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Special theme: Machine Learning

Machine-learnt models based on addi-
tive ensembles of regression trees have
been shown to be very effective in sev-
eral classification, regression, and
ranking tasks. These ensemble models,
generated by boosting meta-algorithms
that iteratively learn and combine thou-
sands of simple decision trees, are very
demanding from a computational point
of view. In fact, all the trees of the
ensemble have to be traversed for each
item to which the model is applied in
order to compute their additive contribu-
tion to the final score.

This high computational cost becomes a
challenging issue in the case of large-
scale applications. Consider, for
example, the problem of ranking query
results in a web-scale information
retrieval system:  the time budget avail-
able to rank the possibly huge number of
candidate results is limited due to the
incoming rate of queries and user expec-
tations of quality-of-service. On the
other hand, effective and complex
rankers with thousands of trees have to
be exploited to return precise and accu-
rate results [1].

To improve the efficiency of these sys-
tems, in collaboration with Tiscali Italia

S.p.A, we recently proposed
QuickScorer (QS), a solution that
remarkably improves the performance
of the scoring process by dealing with
features and characteristics of modern
CPUs and memory hierarchies [2]. QS
adopts a novel bit-vector representation
of the tree-based model, and performs
the traversal of the ensemble by means
of simple logical bitwise operations.
The traversal is not performed by QS
one tree after another, as one would
expect, but is instead interleaved, fea-
ture by feature, over the whole tree
ensemble. Due to its cache-aware
approach, both in terms of data layout
and access patterns, and to a control
flow that entails very low branch mis-
prediction rates, the QS performance is
impressive, resulting in speedups of up
to 6.5x over state-of-the-art competi-
tors.

An ensemble model includes thousands
of binary decision trees, each composed
of a set of internal nodes and a set of
leaves. Each item to be scored is in turn
represented by a real-valued vector x of
features. As shown in Figure 1, the
internal nodes of all the trees in the
ensemble are associated with a Boolean
test over a specific feature of the input

vector (e.g., x[4] ≤ γ2). Each leaf node
stores the potential contribution of the
specific tree to the final score of the
item. The scoring process of each item
requires the traversing of all the trees in
the ensemble, starting at their root
nodes, until a leaf node is reached,
where the value of the prediction is con-
sidered. Once all the trees in the
ensemble have been visited, the final
score for the item is given by the sum of
the partial contributions of all the trees. 

One important result of QS is that to
compute the final score, we only need to
identify, in any order, all the internal
nodes of the tree ensemble for which the
Boolean tests fail, hereinafter false
nodes. To perform this task efficiently,
QS relies on a bit-vector representation
of the trees. Each node is represented by
a compact binary mask identifying the
leaves of the current tree that are
unreachable when the corresponding
node test evaluates to false. Whenever a
false node is found, the set of unreach-
able leaves, represented as a bit-vector,
is updated through a logical AND bit-
wise operation. Eventually, the position
of the leaf storing the correct contribu-
tion for each tree is identified.
Moreover, in order to find all the false

fast traversal of Large Ensembles 

of Regression trees

by Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto  (ISTI-CNR), 

Salvatore Orlando (Ca’ Foscari University of Venice) and Rossano Venturini (University of Pisa)

The complexity of tree-based, machine-learnt models and their widespread use in web-scale systems

requires novel algorithmic solutions to make the models fast and scalable, both in the learning

phase and in the real-world. 

Figure�1:�An�ensemble�of�binary�decision�trees.
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nodes for the scored item efficiently, QS
processes the nodes of all the trees fea-
ture by feature. Specifically, for each
feature x[i], QS builds the list of all the
nodes of the ensemble where x[i] is
tested, and sorts this list in ascending
order of the associated threshold γk.
During the scoring process for feature
x[i], as soon as the first test in the list
evaluating to true is encountered, i.e.,
x[i] ≤ γk, the subsequent tests also eval-
uate to true, and their evaluation can be
safely skipped and the next feature
x[i+1] considered. 

This organisation allows QS to actually
visit a consistently lower number of
nodes than in traditional methods,
which recursively visit the small and
unbalanced trees of the ensemble from
the root to the exit leaf.  In addition, QS
exploits only linear arrays to store the
tree ensemble and mostly performs
cache-friendly access patterns to these
data structures. 

Considering that in most application
scenarios the same tree-based model is
applied to a multitude of items, we
recently introduced further optimisa-
tions in QS. In particular, we introduced
vQS [3], a parallelised version of QS
that exploits the SIMD capabilities of
mainstream CPUs to score multiple
items in parallel. Streaming SIMD
Extensions (SSE) and Advanced Vector
Extensions (AVX) are sets of instruc-
tions exploiting wide registers of 128
and 256 bits that allow parallel opera-
tions to be performed on simple data
types. Using SSE and AVX, vQS can
process up to eight items in parallel,
resulting in a further performance
improvement up to a factor of 2.4x over
QS. In the same line of research we are
finalising the porting of QS to GPUs,
which, preliminary tests indicate, allows
impressive speedups to be achieved.

More information on QS and vQS can
be found in [2] and [3]. 
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Assume you want to build a software
for automatic sentiment analysis:
given a text such as a Twitter message,
the tool should decide whether the text
is positive, negative, or neutral. Until
recently, typical solutions used a fea-
ture-based approach with classical
machine learning algorithms (e.g.,
SVMs). Typical features were number
of positive/negative words, n-grams,
text length, negation words, part-of-
speech tags etc.  Over the last two
decades a huge amount of research has
been invested in designing and opti-
mising these features, and new fea-
tures had to be developed for each new
task. 

With the advent of deep learning, the
situation has changed: now the com-
puter is able to learn relevant features
from the texts by itself, given enough

training data. Solving a task like senti-
ment analysis now requires three major
steps: define the architecture of the
deep neural network; aggregate
enough training data (labelled and
unlabelled); and train and optimise the
parameters of the network. 

For instance, Figure 1 shows the archi-
tecture of a system that won Task 4 of
SemEval 2016, an international com-
petition for sentiment analysis on
Twitter [1]. This system uses a combi-
nation of established techniques in
deep learning: word embedding and
convolutional neural networks. Its suc-
cess is primarily based on three fac-
tors: a proper architecture, a huge
amount of training data (literally bil-
lions of tweets), and a huge amount of
computational power to optimise its
parameters. Live demos  of various

deep learning technologies are avail-
able at [2].

Goal of DeepText

In DeepText, we will automate the
three steps above as far as possible.
The ultimate goal is a software
pipeline that works as follows (see
Figure 2): 
1. The user uploads his or her training

data in a standard format. The data
can consist of unlabelled texts (for
pre-training) and labelled texts, and
the labels implicitly define the task
to solve.

2. The system defines several DNNs to
solve the task. Here, different funda-
mental architectures will be used,
such as convolutional or recurrent
neural networks.

3. The system then trains these DNNs
and optimises their parameters.

Optimising deep Learning for Infinite Applications

in text Analytics

by Mark Cieliebak (Zurich University of Applied Sciences)

Deep Neural Networks (DNN) can achieve excellent results in text analytics tasks such as sentiment

analysis, topic detection and entity extraction. In many cases they even come close to human

performance. To achieve this, however, they are highly-optimised for one specific task, and a huge

amount of human effort is usually needed to design a DNN for a new task. With DeepText, we will develop

a software pipeline that can solve arbitrary text analytics tasks with DNNs with minimal human input. 
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