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Quantifying the unexpected: A scientific approach to Black Swans
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Many natural and socioeconomic systems are characterized by power-law distributions that make the occur-
rence of extreme events not negligible. Such events are sometimes referred to as Black Swans, but a quantitative
definition of a Black Swan is still lacking. Here, by leveraging on the properties of Zipf-Mandelbrot law, we
investigate the relations between such extreme events and the dynamics of the upper cutoff of the inherent

distribution. This approach permits a quantification of extreme events and allows to classify them as White,
Gray, or Black Swans. Our criterion is in accordance with some previous findings but also allows us to spot new
examples of Black Swans, such as Lionel Messi and the Turkish Airlines Flight 981 disaster. The systematic
and quantitative methodology we developed allows a scientific and immediate categorization of rare events, also
providing insight into the generative mechanism behind Black Swans.
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I. INTRODUCTION

During the last decade the complexity paradigm [1-3] has
been successfully applied not only to the area of physical
systems but also to many other phenomena, including socioe-
conomic systems [4,5]. One of the most ubiquitous features
in the complexity science is the emergence of extreme events,
orders of magnitude larger than typical ones. Severe finan-
cial crisis, devastating earthquakes, or deadly wars all can
be interpreted in terms of complex inherent structures which
give rise to power-law distributed phenomena [6]. Mandelbrot
and Taleb have been among the first [7,8] to investigate these
phenomena and to stress the limits of standard statistical tech-
niques in such frameworks, the latter with the introduction of
the celebrated Black Swan metaphor. According to Taleb [8],
a Black Swan event.

(a) is unexpected and unpredictable;

(b) has a great impact, both positive or negative; and

(c) makes people try to explain its occurrence once it has
been observed.

If extreme events are found to follow a power law, their
effects are in some way mitigated because they cease being
totally unexpected. In this case Taleb speaks of Gray Swans
[8], which are unpredictable but not unexpected. However, as
we are going to show, even if we know that the underlying
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distribution is power-law-like, Black Swans can still occur due
to the possible dynamics of the upper cutoff.

The First World War and 9/11 terrorist attacks are often
used as examples of Black Swans [8—11]; however, up to now
a scientific and quantitative assessment of Black Swans has
been lacking, and this sometimes allows policy makers to
improperly use this terminology. For instance, during the last
months many governments, financial institutions, and journals
identified the COVID-19 pandemic as a Black Swan, even
though the possibility of the spread of a newborn virus had
been already pointed out by several studies and even by Taleb
himself [8]. This arbitrariness is favored by the fact that after
the efforts of Taleb and Mandelbrot, most of the discussion
about Black Swans is still conducted on a qualitative philo-
sophical and/or psychological level.

In the following we show, on a quantitative basis, that
Black Swans are related to a nonstationarity in the inherent
power-law distribution, generated by a jump dynamics of the
upper cutoff. This implies that when performing risk analysis,
the assumption of a time-independent probability distribu-
tion may result in severe underestimations of extreme events.
A central property of Black Swans is that they cannot be
predicted starting from data about the system under consider-
ation; however, an analysis that also includes the environment
the system is coupled to permits, in some cases, the jumps
of the upper cutoff to be perceived and so to foresee Black
Swans. This perspective allows us to introduce a quantitative
measure of the surprise associated with large events, that we
call Blackness, which can be used to scientifically classify
them into three distinct sets: White Swans, Gray Swans, and
Black Swans. Our quantitative criterion partly confirms what
was previously stated by Taleb using qualitative arguments,
namely, that the First World War and 9/11 terrorist attacks
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were Black Swans with respect to the number of casualties,
while the 1987 Black Monday was only a Gray Swan. New
examples of Black Swans we have found are the amount of
goals scored by Lionel Messi in LalLiga and the number of
casualties of the Turkish Airlines Flight 981 disaster, since
both events drastically overcame the previous estimate of the
upper cutoff.

II. RESULTS
A. Zipf-Mandelbrot law

Our scientific framework to analyze Black Swans is given
by Zipf’s law and, more generally, power laws. Note that
one can observe extreme events also in connection with other
probability distributions and not only as a result of power
laws. However, since many extreme phenomena, such as
wars, earthquakes, disasters, or pandemics, are power-law
distributed, in this paper we consider only this class of proba-
bility distributions. Zipf’s law [12] is a ubiquitous scaling law
found in many natural and socioeconomic systems [6,13—16].
Given a system composed of N objects and denoting by S(k)
the size of the kth largest one, Zipf’s law reads

S(1)

