has misclassified and on which the S members
of the committee agree most, mid-rank those on which there
is disagreement, and bottom-rank those that the committee
has classified correctly and on which the S members of the
committee agree most. The key difference between the first
technique (CON) and this technique is that here the confi-
dence that a classifier committee has in a certain decision
is taken to coincide with the level of (weighted) agreement
among its members, and not with the (weighted) sum of the
individual opinions. As a measure of disagreement among
the S members of the committee we have chosen to use
standard deviation (denoted σ). This is a natural choice,

given that the values Φ̂j1(di), . . . , Φ̂
j
S(di) are real numbers:

standard deviation thus allows to measure disagreement by
taking into account not only the polarity sgn(Φ̂js(di)) of each

member’s decision, but also its confidence level |Φ̂js(di)|, so
that two members with views of different polarity are taken
to disagree more if they are highly confident in their views,
and less if they are not.

Actually, there is a fourth technique (that we dub the dis-
tribution-based technique – DIS) that might come to mind.
For each cj ∈ C, this technique consists in (i) training the

classifiers Φ̂j on Tr, and (ii) ranking the examples di ∈ Tr
in decreasing order of the Dj

S(di) value that MP-Boost has
produced as a side effect of the learning process. The ratio-
nale of this technique is that, since the training examples
that maximize Dj

S(di) are the ones that have turned out the
most difficult to make sense of during the boosting itera-
tions, they are thus the ones whose cj-assignment is most
highly at odds with the cj-assignment of the other train-

ing examples. The problem with the DIS technique is that
it turns out to be equivalent to our first technique (CON),
in the sense that CON and DIS always generate identical
rankings, a fact that had never been noted in the litera-
ture2. The only advantage that DIS provides over CON is
thus that there is no need to reclassify the training examples
by means of Φ̂j , since the information needed for ranking is
already available after training has occurred.

Before discussing the experiments it is worthwhile noting
that, although we have described these techniques in the
context provided by a boosting-based learner which gen-
erates confidence-rated predictions, all of these techniques
can be used also in connection with other learning devices.
More specifically, CON only needs the classifier to return a
score of confidence in its own decision, NN has no specific
requirements, and COM requires the classifier to consist of
a committee of classifiers. Moreover, the discussed equiva-
lence between CON and DIS has the practical consequence
of making available a technique equivalent to DIS to learning
devices not based on boosting.

4. EXPERIMENTS
4.1 Experimental protocol
In order to test our TDC techniques we use a standard
MLTC dataset Ω = 〈Tr, Te〉 split into a training set Tr
and a test set Te. We assume that Tr contains no misclassi-
fied examples, and we simulate the presence of misclassified
training examples by artificially “perturbing” a small num-
ber m of training examples; we call the value p = m

|Tr| the

perturbation ratio. In what follows, “perturbing a training
example di for class cj” means changing its cj-assignment,
from positive to negative (in this case we call di a false neg-
ative for cj) or from negative to positive (a false positive);

by cTr we denote the training set after perturbation.

We test two different perturbation techniques, which we call
random perturbation (RP) and targeted perturbation (TP).
As the name implies, in RP the training examples to perturb
are picked at random from Tr. The same training examples
(x% of the entire lot) are perturbed for all classes cj ∈ C.

TP is instead obtained by (i) training the classifiers Φ̂j on
Tr, (ii) reclassifying Tr by means of them, (iii) ranking, for
each cj ∈ C, the reclassified examples in increasing order of

the confidence |Φ̂j(di)| that Φ̂j had in classifying them, and
(iv) perturbing the top-ranked ones, in number equal to x%
of the training examples. The rationale of this technique is
that the training examples that Φ̂j classifies with low confi-
dence are more likely to be “borderline” examples for cj ; as
a result, these examples are the ones that, should they be
manually labelled, would have the highest probability of be-
ing misclassified (either due to lack of experience or to lack
of adequate time) by a human annotator. In other words,
while RP simulates the perturbation of a training set that
might derive from, say, file corruption, TP simulates the

2We discovered this fact experimentally in the course of this
work. A conversation with Robert Schapire, one of the
“fathers” of boosting, later revealed that, while this phe-
nomenon had never been observed before, an a posteriori
justification can be found for it in the theory that under-
lies the AdaBoost.MH algorithm, of which MP-Boost is
a variant.

