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2. Preliminpary notations and hypotheses
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Let o, (i,3=1,2,3) be the stress tensor and ¢, ' the strain
tensor. He dindicate as deviatoric stress the <ensor
s, = 6;= 0,0, where ¢, is Kronecker's symbol and 0, = 6;;/3.

In the same vay ve define the deviatoric strain temsor as

@ ij = Su e é”&g Hheﬁe 80 = Eii/39

The quantities o, and & are called the hydrostatic parts of
the respective tensors (¥)

The basic hypotheses about the elasto-plastic behaviour of a
material are as follovs:

- the material pehaves isotropically in the sense there are
no privileged directions for the load or the straing

- the deformation process takes place in an isothermal wvay;

- the deformations are small enough so that ve can consider
them as infinitesimal;

- the strain state does not depend on the rate at which the
deformation develops itself;

- during the entire 1load process, the hydrostatic part of
the stress is a linear function of the hydrostatic
strain, i.e.:

gy = 3%E, (101)

where % is the bulk modulus of the material,

o o D >

(#) In what follows, 6, ¢ and all related quantities will
generally be considered as vectors in a nine dimension
vector space.
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Following the development of a plastic strain, the
elastic range P generally wmodifies the value of its
radius and the position of 4its centre accerdiag to the
hardening rules for the material,

Hardening rules.

the present theory, the material hardening is governed by

t+he folloving assumptions:

1)

during the eatire load process the position of the centre
and the value of the radius of the elastic range P are
functions of a unigue parameter { defined by:

Qﬁgi/é%?@dé; s (%) (3, 3)
there are two material characteristic functions ¢({) and
Y{ly which are fully deducible from a uniaxial test and:
- @() is not decreasing with ¢{0) = 2, (3. 4)
- w(@) 22; gh ex?é""&Q?@ ??a?;ge aizg for every i@ {3@59

—

if ¢ is the centre and ¢ is the radius of P, then:

/‘g dgp

=g = 2%3 Y(L= Py =m==dit 3 {3, 6)
; age

- o(f) = Te@(L)e  (¥%) (3. 7)

1f s lies on the bouadary of P, from {3.6) and {3.7) we
obtain:

1ig = cil = %@L}, {3.8)

and from (3.3) and from Prandtl-Reuss's hypothesis:

if a and p are vectors ve denote their scalar product
as a.p

(#%) the relations (3.6) and (3.7) determine the materia

%
hardening status as function of { and its history. § is
independent from the clock time and constitntes a
measure of the permanent deformation levels therefore {
can be interpreted as an “intrinsic time® from vhich
the pame “endochronic® is taken for this theory of the
elasto-plastic behaviour., It is to be observed that
this definition of intrinsic tipe is the same
definition used by Valanis in reference [2]
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de’ = co=== 4 {3.9)
%@{{)

¥e shall examine now some particular cases showing how theg
and v functions govern the hardening mechanism,

A}

B)

Let us suppose ¥(¢)=0. Hence c(t)=0 and (3.2) gives:

H;s.;ii = ’%@(é) e ’ (3@19)

In this case the centre of P remains fixed at the origin
of the § space duriag the entire load process and the
radius expands itself following the value of @({). We
have +the case of a pure 4isotropic hardening. If, in
particular, ¢(¢) = V2 = constant, we will have the case
of the classical ideal plasticity.

Let us suppose P(t) = {2 = constant and 9({)#0. In this
case, during the load process, the elastic range P
carries out a +translation in the S space, and keeps
constant its radius.

It is convenient that the two cases bpe distingquished as
follovs:

B1) w(f) = ¥(0) = constant (i.e. & = 0 for every i), VWe
deduce from (3.6):

dg(¢) = 2 py(0)de’ » (3. 11)
Therefore P carries out a translation in the
direction of its outer normal vector n. We have the
kinematic hardening of Prager.

B2) v(f) not constant. In this case ve deduce from (3.6) 3

dg £ de’ dg’
-= = 2 Sw’ (L= V=== AEVE24YP(D) === , {3.12)
ag 2 dage a¢
vhere ' ({) = 4d¥W/4¢
Indicatings
£ ae®
hig) = S‘w§(§°§‘)°"d§' P {3.13)
o ag’

¥e obtain:
dg = 2 p. (W(D)de® ¢hdl). {3.14)

He have no¥w a @pore general kinematic hardening
because the translation direction of the centre of P
is generally different €£from n and depends on the
vhole history of the deformation.
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In this paragraph ve deduce an incremental method which
permits the stress increment d¢ to be calcuolated for every
given strain increment dg.

Because the linear relation (1.9) connects the hydrostatic
parts, the problem is reduced to the determination of dg for
a given de.