S(k) = o ey
where k is the rank, y is the Zipf’s exponent, and S(1) is
the empirical maximum that is the largest element or event
in the system under consideration. Zipf’s law is generally
visualized by the so-called rank-size plot, obtained by plotting
the ordered sequence of the sizes as a function of their position
in the sequence; a straight line in loglog scale is thus expected.
However, it is common to observe deviations from Zipf’s law
at low ranks [17-19], which can be quantified by introducing
a parameter Q in the so-called Zipf-Mandelbrot law [20]:

. N

Ck+ Oy
The parameter Q > 0 will play a crucial role in the analysis
of Black Swans. As shown in [17], the Zipf-Mandelbrot law
is observed whenever the inherent distribution is a power

law, and its parameters are related to those of the probability
distribution by the following relations:

S(k) ()

) 3
Q=NG! ”

where « is the exponent of the inherent power-law distribu-
tion, that is, P(S) ~ S™“. Note that here and in the following
we always refer as o to the exponent of the probability den-
sity function, not to be confused with the exponent of the
cumulative. s, and s)s are the lower and upper cutoffs of the
distribution, possibly corresponding to physical limits, that is,
P(§)=0 for S <s,, and S > sy, and N is the number of
elements in the system or records in the catalog.

The deviation parameter Q is a measure of the level of
sampling [17] (see Methods section for details): for Q =~ 0 the
underlying distribution is undersampled and the upper cutoff
cannot be inferred, while for Q > 1 it is completely sampled
and sy coincides with the empirical maximum. Indeed, by

combining Eqs. (2) and (3) we obtain an expression relating
the upper cutoff of the distribution to the measurable parame-
ters Q, S(1), and y:

1 Y
Sy = S(l)<%> ) )

In the limit Q — O the upper cutoff diverges, meaning that
data do not provide a sufficient level of sampling for inferring
it. This last expression thus allows, when Q is sufficiently
large, to compute the upper cutoff of a power-law distribution
and will be used in the following to study real systems.

B. The Blackness

Let us consider a random number generator extracting
values from a power-law distribution with unknown param-
eters «, S,,, and s,. If we look at the first N < (sp7/5,,) /)
numbers, being Q < 1, the corresponding rank-size plot will
be straight [17]. Moreover, our set undersamples the inherent
distribution, and so there would be no surprise if the next draw
returns a value much larger than those previously observed,
because it is not possible to infer the upper cutoff s,.

If we keep drawing numbers, sooner or later we will com-
pletely sample the inherent distribution, this occurring for
N > (spr/s,m) V7). In this way the empirical maximum be-
comes very close to the upper cutoff, that can thus be inferred
using Eq. (4), and nothing unexpected should occur. In this
situation Black Swans are absent, but what happens if the
upper cutoff increases to s}, > sy ? (Note that this actually
happens in various social and biological systems, for instance,
as a consequence of the coupling with an external system or a
technological change.) The answer is simple. Our apparently
perfect knowledge of the underlying distribution becomes
problematic as soon as a number close to sj, is extracted.
Without knowing if and when the upper cutoff jumps, there
is no way not only to predict, but also to expect such an event.
This kind of event is what we will classify as a Black Swan.

This simple example we sketched captures some points that
are crucial for understanding the phenomenology of Black
Swans (and possibly mitigate their utmost effects):

1. An arbitrary large event can be or not be a Black Swan,
depending on the level of sampling of the distribution, so
depending on the value of Q. A system showing exact Zipf’s
law (Q ~ 0) never gives rise to Black Swans. The idea is
that when the level of sampling is low there is no way to
characterize the upper limit and so to realize that sy — s},.

2. An event can be classified as a Black Swan if and only
if it is (much) larger than any event previously observed and
the deviation parameter Q of the system is large. Indeed, this
implies that it is beyond the estimate of the upper limit.

3. A stationary power law only gives rise to Gray Swans,
since when the level of sampling is low there is no surprise if
an event much larger than those previously observed occurs,
while when the level of sampling is high, no event much
larger than the observed maximum can occur. Note that for
a power law without upper cutoff, the level of sampling is
always low, since the support of the distribution is not finite.
As a consequence, also in this case, no Black Swan can be
observed.
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FIG. 1. Black Swans arise from jumps in the upper cutoff. (a) Rank-size plot of airline disaster casualties occurring before 1974-03-03 (blue
dots) with the corresponding fit to Zipf-Mandelbrot law (red line). The presence of strong deviations from Zipf’s law would have suggested
that this set completely sampled the inherent distribution, meaning that the maximal possible number of casualties (i.e., the upper cutoff) was
approximately 200. The stylized black swan corresponds to the Turkish Airlines Flight 981 disaster. 346 people died in that circumstance,
subverting the estimate of the upper cutoff. This accident, which has been the first to involve a large-body aircraft, can be then considered a
Black Swan. (b) Probability distribution of airline disaster casualties. The red dots represent the distribution of accidents occurring between
1949 and 1969, while blue ones show the distribution of those occurring between 1969 and 1989. Approximately the same number of accidents
occurred in these two periods (798 and 781, respectively) and so if the distribution would not have changed, then red and blue dots would have
spanned the same range of casualties. However, the upper cutoff approximately doubles, making the Black Swan possible.