Table 1: Percentage of perturbed documents that
are false negatives for Reuters-21578 (left) and
RCV1-v2 (right).

Reuters-21578 RCV1-v2
p RP TP RP TP

.001 0.77 46.18 2.84 65.43

.010 0.91 19.34 3.18 43.91

.050 0.87 7.32 3.14 22.84

.100 0.86 4.35 3.15 14.96

perturbation that might derive from lack of experience, or
lack of care, on the part of the human annotator who has
labelled the training set. Unlike in RP, in TP we allow dif-
ferent training examples to be perturbed for different classes
cj ∈ C, since the same document might be controversial, or
“borderline”, for one class but not for others.

Table 1 illustrates, for each dataset, perturbation technique
and perturbation ratio, the percentage of perturbed docu-
ments that are false negatives (i.e., positive examples mis-
labelled as negatives). Of course, for random perturbation
this percentage tends to be fairly constant across the differ-
ent perturbation ratios, since it tends to coincide with the
average class frequency of the entire dataset. One insight
that we may gain from looking at Table 1 is that in tar-
geted perturbation, while false positives tend to outnumber
false negatives, this tendency is increasingly marked as the
perturbation rate increases; this is due to the fact that the
number of (genuinely) positive examples is limited, so as the
number of documents to perturb increases, the number of
positive documents that can be perturbed cannot increase
proportionally.

4.2 Effectiveness measures
In order to determine which among the three TDC tech-
niques of Section 3 is the best we will measure how good

each technique is at ranking cTr in such a way that the per-
turbed training examples are placed at the top of the rank-
ing. To this end, it seems natural to adopt one of the mea-
sures routinely used for evaluating ad-hoc (ranked) retrieval.
Of course, ad-hoc retrieval is all about ranking the “good”
(i.e., relevant to the information need) examples higher than
the bad ones, while TDC aims at ranking the “bad” (i.e.,
likely misclassified) examples higher than the good ones; but
this is of course an inessential difference.

As a measure of ranking quality we will choose mean average
precision (MAP), which in our context is defined as follows.

Let rj(cTr) be the ranking for class cj , realized according to

TDC technique r, of the perturbed training set cTr, and let

[rj(cTr)]k be a binary predicate that returns 1 if the example

at the k-th position in rj(cTr) is perturbed for class cj , and

0 otherwise. We define the precision at n of rj(cTr) as

Pn(rj(cTr)) =
1

n

nX
k=1

[rj(cTr)]k (2)

We then define the average precision of rj(cTr) as

AP (rj(cTr)) =

P|cTr|
k=1 Pk(rj(cTr)) · [rj(cTr)]kP|cTr|

k=1[rj(cTr)]k (3)

The mean average precision (MAP) of TDC technique r oncTr is finally defined as

MAP (r(cTr)) =
1

|C|
X
cj∈C

AP (rj(cTr)) (4)

Aside from a measure of TDC effectiveness we will also
need a measure of MLTC effectiveness, so as to determine
which effectiveness gains in classification can be obtained
if TDC is performed. As a MLTC effectiveness measure
that combines the contributions of precision (π) and re-
call (ρ) we have used the well-known F1 function, defined
as F1 = 2πρ

π+ρ
= 2TP

2TP+FP+FN
, where TP , FP , and FN

stand for the numbers of true positives, false positives, and
false negatives, respectively. Note that F1 is undefined when
TP = FP = FN = 0; in this case we take F1 to equal 1,
since the classifier has correctly classified all documents as
negative examples. We compute both microaveraged F1 (de-
noted by Fµ1) and macroaveraged F1 (FM1). Fµ1 is obtained
by (i) computing the category-specific values TPi, FPi and
FNi, (ii) obtaining TP as the sum of the TPi’s (same for
FP and FN), and then (iii) applying the F1 = 2TP

2TP+FP+FN

formula. FM1 is obtained by first computing the category-
specific F1 values and then averaging them across the cj ’s.