Let us suppose that during the load process the conditions
shown in figs. (4.1) have been reached.

S

Figs 4.1
the values of £, S, C, € , h are known and g lies on the
boundary of P, For a given dg ve vaat to calculate the
corresponding d¢, dg, dg, dg’ and dh.
Two cases can be givens:

) égﬁeﬁ n gea

B) ﬁgaﬁg > 0,

) We bhave the case of eslastic unload, hence i% holdss
ac = t1ag” 11 = 0, (4s 1)
from ({3.2):
dg = 2p.dg o | (4 2)
and from {(3.13) and {(3.74):

dh = 0,

oy
Fin
®
Lad
e




dg = {, (uda)

B) In this case, from (3.8) the increments ds, dg and 4¢
have to verify the following:

llgtds=gc-dcli2 = 2g? (§+d(). (4.5)
Expanding o2 (L +d]) to the first order as
P2 (L) +2 (L) @' (£) 4 and repenbering that if a and b are
two vectors, it holds:

fla=bil12 = flaliz ¢ ({bli2 = 2 3.b ,
ve have, from (H4.5):
%I§°$ilz*1!d§‘dgl!2”2(§°§)o(d§‘d§)=t?¢?(§)’2v3¢(§)¢’(§)d§ .
Neglecting the higher order terms and knowing that
lis=cil2 = 52¢2{{), ¥e have:

(s-g)o (dg=dg) = 2 @({) ¢ (§) dl (4o 6)
Moreover, from ({(3.2) and (3.14) we have:

dg=dg = 2 p.(dg-dg’ -w(0)de’ -hd(). (4e7)
Therefore, from {(4.6), {(4.7)z2
{s=c). de=(1+9(0)) (s~c) . d&" = (s-g).hd{ = f{?';g)-ﬁfgidb

)

Taking into account the relation (3.9) and dividing by
7p(L) , ve have:

(s-¢c).de (s=g)oh % 9° ({)
mmecoeec = (1ew(0))dL - a = come-osdf
%o @(C) Ts ¢(§) 2[&,
and solving for df, we have:
(s=¢c) .dg (*®)

dc B oo wom oo S o e e (9 €0 @ W@ @ @ e S e mme e (ue 8}

{8=C)oh 5 @' (L)
L) (1eyp(0) ¢ ======- P eremees

% (L) 24,

(#}) keeping in mind the definition of h and the expression
of ¥(t), ve can easily demonstrate that the gquantity:

$= (Tey(d) ¢ =oo===- ¢ moomes- )
% P(¢) 2 e
is »1 for every value of [, so that the relation (U4.8) is always
vell defined.




09_

From (3.8), (3.2) and (3.14) we have:

dg’ = comwee at ~ {4,9)
LP(L)

ds = 2p,(de-de’ ), {4.10)

dg = 2p, ((0)de” ¢hdf). (4e11)

There remains dh to be calculated., From {3.5) and (3.13)
¥ye haves

a

. de’
h = Zi“ain; ‘g exp(=o; ({=§'))--==d(',

5 A ag
hences
dh de’ g de’
== = P (0) === ¢ gw“(§‘§')--*-dC‘ =
at at 0 ags
de’ " ¢ de’
= (M-EE- ¢ Zi(a;em Xoexp(- o (= g*n-a;dg') =
dg’ .
=y (0)-&-- - }; a b (¢) s

¢ de’
where h, (§) = "a.nsgexp("ai ({=2")) ====d ¥
ag?

L]

From the previous relation, we obtain:
dh = ' (0)de’ =) a.b (£)dgs (4.12)
r i

The relations (4.8), (8.9, (U.10), (4.1%), (4.12) are a
complete system of incremental coastitutive relations., In
the following paragraph we will show how these relations
¥ill be used to find the expression of the elasto-plastic
constitutive matrix D" , i.e. the matrix defined by:

p* = dg/df_o




5. The D_ matrix
In a finite element program which uses the tangent stiffness
matrix K, , it is necessary to calculate the elasto-plastic
constitutive matrix D defined by:
D = dgyd:e , (5. 1)

relating stress and strain increments [3].