In order to better clarify these points, we consider a real
system showing this kind of dynamics: aircraft accidents.
Here the size of the event is given by the number of casualties.
In Fig. 1(a) we show the corresponding rank-size plot com-
puted by considering all events until the February 3, 1974, the
day before the crash of Turkish Airlines Flight 981, which is
represented by the Black Swan. Strong deviations from Zipf’s
law are present, and Q is relatively large. On the basis of
the previous considerations, one could have concluded that
the upper cutoff of the distribution had already been reached,
and so no surprise should have been expected. However, the
following day Flight 981 crashed, provoking the death of 346
people, a number approximately twice as large as the previous
most severe accident. This increase was possible because of
the introduction in the late 1960s of wide-body aircrafts that
can carry approximately twice as many passengers as the older
narrow-body models. This implied a sudden increase of the
upper cutoff of the casualty distribution, which we depict in
Fig. 1(b). In this sense we can conclude that the Flight 981
was indeed a Black Swan. Note that before and after the jump,
the scaling exponent remained the same. In summary, usually
an empirical power law is characterized by three parameters,
the exponent and the two cutoffs, and it must be nonstationary
in order to give rise to Black Swans. Now, the lower cutoff
clearly does not play any role regarding large events, while a
variation of the exponent influences the frequency of extreme
events but not their size. As a consequence, the only form of
nonstationarity that may produce Black Swans is a jump of
the upper cutoff. Note that we use the term jump, meaning
that the typical time of the increase of the upper cutoff must
be much smaller than the typical time of the sampling. Also,
a continuous growth of the upper cutoff can produce Black
Swans, provided that this condition is satisfied.

Once the phenomenology of extreme events has been dis-
cussed, it is simple to derive a quantitative criterion to classify
them in Black, Gray, and White Swans: (i) an event smaller
than the maximum of those which previously occurred is a
White Swan; (ii) a Gray Swan is an event whose size is larger
than those previously observed, but that is not unexpected
in the sense that it is lower than the estimated upper cutoff;
and (iii) a Black Swan is an event whose size is larger than
those previously observed and that is also unexpected, being
larger than the expected upper cutoff. We can then define the
Blackness B of a new event of size Spey as

g _ Sow = S() )
sy — S(1)
where S(1) is the empirical maximum and sy, is the best
estimate of the upper cutoff we can infer from the data, which
is given by Eq. (4). Formalizing the three definitions just
mentioned, B can be used to determine the “color” of an
extreme event:

White Swan: Spew < S(1) > 8 < 0;

Gray Swan: S(1) < Spew < sy — 0 < B8 < 1;

Black Swan: Syew > sy — B > 1.

As shown in the Methods section, § can be expressed
directly in terms of only empirical quantities

R—-1
=i ©)
(%) -1
where R = Shew/S(1) is the relative size of the new event with
respect to the empirical maximum. This last expression shows
that B well summarizes the two crucial points we stressed
above. Namely, R > 1 is a necessary but not sufficient condi-
tion for an event to be a Black Swan, since also the deviation
parameter Q (or, equivalently, the level of sampling) must be
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FIG. 2. Synthetic Black Swans. Lower bound of the Blackness
Bmin for events with size Spew =2 x 10°,5 x 103,10 x 10> as a
function of the level of sampling Q obtained generating samples
of varying numerosity from a power law with parameters o = 2,
sm = 1, and sy = 10%. For each value of Q and Spey, We generated
100 samples in order to compute the mean value and the uncertainty
of Bumin. Starting from Q 5 the events are classified as Black Swans,
while if the deviation parameter Q is around 1, even an event 10 times
larger than the upper cutoff is often classified only as a Gray Swan.
The black dashed lines correspond to §,,;, = 1 and thus divide Black
and Gray Swans.

considered. Indeed, if Q = 0, that is, for a perfect Zipf’s law,
the Blackness goes to zero independently of the relative size.
This because in the case of a pure Zipf’s law the upper cutoff
cannot be estimated.