Section 4.4 reports the results of our experiments with the
three TDC techniques of Section 3, the two different pertur-
bation techniques, different perturbation ratios, and differ-
ent datasets Ω.

4.3 The datasets
In our experiments we have used the Reuters-21578 and
RCV1-v2 datasets.

Reuters-21578 is probably still the most widely used bench-
mark in MLTC research3. It consists of a set of 12,902 news
stories, partitioned (according to the “ModApté” split we
have adopted) into a training set of 9,603 documents and
a test set of 3,299 documents. The documents are labelled
by 118 categories; in our experiments we have restricted our
attention to the 115 categories with at least one positive
training example.

Reuters Corpus Volume 1 version 2 (RCV1-v2)4 is a
more recent MLTC benchmark made available by Reuters
and consisting of 804,414 news stories produced by Reuters
from 20 Aug 1996 to 19 Aug 1997. In our experiments we
have used the “LYRL2004” split, defined in [10], in which the
(chronologically) first 23,149 documents are used for train-
ing and the other 781,265 are used for testing. Of the 103
“Topic” categories, in our experiments we have restricted
our attention to the 101 categories with at least one posi-
tive training example. Consistently with the evaluation pre-
sented in [10], (i) also categories placed at internal nodes
in the hierarchy are considered in the evaluation, and (ii)

3http://www.daviddlewis.com/resources/testcollections/
~reuters21578/
4http://trec.nist.gov/data/reuters/reuters.html

as positive training examples of these categories we use the
union of the positive examples of their subordinate nodes,
plus their “own” positive examples.

In all the experiments discussed in this paper stop words
have been removed, punctuation has been removed, all let-
ters have been converted to lowercase, numbers have been
removed, and stemming has been performed by means of
Porter’s stemmer. Word stems are thus our indexing units;
since MP-Boost requires binary input, only their presence/
absence in the document is recorded, and no weighting is
performed.

4.4 Results and discussion
Table 2 reports MAP values obtained by ranking the per-
turbed training sets by means of the three TDC techniques
(CON, NN, COM). Results are reported for the full set
of classes and for the 30 most infrequent classes of both
Reuters-21578 and RCV1-v2. The reason we pay spe-
cial attention to the most infrequent classes is that they are
usually the classes for which standard supervised learning
techniques produce the lowest classification accuracy, which
means that they are the classes which are most in need of
effectiveness improvement, by TDC or other technique: a
user might typically engage in TDC for these highly prob-
lematic classes and forget about the classes for which high
enough accuracy has already been achieved.

In all the experiments MP-Boost has been run with a num-
ber S of iterations fixed to 1,000. For the NN technique, as
the sim(·, ·) measure of inter-document similarity we have
used the cosine of the angle between the tfidf vectors of the
two documents. For the same technique we have used the
value k = 45, since in using k-NN as a learning device for
TC Yang [17] has found this value to yield the best effective-
ness and has found negligible differences between values of
k ∈ [30, 65]; we defer careful optimization of the k parameter
to further work.

A “trivial” baseline to the results of Table 2 is the expected
MAP value of the random ranker (RR). Detailed combina-
torial analysis shows that this is equal to

MAP (RR(Ω)) =
m− 1

n− 1
+

(n−m)Hn
n(n− 1)

(5)

wherem is the number of relevant (in our case: misclassified)
examples in the document set Ω, n is the total number of
examples in Ω, and Hn denotes the n-th harmonic number
(i.e., Hn =

Pn
k=1

1
k

). Actual computation of this formula
shows that MAP (RR(Ω)) is approximated by m

n
(and in an

especially accurate way for large values of n), which in our
case coincides with the perturbation ratio p = m

|Tr| . Since

for all of our datasets and perturbation ratios approximating
Equation (5) to the third decimal digit exactly yields p, the
first column of Table 2 also indicates the trivial baseline for
the experiments in the corresponding row.

There are several insights that can be gained from observing
the results of Table 2. The first observation is that, since
picking training examples at random is the only method one
can adopt when wanting to perform TDC, unless equipped
with a specific TDC technique such as CON, NN or COM,
the improvements that the three TDC techniques display in

Table 2 over the baseline of Column 1 is noteworthy.

