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Abstract: Statistical downscaling of climate data has been widely described in the literature, with 
the aim of improving the reliability of local climatic parameters from coarse-resolution (often > 20 
km) global datasets. In this article, we present ClimateDT, a dynamic downscaling web tool for 
monthly historical and future time series at a global scale. The core of ClimateDT is the 1 km 1981–
2010 climatology from CHELSA Climate (version 2.1), where the CRU-TS layers for the period 1901-
current are overlayed to generate a historic time series. ClimateDT also provides future scenarios 
from CMIP5 using UKCP18 projections (rcp2.6 and rcp8.5) and CMIP6 using 5 GCMs, also available 
on the CHELSA website. The system can downscale the grids using a dynamic approach (scale-free) 
by computing a local environmental lapse rate for each location as an adjustment for spatial inter-
polation. Local predictions of temperature and precipitation obtained by ClimateDT were compared 
with climate time series assembled from 12,000 meteorological stations, and the Mean Absolute Er-
ror (MAE) and the explained variance (R2) were used as indicators of performance. The average 
MAEs for monthly values on the whole temporal scale (1901–2022) were around 1.26 °C for the 
maximum monthly temperature, 0.80 °C for the average monthly temperature, and 1.32 °C for the 
minimum monthly temperature. Regarding monthly total precipitation, the average MAE was 19 
mm. As for the proportion of variance explained, average R2 values were always greater than 0.95 
for temperatures and around 0.70 for precipitation due to the different degrees of temporal auto-
correlation of precipitation data across time and space, which makes the estimation more complex. 
The elevation adjustment resulted in very accurate estimates in mountainous regions and areas with 
complex topography and substantially improved the local climatic parameter estimations in the 
downscaling process. Since its first release in November 2022, more than 1300 submissions have 
been processed. It takes less than 2 min to calculate 45 locations and around 8 min for the full dataset 
(512 records). 
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1. Introduction 
Reliable and unbiased estimations of climatic variables for environmental assess-

ments are fundamental in many research fields, including plant studies and forest sci-
ences [1–3]. The climate is one of the key drivers shaping the distribution of living organ-
isms across the globe [4–6]. In tree species, it forces the adaptive processes through time 
[7–9] and governs the future distribution of forest tree species worldwide [10–12]. The 
scientific community agrees that the shift of climatic normal parameters toward drier and 
warmer regimes, as well as the increased frequency of extreme weather events, will play 
a fundamental role in the future [13,14]. For such reasons, researchers call for more de-
tailed climatological data to describe the environments where organisms grow as well as 
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the ecological niche of studied species [12–14]. These data are required to model and fore-
cast the possible consequences of a warming climate and potential adaptation strategies. 

Interpolation techniques and downscaling methods have become relevant techniques 
used to generate climatological surfaces or to improve the quality and reliability of low-
resolution climatic data [15–22]. Many different algorithms have been developed, linking 
the environmental variability and physiographic parameters, such as elevation or distance 
from the sea, applied to “delta” approaches [23] and statistical procedures [18,21,24–26]. 
Powerful workstations and tuned algorithms are readily accessible for research groups, 
often used in a statistical environment to predict the potential impact of a warming (and 
drying) climate on animals or plants [27,28]. In this context, the past climate is used to 
analyze the species’ responses to climate fluctuations [29,30], while the future scenarios 
are applied to forecast the possible impacts. 

The reconstruction of past climates, such as paleoclimates and historical climates 
(e.g., from 1900 to the current periods) as a climate surface, is often performed by means 
of spatial interpolation. Amongst the most well-known techniques, Gaussian processes 
such as kriging (simple, ordinary, and universal) and co-kriging are often cited [31–33]. 
More recently, regression-based methods have proved useful, especially when large por-
tions of geographic space are targeted. Amongst these methods, the PRISM surfaces avail-
able for North America [34] and WorldClim for the Globe [35,36] are well-known climatic 
data sources. For global surfaces, complex and time-consuming mechanistic downscaling 
algorithms were used to characterize the CHELSA-climate dataset [37]. However, the 
quality of the data is dependent on the spatial representativeness of the environment 
where interpolation is performed. Meteorological stations are spread globally, but the har-
monization of their data is difficult [38,39]. Combined with historical climates, future sce-
narios are an additional requirement for modeling work. Climate change projections are 
driven by atmospheric processes and physical interactions constrained in mathematical 
models. Global Circulation Models (GCM), regularly developed by atmospheric scientists 
worldwide, are not targeted at specific geographic regions. According to recent literature, 
the projections generated by the IPCC 5th Assessment Report (AR5, CMIP5) are the most 
often used. However, CMIP6 [39,40] standard projections will probably replace AR5 in the 
coming decades. Such models generally have a low spatial resolution (more than 50 km 
at the equator) and are consequently unsuitable for national and regional studies. In this 
framework, spatial downscaling and statistical downscaling methods are common tech-
niques used to improve the spatial resolution (and reliability) of coarse climatic surfaces 
[18,21]. Among all the available methods, the “delta method” and the “dynamic downscal-
ing” [18,26,41] approaches (i.e., location by location, pixel by pixel) are popular among 
researchers requiring flexibility and ease of implementation in programming languages. 