Finally, in order to understand how the Blackness is influ-
enced by the level of sampling, we applied Eq. (6) to synthetic
data. More precisely, we generated samples from a power law
with @ = 2, 5,, = 1, and 53, = 10° and with varying levels of
sampling Q. For each sample we considered an event with
Size Snew = 28um, SSp, 10sy, larger than the upper cutoff (and
thus not compatible with the power-law distribution), and
we computed the lower bound B, of its blackness (see the
Appendix for details on how we compute this lower bound)
using a 90% confidence interval. For each value of the level of
sampling Q and of Sy, we repeated the procedure 100 times
so to compute both the mean value of B, and its uncertainty.
Results are reported in Fig. 2, as it is possible to see the
events are always correctly classified as Black Swans as soon
as the deviation parameter is Q ~ 5, while when the level of
sampling is smaller we obtain a Blackness smaller than 1. As
we expected, it is thus necessary to have a sufficiently large
level of sampling in order to observe Black Swans.

C. Applications to real systems
1. Classification of past events

The Blackness concept allows to search for Black or Gray
swans in any system showing an inherent power-law distribu-

tion, obtaining an objective and scientific-based measure of
the “surprise” associated to an event. By performing fits to
the rank-size plots (see the Methods section for details), and
by using Eq. (6), we computed the Blackness of a number of
extreme events that previous works have found to be power-
law distributed [7,21-25] and that range from sport to natural
disasters and finance; the results are displayed in Fig. 3. The
“Blackest” Black Swan among the events we considered is the
Turkish Airlines disaster, followed by WWI; the size of the
latter has been defined as the number of casualties normal-
ized by the world population. For what concerns WWI, the
growing globalization of the world and the extensive usage
of new deadly weapons may be responsible for the jump of
the upper cutoff. Surprisingly, WWII is only a Gray Swan.
Intuitively, the occurrence of the Great War, a conflict much
more severe than any previous interstate war, already proved
that the upper cutoff of the distribution had increased, making
the second world conflict relatively less surprising in terms
of casualties. Another Swan that presents a Blackness lower
than 1 (considering uncertainty) is the Black Monday of 1987.
Here the size is given by the module of Dow Jones index daily
return; during Black Monday this index lost about 23% of
its value, the worst fall in its history. Also other “officially
unexpected” events in finance and economics are found to be
Gray Swans as for instance the oil market volatility due to
the spreading of COVID-19. The event we analyzed is the
largest monthly fluctuation of the West Texas Intermediate
(WTI) index (4+75%, occurring between March and April
2020) and we considered pre-COVID-19 data (1986-2019)
for computing its Blackness. Another example is the growth
of China (the size is defined as the percentage variation of
GDPppp). Here we considered 35 years of returns of countries
between the periods 1865-1900, 1900-1935, and 1950-1985.
Countries that grew thanks to oil or natural resources were
excluded, but analogous results were found considering all
the countries. It is interesting to note that according to the
common wisdom the growth of China is an incredible outlier
[26], while in our framework its growth is a remarkable but
not unexpected event, confirming recent analysis based on the
methods of analogs [5,27]. Conversely, the soccer top star
Lionel Messi is a Black Swan if measured by the number
of goals he scored in LaLiga (455). We can argue that the
growth of the upper cutoff is due to the increase of the number
of teams taking part in the championships, which, in turn,
increased the number of games played in a season and the
number of potential goals. Indeed, the previous record holder
was Telmo Zarra, who scored 268 goals playing between 1949
and 1957; even if, as Lionel Messi, he scored an average of 0.9
goals per match and played for the same number of seasons
(16), the number of teams involved in Lal.iga was between
12 and 16, against the 20 of today. Using the same criterion,
Cristiano Ronaldo, with his 311 goals, is only a Gray Swan.
The September 11 attacks, often used as an archetype of Black
Swan events, is characterized by a Blackness much larger than
1, confirming the blackness of this terrorist attack in terms of
casualties, even if in this case a clear and objective motivation
for the jump of the upper cutoff is hard to find. Finally, the
Burj Khalifa, which is the tallest building in the world, is
only a Gray Swan, despite a height approximately 70% larger
than Taipei 101, the previous record holder. Setting 8 =1 in
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FIG. 3. Blackness of ten events with 90% confidence bounds. Here the threshold for an event to be considered a Black Swan is 8 > 1;
only four events out of the ten we considered are Black Swans (Turkish Airlines disaster, Lionel Messi, 9/11 terrorist attacks, and World War
I), while the remaining six are Gray Swans. These results have been obtained by means of Eq. (6); see Methods for details.