A second observation is that, with few exceptions and all
other things being equal, each technique performs better for
random perturbation than for targeted perturbation. This
is intuitive, since misclassified training examples inserted
at random in the training set tend to be easier to spot;
conversely, in targeted perturbation we corrupt the label of
borderline examples, which are then much more difficult to
identify for any technique.

The third observation is that, among the three competing
TDC techniques, while there is no clear winner, there is cer-
tainly one clear loser, namely, the COM technique, which
in almost all situations obtains results inferior (and often
radically so) to CON and NN. We think that the reason
for the bad performance of COM may be found in the fact
that MP-Boost generates a committee of classifiers that
are not independent of each other. Indeed, each member Φ̂js
of the committee strongly depends on the previously gener-
ated member Φ̂js−1, since the former is generated according

to the distribution resulting from applying Φ̂js−1 to Tr. As
a consequence, agreement is probably not something one
could reasonably expect from the members of this kind of
committee, since sharp disagreement may derive from rea-
sons different from a bad label, such as the different empha-
sis that the different members place, by construction, on a
given training example.

Leaving COM aside, we may observe that neither CON nor
NN systematically outperform the other. CON tends to be
the better technique on the RCV1-v2 dataset, while the
situation is less clearcut on Reuters-21578; similarly, CON
tends to outperform NN on the full set of classes of each
dataset, while when we analyse the behaviour of the two
techniques on the 30 most infrequent classes of each dataset
there is no clear winner. All in all, both techniques turn
out to be respectable contenders, often achieving (sometimes
surprisingly) high MAP values in absolute terms.

A fourth insight we can gain by looking at Table 2 is that
MAP tends to increase with the perturbation ratio p, and
may reach extremely high values for high values of p. This
is very good news, since this means that if we have reasons
to believe that our training set is extremely low-quality, we
know that our time in cleaning it will not be wasted, since
these techniques will place almost all the bad examples near
the top of the ranking.

Table 3 reports instead the micro- and macro-averaged F1

values obtained before and after perturbation; this is an
indication of the improvement in classification effectiveness
one obtains by performing TDC if the original training set
contains noise at the perturbation ratios indicated. Results
are reported for the full set of classes and for the 30 most
infrequent classes of our two datasets.

One insight that this table allows to gain is that random
perturbation is usually more damaging to effectiveness than
targeted perturbation, and this fact tends to become evident
as the perturbation rate increases. That targeted perturba-
tion may have less disruptive effects is intuitive, since TP
introduces mislabellings on documents that are likely bor-

Table 2: Mean average precision (MAP) of the three TDC techniques (CON, NN, COM) on the full set
of classes (top 4 rows) and on the 30 most infrequent classes (bottom 4 rows) of Reuters-21578 (left) and
RCV1-v2 (right). Boldface indicates the best performer for a given combination of perturbation ratio (p),
perturbation method, and dataset.

Reuters-21578 RCV1-v2
Random perturbation Targeted perturbation Random perturbation Targeted perturbation

p CON NN COM CON NN COM CON NN COM CON NN COM

F
u
l
l

S
e
t .001 .596 .458 .305 .510 .369 .152 .232 .238 .072 .357 .082 .125

.010 .653 .771 .517 .608 .525 .206 .752 .542 .566 .519 .376 .194

.050 .968 .907 .808 .677 .621 .301 .927 .777 .801 .672 .512 .417

.100 .973 .961 .874 .665 .634 .449 .945 .865 .804 .658 .593 .520

3
0

In
f
r

.001 .748 .790 .401 .648 .681 .100 .222 .225 .099 .323 .101 .104

.010 .674 .966 .599 .581 .670 .153 .702 .476 .533 .435 .375 .275

.050 .982 .992 .812 .647 .701 .268 .896 .716 .747 .608 .427 .479

.100 .981 .985 .886 .673 .651 .455 .919 .845 .760 .613 .523 .588

Table 3: Micro- and macro-averaged F1 values for the full set of classes (top 5 rows) and for the 30 most
infrequent classes (bottom 5 rows) of Reuters-21578 (left) and RCV1-v2 (right) after perturbation.