The basic relations used to calculate D in a full
tridimensional case are:

ds = 2p, (de - de’ ), {5.2)
§-¢
de’ = =--o-- at (5. 3)
% ()
(s-c) dg (*)
I . (5. 4)
$nolf)
Yhere:

W
[92]

Sane

=y

Taking into account the 1linear crelation between the
hydrostatic parts of g and g, we have:

ds = Adg - 3xPdg (5. 6)
de = Hds (5. 7)

vhere A,P and W are the following matrices:

| 100000
1010000 |
} 001000 j
| 000 100 4
A= 0000107,
| 00000 1 |
1 000100 |
feeo0010
f 000001}

(#) In this paragraph, ve denote with a'b the scalar product
of <the tvo column vectors a and b, vhere a is the
transpose of a.
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111000 |
| 111000
{11106 00
110000001
pP=- 10000001,
31000000
| 000000 |
{ 0000O0CO0{
| 000000 |
H=A-Po

Prom {5.6), we haves

do ds ds de ds
Beome = AD? & w= $3%P = == == ¢ 3P = == He3%P, (508)
dg dg de dg de
From {5.2), (5.3) and (5.4) we can write:
ds de’ de® d¢
== = 24, (I= ====) = 2 (I- ===e ==) =
de de a¢ de
{s-¢) (8-c)
2 20 (Ie mecccoc—c=es ) = 2p, (I-H), {5 9)
S 3892 (C)
vhere H is the following matrix:
{s=¢) (s-¢) '
H 2 cocomomwamme ® (5. 10)
¢ 52 g2 (¢)
Therefore from (5.8) and ({5.9) we haves
AD® = 2pu, (I-H)M¢3xP , _ (5. 11)

p*® can be easily found by eliminating the last three rows
and colunns from the matrix on- the right bhand side of
{5 11) »

In bidimensional problems as the plane-strain or the
axisymmetric cases, ‘the D** matrix can be easily obtained
froe the tridimensional one.

The plane-stress case requires some calculation because the
plane-stress definition concerns the stresses.

In this «case, it is convenient to start with the relation
cbtained inverting (5.1), di.eey

dg = [p” ) dg . {50 12)

Once the calculus of [D* J' has been done, we can apply the
conditions obtained from the definition of plane-stress,
eliminating some rows and columns, This reduced matrix can
pov be inverted to obtain the D matrizx usefel for




plane-stress.

-q2=
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6. Determination of the ¢ and ¥ fungtions from 2 uniaxial
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Let us suppose that the results of a uniaxial traction test
are knovn, as shown in fig. (6.1).

P
0!
J-= |
k""‘ A i
i
o L ly |
iy |
I |
;§ | 4o,
I |
|1 |
P Pl_'p
0| A A | 2
I
|
|
P .
Fiq- 6. 1

Por simplicity, let us suppose the functions @(¢) and Y({)
have the following expressions:

L]

L) 2(1+88) (60 1)
YLy

Therefore we have to determine the §, 79,, 7, ¢ parameters.

i

7,0+ 1,exp ("GC) ® {69 2}

In the present case ve have 67 0, ands

s, = 2 9/3,

s, = 8 == 0/3 = =5 /2, (6. 3)
e = ef = -ef /2,

de’

= VZ/B (during the load phase}.




]l
Because it holds:
s-¢ = llis-gll 2 = llg~¢ll dg" /d¢ (6o )
from {(3.6), {3,8) and (6.3) we have:
s, = we(g) y§:7§.,, 24k Sﬁ:(g— ¢ V273 age (6:5)
and from (6.1) énd (6.2)1
¢
s, = 2 5, (1¢p0) A3 ¢ 24, V273 S(’ﬂ,* hexp(-alz=¢')))dst,
or from the first of (6.3): ’
o,= 13 ¢ {1¢88)¢)3/72 24, f( 7+ mexp(~e(f=(")})d¢ts (6.6}
Prom (6.6) =, can be calcul;ted, because vwe have:
T, = o73, (607)

and o¢° can be read on the diagram of fig. (6.1}

i. Determination of p parameter
In the case of uniaxial traction, we have:

{isl|2 = s2+¢s2es? = 3s2/2, or

Listl = V273 o, (6.8)
Because it is {ls-cil = % o(), vYe have:

doy2 = V372 590¢L,)
hence,

do,r2 = o*(1¢ BL)e (6. 9)
Fron * {6.9) ve can calculate B, because

(= V372 e* (P) = }J3/2 0P, and OP' and 4o, can be read from
the diagram in fige (6.1}




=15~
2, Determination of 7%,, %, and a.

To calculate %,, 7, and ¢, we suppose for the moment to have
the diagram ( o, = e’ ) for the same test as showvn in fig.