Eq. (6), we can obtain a threshold value R, for the relative
size dividing Black from Gray Swans:

e i
th = Q _S(l)’

which, once again, can be expressed in terms of only empirical
quantities and coincides with the ratio between the estimate
of the upper cutoff and the empirical maximum. In this way
we can now define the Swan’s plane Q —R'” (Fig. 4),
since only these two quantities are needed to determine the
nature of an extreme event. Three areas can be identified:
the White Swan’s region [R!/” < 1, if the event has a size
less than the already-seen maximum S(1)], the Gray Swan’s
region [1 <R < %, a size higher than the maximum, but
not surprising given the upgf{ cutoff estimation], and the

Black Swan’s region [R > R higher than both the maxi-

mum and the upper cutoff and so, in this sense, surprising].

rescaled size ratio R1/7

] I —S—M—M—m™_—M—M__——m__—_—————"——.

10t 10°

Note that the trivial White Swan region is not represented
in the figure. As discussed above, stationary power laws are
not expected to produce Black Swans, as such events are
related to an abrupt nonstationarity of the upper cutoff. This
is confirmed by Fig. 4, where we exploited the Swan’s plane
to visualize the outcomes of a stationary truncated power
law. More precisely, we generated N; = 100 numbers from
a stationary truncated power law with parameters o = 1.5,
sm = 1, and s, = 10°, so that the initial deviation parameter
is Q; = 0.1, and then we extracted other Ny = 10° numbers
o as to arrive to a final deviation parameter Oy = 100. At
each draw we checked whether the newcomer was larger than
the previously observed numbers. If this was the case, we
fitted the sample available before the new extraction occurred
with Zipf-Mandelbrot law, determining the value of Q; the full
procedure was repeated 10° times. Brighter colors correspond
to a larger frequency, and, as expected, frequencies go to zero
out of the Gray Swan region delimited by the white curve

0.004

threshold 8 =1

Turkish Airlines disaster
Lionel Messi

9/11 attacks

WWI

10.003

0.002

10.001

frequency for stationary power law

0

10t
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FIG. 4. Visualization in the Swans plane of the outcomes of a truncated stationary power law with & = 1.5, s, = 1, and sy = 106 (color
map) and of the four Black Swans we identified (white dots). Concerning the stationary power law, the figure shows the frequency of events
with R > 1, obtained by exploiting a binning procedure in the Swans plane; lighter colors correspond to higher frequencies. The white curve
corresponds to the threshold 8 = 1 and divides Gray Swans and Black Swans. As expected, the frequency goes to zero above the curve, proving
that a stationary power law only produces Gray Swans. Note that as expected, all four Black Swans reside in a region of the Swans Plane where
the frequency of power-law events is vanishing, so they cannot be explained by a stationary power law.
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TABLE I. Future Black Swans. Upper cutoff s), and relative size
R, of five events that could be considered Black Swans with a
confidence of 90%. Systems highlighted in red are characterized by
a low level of sampling, while those highlighted in green present a
high level of sampling.

System Rin Sum
42.29 5.81 x 10° deaths
1.54 1.55 x 10° ha
(%9 o0
(9 o0
1.23 7.46M

corresponding to 8 = 1. In the same figure we also plotted
the four Black Swans we identified, as it is possible to see they
all reside in a region of the Swan Plane where the stationary
power law produces no events and so they are not compatible
with a stationary power law.

2. Future Black Swans

By using our estimation of the upper cutoff, given by
Eq. (4), we can estimate the size of a newcomer event to be a
Black Swan. We computed the upper cutoff of five social and
natural systems and, in turn, the minimum size for new events
to be Black Swans. We show our results in Table 1. It shows
that a pandemic should kill more than 5 billion people, i.e.,
approximately 40 times the Black Death, the worst pandemic
ever with its 200 millions deaths, to be considered a Black
Swan. This stems from the fact that only a few pandemics
have been recorded during human history, and so the inherent
distribution is not much sampled. Conversely, the distribu-
tions of wildfires which occur in Alberta (Canada) and Italian
earthquakes are characterized by a high level of sampling.
Indeed, a wildfire should be just 1.54 times larger than the
observed maximum' for being classified as a Black Swan,
while an earthquake should release only 1.22 times the energy
of the worst Italian earthquake ever.? Finally, the distribution
of Interstate Wars and Dow Jones index daily returns are
completely undersampled, and this is reflected in the fact that
in these systems any event, no matter how large, can be at most
a Gray Swan. More details about these databases are reported
in the Methods section.

III. DISCUSSION

In this work we exploit the connections among the Zipf-
Mandelbrot law, the inherent power law, and the level of
sampling, discussed in [17], to obtain a relation to derive
an empirical estimation of the upper cutoff of a power-law
distribution. We define Black Swans as events whose size is
both extreme (i.e., larger than the observed maximum) and
unexpected (i.e., larger than the estimated cutoff). We show
that three ingredients are needed to produce Black Swans:
an inherent truncated power-law distribution, a high level of

! August 1981 wildfire, 10° ha burned.
21693 Val di Noto earthquake, 7.32 Mw.