Reuters-21578 RCV1-v2
Random perturbation Targeted perturbation Random perturbation Targeted perturbation

p Fµ1 FM1 Fµ1 FM1 Fµ1 FM1 Fµ1 FM1

F
u
l
l

S
e
t

.000 .852 .606 .852 .606 .572 .423 .572 .423

.001 .822 .356 .821 .448 .557 .368 .558 .354

.010 .583 .227 .632 .254 .348 .224 .441 .324

.050 .138 .074 .209 .094 .105 .096 .211 .160

.100 .064 .047 .116 .061 .050 .064 .137 .107

3
0

In
f
r

.000 .373 .245 .373 .245 .164 .062 .164 .062

.001 .190 .114 .139 .137 .102 .044 .038 .035

.010 .038 .036 .056 .052 .025 .024 .063 .039

.050 .004 .004 .011 .011 .006 .005 .015 .014

.100 .002 .002 .006 .005 .005 .003 .010 .008

derline examples anyway, i.e., documents that two human
annotators might legitimately label in different ways. Mis-
labelling them may hurt classification accuracy in the thin
region of document space close to the surface that sepa-
rates the positives from the negatives, but does not affect
accuracy elsewhere. Conversely, random perturbation may
have effects anywhere in document space, and may seriously
mislead the classifiers even on cases that would be clearcut
otherwise.

A second observation that immediately jumps to the eye is
that the decrease in effectiveness deriving from perturbation
is noteworthy even for very modest perturbation rates (e.g.,
.001), and becomes disastrous even for slightly less modest
ones (e.g., .010). For instance, for a .001 targeted pertur-
bation rate removing the mislabellings from the Reuters-
21578 training set makes Fµ1 jump

• from .821 to .852 for the full set of classes. This is a 3%
relative improvement, that in the ’90s has taken years
of improvement in TC technology to achieve. This
shows that one mislabelled document in a thousand
can single-handedly defy the efforts of many TC re-
searchers at improving effectiveness;

• from .139 to .373 for the 30 most infrequent classes, a
168% relative improvement. It is not hard to see why
the effect of even a few misclassified training exam-
ples on the classification accuracy for infrequent classes
can be so large. Given a class with very few positive
training examples, mislabelling even one or a handful
negatives as positives can severely corrupt the set of
positive training examples, while mislabelling even one
or a handful of positives as negatives has the double
effect of depleting the already slim set of positive ex-
amples and confusing the learner by presenting it with
negative training documents that are very similar to
the remaining positive ones.

These two observations hold to an even higher degree for
FM1 ; similar observations also hold for random perturbation
and RCV1-v2. For reasons of space we do not separately
report the results on the (|C| − 30) most frequent classes of
our two datasets. In a nutshell, on these classes the decrease
in Fµ1 is very similar to the decrease on the full set of classes
(since Fµ1 is mostly influenced by the behaviour on the most
frequent classes), while the decrease in FM1 is smaller than
the decrease in the full set of classes (since FM1 is equally
influenced by all the classes in C).

Table 4: Micro- and macro-averaged F1 values for
the full set of classes (top 5 rows) and for the 30
most infrequent classes (bottom 5 rows) of Reuters-
21578 with classifiers trained after performing TDC
by means of the CON technique with K = 100.