{6 2)e

/Q‘

Pig. 6.2

Because it is @(¢) = V2(1+g¢), ve bave from (6.6), during
the load phase:

3

‘ £
o,1¢) = 6‘(1%;)%#95 (¢ mexp(=ait=£')))dg’,
[+]
or after some calculations:

g (e’ )= o*(1+8V3/2 e} )+3 p.nef ¢

1

¢ & po M/ (1-exp(-V3/2a € )). {6 10)

if e] is high enough the exponential term <can be
disregarded, we have:

o e’ ) = o (1¢8V3/2 e} ) #3p. e, + 6 M /e, {6.11)

vhich represents +the equation of &, straight line in fig.
(602)s If k, and m, are crespectively the intercept and the

slope of tr,, ve have:




-{6=
m- V3/20%f

]

i, 5 ecesecwewe, {60 12)
3,

(ka = G*)
N/ = wemeoooe, {6:13)
6w,

After the determination of 7, and . /a, ve choose a point A
on the curved part of the diagram in fig. (6.1). We measure
the ordinate AA, and the corresponding e} (A} (given by the
abscissa A' of the crossing point betwveen the abscissa axis
¢, and the parallel to OY passing through 4).

From (6. 10) we have the following relation:
exp(-137/2 ae} (A)) = ---o--=sss=s-meo- . (6. 14)

Using the relation (6.14), a can be easily calculated.

Until novw vwe have used K and m, vhich are seldom available
N ‘ . 13 9

pecause we have only the (o, - ¢) dlagram as shown in figs

(6o 1) Now we have to calculate k, and m, from sone

measurements done on the diagram in fige (6.1).

Let r be the asymptote of the curve in fig. (6.1), and m and
kX be respectively the slope and its intercept. We have:

do, m{de + de; ), (6. 15)

[}

or

]

dog, m{do, /E ¢+ do, /B ), (6. 16)

where ds' is the elastic part of the strain and E is
Yfoung's modulus,

From (6. 16), ve have:
m, = BE/{(E-m), {6-17)

so that m, can be calculated, having measured m on the fige.
{6o 1) 0

Por k,, we have from fig. (6.2):
6,{Q) =k, = m, ef {Q*) . {66 18)

Because @, is known, and from <fig. (6.1), 6,(Q) = PB,
e’ (Q¢) = OP!', we have:

k, = PP, = OP'(mE)/(E=m). ~ {6.19)

This completes the calculation of the characteristic
parameters of the material.
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Plane stress, Infinite plate with a circular hole and
internal pressure load.

Geonretrical data s radius of the hole = 18, cm,
thickness = 1. cue
E 2,1%#108% kg/cm?,
0.3,

1000. kg/cm2?,
ideal plasticity.

Haterial properties

de

b 1 u

The applied 1load is a uniform pressure p = 1591, kg/cm2.
#ith the value of the applied pressure we can calculate [U4],
the radius of the plastic zone and we found:

T = 13,536 cn.

FPigse {7.1) and (7.2) shov respectively the behaviour of the
radial and tangential stress versus the distance from the
centre of the hole.

The theoretical results, as obtained from reference [U4], are
indicated Dby the continuous line.

The results otained using the program founded on the theory
presented in this paper are indicated by o points.,

The results obtained using the MARC program are indicated by
+ points,

#e have a good agreement betWween the results of the tvo
programs and the theoretical <forecasts, and the practical
identity Dbetween the results of the two programs. This
perfect correspondence bpetveen the results of the two
programs will be maintained in all ideal plasticity examples
proposed here,

Example 2

Axi-symmetrice Thick tube with internal pressure.

Geometrical data : length = 1, in,
inner radius = 1. in,
outer radius = 2, in,

3h,wi0e pSia
0.3,

25981, psi,
ideal plasticity.

Haterial properties : E

@ ouou

In%exnai pressure value: p = 26839, psi.
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With this load value we can calculate [U] the radius of the
plastic zone and ve found:

T = 1,227 in
Pigse (7.3) and (7.4) show respectively the behaviour of the
radial and tangential stress versus the distance fronm the

symmetry axis. The notations are the sane as in the previous
exanple,

Exapple 3

Plane-strain, Thick tube with internal pressure.

The structure is the same as in the previous example, but it
is seen as a plane-strain case., The behaviour of radial and
tangential stress versus the radius is shown in figs. (7.5)
and (7.6) respectively.

Exanple Y4

Tridimensional. Thick tube with torsion load

Geometrical data : length = 2, in,
inner diameter = 2. in,
outer diameter = 2.2 ine.

5798. tons/sg.in,
0,3,
5 tons/sgein.

Material properties : E

pure kinematic hardening: fB= 0, a= 500., %= 0.0484,
7a =0, 3363,

The middle cross section of the tube is held fixed, and a
uniformly distripbuted twisting moment is applied on the tuwo
end faces.

The behaviour of stress =+, versus the plastic strain Y is
shown in £ige (7.7).

The upper curve shows the behaviour of stress in an annealed
specimen without any initial strain.

The lower curve shows the behaviour of stress in the case
the twisting load is applied on a specimen which has a
permanent initial deformation due to ‘the application and
successive removal of a uniform - traction load up to 1.5
times the yield value,
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