TABLE II. Number of elements considered and p value for the
systems we analyzed. All the p values are above the threshold of 0.1,
meaning that all these systems are well described by a power-law
distribution.

System Number of elements N p value
Wars before WWI 38 0.95
Wars before WWII 55 0.30
Terrorist attacks 150 0.48
Dow Jones returns before 1987 250 0.24
LaLiga top scorers 150 0.59
Tallest buildings 500 0.52
WTI monthly returns 75 0.66
Airplanes disasters 859 0.68
Countries growth 70 0.18
Pandemics 35 0.89
Alberta wildfires 250 0.39
Wars 80 0.82
Dow Jones returns 250 0.67
Italian earthquakes 500 0.19

sampling, and a jump dynamics of the upper cutoff. Turkish
Airlines Flight 981 is a clear-cut example where such a dy-
namics is particularly evident, since the jump of the upper
cutoff has been provoked by a well-defined technological
advance—the introduction of large-body aircrafts. As a con-
sequence, looking only at data regarding a certain system may
result in ignoring the jump of the upper cutoff, not allowing
one to foresee the possibility of a Black Swan. When per-
forming risk assessment it is instead crucial to also analyze
the context the systems live in, since jumps can be provoked
by eternal factors rather than by the laws governing the sys-
tem itself, and not to rely on the assumption of a stationary
probability distribution. It is also important to stress that in
our definition of Black Swan, the level of sampling plays a
crucial role, since in order to understand if an event is an
outlier and not compatible with the upper cutof,f we need
an estimate of such a cutoff. This implies that nontruncated
power-law distribution, for which the level of sampling is
always null, cannot produce Black Swans. We also introduced
a quantitative and scientific measure of very large events, the
Blackness, which allows them to be divided into White, Gray,
and Black Swans. Using this parameter, which depends on
empirical quantities only, we checked that stationary power
laws only produce Gray Swans, and we analyzed several em-
pirical systems in search of Black Swans. We found out that
our criterion is in line with most of the qualitative findings
of Taleb, since it correctly classifies World War I and the
9/11 terrorist attacks as Black Swans, while the 1987 Black
Monday is classified only as a Gray Swan. We also spotted
new examples of Black Swans, such as the Turkish Airlines
disaster and the number of goals scored by Lionel Messi.
The latter is probably connected to an increase of the number
of teams involved in the Laliga Championship. Finally, we
determined how large various events shouldbe in order to be
classified as Black Swans by estimating the upper cutoff of
their inherent power-law distributions. For instance, in the
case of Italian earthquakes the distribution is highly sampled,
and so an earthquake releasing just 1.23 times the energy of
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the largest earthquake ever recorded would be a Black Swan.
Conversely, the distribution of Dow Jones index daily returns
is undersampled, and so any fluctuation, no matter how large,
would be only an unsurprising Gray Swan. Note that in this
work we considered only examples of temporal phenomena,
but in principle one could apply all these techniques also to
nontemporal systems where the level of sampling varies due
to other mechanisms. As an example, in a previous study [16]
we considered clusters of galaxies, which show a high level
of sampling and for which we can compute the upper cutoff.
Such a system is clearly stationary on human timescales, but
new data can become available thanks to the creation of new
and more powerful telescopes. A Black Swan would occur if
we observed clusters much larger than the upper cutoff we
estimated and would imply that the physics governing such
structures is different in different regions of the universe.

We believe that the introduction of a quantitative criterion
to classify extreme events in Black Swans (or not) can be
extremely useful not only from a scientific point of view,
but also to scientifically ground the discussion among public
opinion, academia, and policy makers.

IV. METHODS
A. Analytical results

As done in [17], let us consider a truncated power-law
distribution of sizes, P(S), that is

0 for S < s,
5o fors, <S<suw (®)
0 for S > sy

P(S) =

where ¢ is the normalization constant, and s, and sy re-
spectively correspond to the natural lower and upper cutoffs,
always present in real systems. These cutoffs are connected to
¢ by the normalization condition

M (s oa—1
c/ —=1—>c=l—1. ©)]
Y

o —a _ J—a
s Sy Sy

We can then express the rank-size relation as a function of the
probability density function (PDF) parameters using the fact
that given the PDF P(S) of a continuous variable S, the values
of its cumulative distribution function (CDF) C(S), associated
to the different values of S, are approximately equiprobable.
In fact, if P(s) is the PDF of the variable S defined in the
interval [s,,, sp], then C(S) = fA S ds' P(s"). By performing the
change of variables from S to c=cC (S), and calling f(C)
its PDF, we get, by definition of PDF and CDF, f(C) =
dS(C)P(S)| s—scy = 1 for 0 < C < 1. This implies that given
N values of § independently extracted from P(S), with good
approximation they can be taken as uniformly spaced in the
corresponding variable C. Thus the kth size ranked value
S(k) approximately corresponds to the CDF value & ﬂr k In
formulas