Random perturbation Targeted perturbation
p Fµ1 FM1 Fµ1 FM1

F
u
l
l

S
e
t

.000 .852 .606 .852 .606

.001 .846 .466 .850 .498

.010 .749 .399 .780 .412

.050 .607 .252 .632 .312

.100 .173 .090 .213 .208

3
0

In
f
r

.000 .373 .245 .373 .245

.001 .260 .187 .202 .197

.010 .219 .174 .201 .183

.050 .077 .064 .080 .072

.100 .013 .013 .020 .019

Note that Table 3 only gives us a picture of the improvement
that might be obtained by cleaning the entire training set.
Aside from probably being infeasible in many real-world sit-
uations, this is something that would defy the purpose of the
TDC techniques we have presented. A study should thus be
performed that, for any combination of TDC technique, per-
turbation method, perturbation ratio, and dataset, plots the
effectiveness of the classifiers generated after TDC has been
performed, as a function of K, the number of top-ranked
training examples that the human annotator has double-
checked for misclassifications. This is obviously a daunting
experimentation, since for each such combination and each
value of K the classifiers should be retrained from scratch
and the test examples should be reclassified anew. In Table
4 we provide a sample such experiment, in which for differ-
ent perturbation methods and ratios we test the effective-
ness values resulting, on Reuters-21578, from performing
TDC by the CON technique and “un-perturbing” the per-
turbed documents found at the top K = 100 positions in
the ranking. For instance, with targeted perturbation and
p = .001, the MAP value of .510 that CON obtains guaran-
tees (see Table 2) that Fµ1 , that perturbation had brought
down from .852 to .821 (see Table 3), jumps back to .850,
and that FM1 , that perturbation had brought down from
.606 to .448, jumps back to .498.

All these results are indicative of the fact that TDC is an
important and cost-effective way of improving accuracy for
all the datasets of less-than-perfect quality of annotation.

5. RELATED WORK
Several works have used TDC in learning tasks other than
TC, especially within the realm of computational linguistics.
For instance, TDC has been applied to POS tagging [1, 4,
5, 12, 18], verb modality identification [11], PP-attachment
[1], and word segmentation for East Asian languages [14].
Some of these works use task-independent TDC techniques
while others do not. Among the former, [1, 14] use the DIS
technique discussed at the end of Section 3, while [12] uses
a technique analogous to DIS that exploits the character-

istics of SVMs; [5] uses instead a generative probabilistic
model based on a mixture of a majority distribution and an
anomalous distribution, and for each training example com-
putes the probabilities that the example has been generated
by either of the two distributions, deeming the example a
misclassified one if the ratio between the two falls below
a certain threshold. Other works use instead task-specific
techniques; for instance, in a POS-tagging application [4]
top-ranks multiple occurrences of the same word that have
been classified with different parts of speech in similar lin-
guistic contexts, a technique that is obviously applicable to
POS-tagging only and not to tasks such as TC.

To the best of our knowledge the only work that deals with
TDC in the context of TC is [7]. The proposed method
consists in training an SVM, removing from the training set
the support vectors that the SVM has identified, training a
naive Bayesian classifier on the modified training set, and
reclassifying the removed support vectors with this classi-
fier, declaring mislabelled the support vectors whose orig-
inal label does not match the newly assigned label. The
intuition behind this technique is that if a training example
has a wrong cj-assignment, then it likely ends up being a
support vector for the generated classifier. Unlike our tech-
niques, this technique is strictly learner-dependent, since it
only works with SVMs as learners. Additionally, the method
is only limited to cleaning the support vectors; our method
examines (and ranks) instead the entire training set; as a
result, experimentally comparing the technique of [7] with
ours would be problematic.

All of the works above adopt an a posteriori evaluation
methodology, i.e., they perform no training set perturba-
tion, and evaluate their techniques by ranking the original
training sets and then asking human annotators to look for
misclassified examples throughout the first k ranks, thus re-
porting precision-at-k results. We prefer the a priori evalu-
ation methodology, since (i) it allows us to work with differ-
ent perturbation ratios, thus addressing the fact that differ-
ent real-world applications may be characterized by different
levels of quality in their data; (ii) it is exempt from evaluator
bias, which the a posteriori methodology especially suffers
from when (as is frequently the case) it is the authors them-
selves that engage in post-checking the results; (iii) it allows
to compute MAP, while the a posteriori methodology only
allows to compute precision for a specific, usually low value
of k (i.e., the misclassified items from the (k + 1)-st posi-
tion onwards have no impact on the evaluation); and (iv)
it allows one researcher to replicate the results of the other,
while the a posteriori methodology does not.

Finally, let us note that the COM technique is somehow rem-
iniscent of the query-by-committee active-learning method
(see e.g., [2]), in which unlabelled examples (and not la-
belled ones, as in our case) are ranked for human annotation
in decreasing order of the disagreement among a committee
of classifiers that try to classify them. As a measure of
disagreement, [2] uses entropy. We have instead proposed
using standard deviation, since entropy can only take into
account the binary decisions of the various classifiers, and
not the real-valued confidence in their decision; conversely,
standard deviation can naturally account for predictions ex-
pressed as real numbers, and is thus a better fit in our case.

6. CONCLUSIONS AND FUTURE WORK
We have tested three techniques for training data cleaning
on two popular MLTC benchmarks, checking their ability at
spotting and top-ranking a set of training examples whose
class assignment we have purposefully corrupted for exper-
imental reasons. This experimental protocol allows to con-
veniently study in vitro the behaviour of these TDC tech-
niques, and to precisely measure the relative merits of the
various techniques by means of evaluation measures, such
as MAP, standard in the field of ranked retrieval. Studying
three TDC techniques with two different perturbation mod-
els, at five different perturbation levels, across two datasets
(one of which consisting of more than 800,000 documents),
and studying both the quality of the resulting rankings and
the increase in effectiveness that carrying out TDC may
bring about, our work probably qualifies as the first truly-
large scale experimentation of TDC in either computational
linguistics or IR.

Our experimental results show that two techniques, the con-
fidence-based technique and the nearest neighbours tech-
nique, achieve good MAP values across different settings
deriving from the choice of different datasets, different class
frequency, different perturbation ratios, and different types
of perturbation, but also show that neither one clearly out-
performs the other. A further result of this paper is that
a fourth technique, which had been proposed before and
which was specific to boosting-based learners, is equivalent
to the confidence-based technique proposed here, which is
instead applicable to all learners equipped with a notion of
confidence in the classification decision.

Our results also show that TDC is important, since they
show that even a single misclassified example in a thousand
training examples can bring about deteriorations in effec-
tiveness that are simply noteworthy in general, and are no
less than dramatic for the most infrequent classes and for
macroaveraged F1 in general.

Note also that TDC techniques are important not only for
training data cleaning, but also for cleaning generic sets of
labelled text: the very same techniques discussed here might
be applied by a human annotator in order to clean a man-
ually annotated text corpus (e.g., the entire RCV1-v2), re-
gardless of the fact that the entire corpus is then going to be
used for training a text classifier. For instance, this is useful
for cleaning test sets, since incorrectly labelled test examples
prevent the accurate measurement of effectiveness, but it is
also useful for cleaning labelled datasets produced within
organizations that entirely rely on manual classification.

This work still leaves some questions unanswered, that might
thus be the subject of future research. One interesting ques-
tion is whether the committee-based technique, that has
proven to wildly underperform the other two, might instead
perform radically better with classifier committees whose
members, unlike those generated by boosting methods, are
independent of each other, as is the case for the classifier
committees generated by “bagging” methods [3]. As men-
tioned in Section 3, member independence seems to better
conform to the intuition that underlies the COM method.

A second question is whether spotting and correcting a train-

ing example misclassified as positive has the same value as
spotting and correcting a training example misclassified as
negative. While in this paper we have made the simplifying
assumption that the two are equally important, future re-
search could address the issue of attributing different impor-
tance values to the two cases, thus bringing about the need
of evaluating TDC techniques in terms of cost-sensitive eval-
uation functions such as normalized discounted cumulative
gain [9], in place of the cost-insensitive MAP.

Yet a third question arises is we want to compare TDC and
active learning as effectiveness-enhancing techniques that
attempt to minimize the additional effort requested from
a human annotator. Assuming that the annotation of a
new unlabelled document requires an effort x times as large
as double-checking an existing labelled document (for some
x ∈ [0,∞)), is it more cost-effective to annotate the n un-
labelled documents top-ranked by an active learning tech-
nique, or to double-check the x ·n documents top-ranked by
a TDC technique? Presumably, the answer is a function of
the perturbation ratio of the training set, with high (resp.,
low) perturbation ratios making TDC (resp., active learn-
ing) more cost-effective. Individuation of the perturbation
ratio that acts as a threshold between the two cases would
be extremely interesting.