Sk) SK) g
/ P(S)dS = c/ —
Ry S, Sa

m m

N+1-k
N+1 ~
which, together with Eq. (9), gives

Sy = —sh N+1—k
N+1

l—a _ l—«
Sy s

By assuming N + 1 = N, sy > s,,,, and introducing y = a%

1 b
we end up with the final rank-size formula:
1 ¥

Nspsy,
S(k) = # -

1
Ns;, + ksy,

NVs,,
PN PV
[k+N(2)7]

By comparing this expression with Zipf-Mandelbrot law, that
is,

S
Sk)= ——, 10
©=G5or 1o
we obtain

1
a—1
= N7s,, . (11)

Q = N(x)!

|95

These expressions relate the number of values or objects and
the parameters of the PDF P(S) on one side and the Zipf-
Mandelbrot parameters on the other. Note that Q not only
quantifies deviations from Zipf’s law but also quantifies the
level of sampling of the inherent distribution. Indeed, Q is

1. the larger the wider is the statistical sample, so the
larger is the numerosity of the sample N;

2. the smaller the wider is the extension of the truncated
power law, given by the ratio between the upper cutoff and
the lower one.

It is possible to derive an expression connecting the upper
cutoff of the distribution to the deviation parameter Q, Zipf’s
exponent y, and the empirical maximum S(1). Combining
Egs. (10) and (11) we obtain

Nyém %
Sy = VSm_ _ =sM( Q )
Q@+ 1y (Q+1)V o+1
which yields
oy = (1)<Qg ) (12)

As expected for Q — oo, the empirical maximum S(1) coin-
cides with the upper cutoff and consequently, any event larger
than S(1) is a surprise, while for Q — 0 no event can be
surprising since the upper cutoff is diverging. Again, we see
that Q plays the role of level of sampling quantifier, since the
truncation point (the upper cutoff) can be appreciated only if
Q is sufficiently large. Exploiting Eq. (12), we can rewrite the
Blackness 8 = (Spew — S(1))/(spr — S(1)) of an event with
size Spew as

Snew — S(1)
= Ra ’ =
B=B(R,Qy) = SO[EY = 1]

R—-1

where R = Spew/S(1) is the ratio between the size of the new
event and the empirical maximum. Since the new event is a
Black Swan if its size is larger than the estimate of the upper
cutoff, the threshold R, dividing Gray and Black Swans is

Snew + 1 14
th = = <Q—) .
Sm 0

13)
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In these terms we can restate the criterion introduced in the
main text terms of three empirical quantities: the deviation
parameter Q, Zipf’s exponent y, and the ratio R = S(1)/sy.
More precisely,

White Swan <— R < 1
Gray Swan <= 1 <R < Ry, , (14)
Black Swan <= R > Ry

Note that the threshold ratio R,, = R;,(Q, y) (i) diverges if
Q goes to zero, (ii) tends to 1 for Q going to infinity, and (iii)
is increasing with y = 1/(a — 1), so it is the larger the fatter
is the inherent distribution.

B. Fitting procedure and confidence bounds estimation

We adopted a standard nonlinear least-squares (NLS)
fitting procedure to determine the parameters of Zipf-
Mandelbrot law. The accuracy of this technique, when applied
to the rank-size plot or to the complementary cumulative
distribution, is comparable to maximum likelihood estimates
[28] while being much simpler (in the case of an unknown up-
per cutoff). In particular, we used Eq. (2) partially linearized
through logarithms,

logS(k) = —y In(x)k + O +c,

where Q, y, and c are free parameters. All the systems we con-
sidered have already been widely studied, and there is strong
evidence regarding the presence of an underlying power-law
distribution; nevertheless, we exploited the p value to check
the goodness of our fits. We followed the procedure described
in [21]:

(1) We compute the parameter Q and y of the empirical
data with the NLS.

(2) We use Eq. (3) to determine the parameters of the
underlying power-law distribution. Note that N and s,, are
given, respectively, by the number of elements in the sample
and by the size of the smallest object.

(3) We compute the Kolmogorov-Smirnov distance be-
tween the empirical data and the power law.