7. REFERENCES
[1] S. Abney, R. E. Schapire, and Y. Singer. Boosting

applied to tagging and PP attachment. In Proceedings
of the 1999 Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC’99), pages 38–45,
College Park, US, 1999.

[2] S. Argamon-Engelson and I. Dagan. Committee-based
sample selection for probabilistic classifiers. Journal of
Artificial Intelligence Research, 11:335–360, 1999.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] M. Dickinson and W. D. Meurers. Detecting errors in
part-of-speech annotation. In Proceedings of the 10th
Conference of the European Chapter of the
Association for Computational Linguistics (EACL’03),
pages 107–114, Budapest, HU, 2003.

[5] E. Eskin. Detecting errors within a corpus using
anomaly detection. In Proceedings of the 1st
Conference of the North American chapter of the
Association for Computational Linguistics
(NAACL’00), pages 148–153, Seattle, US, 2000.

[6] A. Esuli, T. Fagni, and F. Sebastiani. MP-Boost: A
multiple-pivot boosting algorithm and its application
to text categorization. In Proceedings of the 13th
International Symposium on String Processing and
Information Retrieval (SPIRE’06), pages 1–12,
Glasgow, UK, 2006.

[7] F. Fukumoto and Y. Suzuki. Correcting category
errors in text classification. In Proceedings of the 20th
International Conference on Computational
Linguistics (COLING’04), pages 868–874, Geneva,
CH, 2004.

[8] L. Galavotti, F. Sebastiani, and M. Simi. Experiments
on the use of feature selection and negative evidence
in automated text categorization. In Proceedings of
the 4th European Conference on Research and
Advanced Technology for Digital Libraries (ECDL’00),
pages 59–68, Lisbon, PT, 2000.

[9] K. Järvelin and J. Kekäläinen. IR evaluation methods
for retrieving highly relevant documents. In
Proceedings of the 23rd ACM International Conference
on Research and Development in Information
Retrieval (SIGIR’00), pages 41–48, Athens, GR, 2000.

[10] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397, 2004.

[11] M. Murata, M. Utiyama, K. Uchimoto, H. Isahara,
and Q. Ma. Correction of errors in a verb modality
corpus for machine translation with a
machine-learning method. ACM Transactions on
Asian Language Information Processing, 4(1):18–37,
2005.

[12] T. Nakagawa and Y. Matsumoto. Detecting errors in
corpora using support vector machines. In Proceedings
of the 19th International Conference on
Computational Linguistics (COLING’02), pages 1–7,
Taipei, TW, 2002.

[13] R. E. Schapire and Y. Singer. Boostexter: A
boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168, 2000.

[14] H. Shinnou. Detection of errors in training data by
using a decision list and Adaboost. In Proceedings of
the IJCAI’01 Workshop on Text Learning Beyond
Supervision, Seattle, US, 2001.

[15] V. Sindhwani and S. S. Keerthi. Large scale
semi-supervised linear SVMs. In Proceedings of the
29th ACM International Conference on Research and
Development in Information Retrieval (SIGIR’06),
pages 477–484, Seattle, US, 2006.

[16] Y. Yang. Expert network: Effective and efficient
learning from human decisions in text categorisation
and retrieval. In Proceedings of the 17th ACM
International Conference on Research and
Development in Information Retrieval (SIGIR’94),
pages 13–22, Dublin, IE, 1994.

[17] Y. Yang. An evaluation of statistical approaches to
text categorization. Information Retrieval,
1(1/2):69–90, 1999.

[18] M. Yokoyama, T. Matsui, and H. Ohwada. Detecting
errors in POS-tagging using ILP. In Proceedings of the
8th International Conference on Discovery Science
(DS’05), pages 75–80, Singapore, SN, 2005.

[19] K. Yu, S. Zhu, W. Xu, and Y. Gong. Non-greedy
active learning for text categorization using convex
transductive experimental design. In Proceedings of
the 31st ACM International Conference on Research
and Development in Information Retrieval
(SIGIR’08), pages 635–642, Singapore, SN, 2008.