(4) We generate M = 1000 Monte Carlo samples (each
with the same numerosity N of the empirical sample) from
the inferred power-law distribution and, for each of them, we
repeat steps 1-3 to determine the statistics of the Kolmogorov-
Smirnov distance.

(5) The p value is defined as the fraction of the Monte
Carlo samples whose Kolmogorov-Smirnov distance is larger
than that of the empirical data.

Following [21], the power-law hypothesis is rejected if the
p value is smaller than 0.1.

All the p values for the systems we analyzed are re-
ported in Table II, as it is possible to see all values are
above the threshold 0.1, meaning that, as previously noticed,
all the systems considered are well described by an under-
lying power-law distribution. Note, however, that in some
systems, as in the case of pandemics, only a limited number
of elements is available, and so the parameters estimated by
the fitting procedure may not be very precise. In order to
take into account this fact, as explained below, we perform
a parametric bootstrap, which allows us to include in the

uncertainty over the parameters also the effect of the low
numerosity.

Once the parameters Q and y have been obtained, the
Blackness 8 can be computed by exploiting Eq. (6); however,
determining the uncertainty of such a quantity is not trivial.
Naively one could propagate on S the uncertainty on Q, and y,
09, and o, returned by the NLS fitting method. However, this
method does not take into account statistical fluctuations that
are encountered considering different samples generated by
the same power-law distribution. For this reason we exploited
a parametric bootstrap so to obtain a more realistic measure
of uncertainty. In particular, the procedure we adopted is the
following:

1. We compute the parameter Q and y of the empirical
data with the NLS, and we use them to obtain the Blackness
B.

2. We use Eq. (3) to determine the parameters of the un-
derlying power-law distribution.

3. We generate M = 1000 Monte Carlo samples with nu-
merosity N as the empirical sample using the power-law
distribution obtained in the previous step.

4. Each synthetic sample m is fitted with the NLS tech-
nique in order to obtain the parameters Q™ and y™ and their
standard deviation og» and o,». These quantities are used
to determine the Blackness of the event under analysis with
respect to the synthetic sample, §"”, whose uncertainty is
obtained by propagating og» and o,n:

2
O'],m> .

dp 2 dp
o= (@“Q’") i (@

5. The distribution of 8, P(8), is obtained as a mixture of
M Gaussians with parameters 8™ and ogn,

1 M
P(B)= -2 D N&B" opr,

m=1

where NV (x)x, y is a Gaussian with mean x and variance y?.

6. Starting from the probability distribution P(8), the con-
fidence bound for 8 is easily obtained using the cumulative
distribution and determining the interval containing 90% of
the probability.

C. Databases

All the databases we used in our analysis are freely acces-
sible on the web, details can be found below:

GDPppp of countries. In order to study the growth of coun-
tries so to determine if the growth of China has been a Black
Swan, we used the Maddison database [29], which provides
GDP PPP of countries from 1 AD to 2008. We integrated it
with IMF data [30] to obtain a database which ranges from
1900 to 2020.

Airplane disasters. The analysis of airplane disasters has
been performed exploiting a dataset from Kaggle.com con-
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taining data of airplane accidents involving civil, commercial,
and military transport worldwide from 1908-09-17 to 2009-
06-08 [31].

WTI returns. The monthly returns of West Texas Interme-
diate Oil can be accessed from different sources; we used a
dataset ranging from 1986 to 2020 [32].

Tallest buildings. The list of the tallest buildings before
Burj Khalifa, so before 2010, was generated from [33].

LaLiga top scorers. The list of LalLiga top scorers was
retrieved from [34]. We considered only seasons between
1928/1929 and 2004/2005, so before the blowup of Messi
and Ronaldo.

Down Jones index returns. Historical daily returns of Dow
Jones index from 1986 to 2016 have been downloaded from
Quandl.com [35]. Data from 2016 to present days have been
retrieved from [36].

Terrorist attacks. The analysis of casualties provoked
by terrorist attacks has been performed using the RAND
Database of Worldwide Terrorism Incidents (RDWTI) [37].

Interstate wars. Data on Inter-State Wars have been taken
from The Correlates of War (COW) Project [38].

Pandemics. Regarding pandemics, we exploited the aver-
age estimate of the number of casualties described in [23].

Wildfires. The analysis of wildfires is based on Alberta
Wildfire datasets [39]. More precisely, we merged the four
databases, obtaining a dataset spanning spanning the period
1961-2018.

Italian earthquakes. For our analysis of the Italian earth-
quakes we used the INGV Parametric Catalogue of Italian
Earthquakes, which “provides homogeneous macroseismic
and instrumental data and parameters for Italian earthquakes
with maximum intensity 2> 5 or magnitude > 4.0 in the period
1000-2017” [40].
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