In this study, we present ClimateDT (https://www.ibbr.cnr.it/climate-dt, accessed on 
17 January 2024), a web-based downscaling tool using a unique global climate extent that 
can be requested to deliver climate parameters from the same data for spatial consistency. 
Here, we describe the system for Europe, with an extension currently being developed for 
the United States, Canada, China, and other regions of the Globe. The seamless link be-
tween historical and future climate ensemble that researchers dealing with climate futures 
require is demonstrated, and the quality of climatological data provided by ClimateDT is 
evaluated against weather observations collected from external databases. Additionally, 
the speed of the system and its internal structure are described. 

2. Materials and Methods 
ClimateDT is an online tool with an R-based [42] computation engine that combines 

raster layers at various spatial scales and from different data sources. This structure has 
been created for both historical climate reconstruction and future scenarios at a monthly 
timescale. Here, a detailed description of its structure and workflow is given, covering all 
its features. 
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2.1. Baseline Surface: CHELSA 2.1 (1981–2010) 
When long-term climate is used as a predictor variable in modeling work, climatic 

normals are used to describe the environmental variability and avoid the impact of 
weather fluctuations (i.e., year-by-year variability) on algorithm training. A climatic nor-
mal period represents the average climate over a reference period (series), usually span-
ning 10–30 years. Several climatological time series have been used in the literature. The 
1961–1990 period is often considered a baseline in many biological and ecological studies 
[22,41] due to the large availability of climate data from the global network of stations [38]. 
The 1961–1990 climate series is also the backbone of ClimateWNA, ClimateNA [24], Cli-
mateSA [26], ClimateEU [25], ClimateAP [26] (available at https://sites.ual-
berta.ca/~ahamann/data.html, accessed on 17 January 2024) and at https://web.cli-
mateap.net, accessed on 17 January, 2024), and many other WorldClim-based studies and 
tools. However, the current climatic period (1991–2020) is rapidly diverging from the 
1961–1990 climatic series, and for this reason, other datasets have been generated by cli-
matologists. In ClimateDT, the 1 km 1981–2010 climate time series from CHELSA (v2.1) 
was selected as the baseline data [37] due to its global coverage and its acknowledged 
accuracy. The baseline data was used to seamlessly bind historical and future climates by 
calculating the deviations (i.e., anomalies) for the historic normal period and applying the 
anomalies to reconstruct the historical climate (1901-current) and future climate scenarios. 

2.2. Historical Climate: CRU-TS 
CRU-TS version 4.06 [38] is a monthly and global spatial dataset freely available from 

the Climatic Research Unit repository (http://www.cru.uea.ac.uk/data, accessed on 17 Jan-
uary 2024) which provides monthly maximum and minimum temperature as well as pre-
cipitation between 1901 and the current year. This database has been widely used for 
downscaling and data extraction [24] and is the main source for many research studies 
where monthly time series are required [43–45]. The native spatial resolution (0.5° degrees 
of latitude, approximately 50 km at the equator) is too coarse for national and regional 
studies, especially in areas of complex terrain. ClimateDT employs this dataset to generate 
higher-resolution historical climate data time series based on the anomalies concept. The 
1981–2010 normal period is calculated within CRU-TS surfaces, averaging the layers with 
monthly resolution and generating 36 new global raster layers at 50 km spatial resolution. 
Anomalies are derived from the 1981–2010 baseline period using the difference in temper-
ature and the ratio for precipitation according to method described by Moreno and 
Hasenauer [23]. The effect of elevation and terrain features on anomalies are considered 
after the downscaling process [46], and these are stored and downscaled dynamically by 
ClimateDT to 1 km using bilinear interpolation to match the baseline’s spatial resolution. 

2.3. CMIP5 and CMIP6 Future Scenarios 
A fundamental feature of a climatological portal or tool is the provision of consistent 

historical data and future scenarios, allowing users to apply ecological models and algo-
rithms that more accurately predict the likely effects of the changing climate on the envi-
ronment and ecosystems. While many datasets are available on the web, most are not in-
terchangeable. For example, WorldClim surfaces [35,36] are different and not directly 
compatible with CHELSA products [37]. Although both services can provide future sce-
narios (both CMIP5 and CMIP6), admixing the two sources can generate unknown biases 
in the models due to different interpolation methods or different baselines used to calcu-
late anomalies. 

Since researchers often need an ensemble of GCMs to investigate the variability be-
tween and within GCMs [47–49] and climate change emissions scenarios, i.e., Representa-
tive Concentration Pathways (RCPs) from CMIP5 and Shared Socio-Economic Pathways 
(SSPs) from CMIP6, both have been implemented in ClimateDT. ClimateDT provides fu-
ture scenarios under the Fifth Assessment Report [50] using the UKCP Global dataset [51], 
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a monthly, global, low-resolution (60 km approx.) dataset spanning the period from De-
cember 1899 to November 2099, and UKCP Regional (12 km) projections with a monthly 
time series from 1981 to 2080 for Europe. These datasets use cutting-edge climate science 
to provide updated observations and global (and European) climate change projections. 
In ClimateDT, this database was analyzed for the 1981–2010 climatic normal period in the 
same way as CRU-TS—using the anomalies approach. The climate change forcing (anom-
aly) was calculated from the common normal period and added to the baseline period 
data using bilinear interpolation. This procedure removes the intrinsic difference between 
the two datasets to generate a unique and robust time series between 1901 and 2098. All 
28 UKCP Global ensemble members (i.e., variations form the HAdGEM3 model) are avail-
able in ClimateDT for the two RCP extreme scenarios (2.6 and 8.5). Since CMIP6 scenarios 
were not available as a time series with the 1981–2010 baseline, only the CMIP5 data linked 
to the climatic normal using the CHELSA data were included in ClimateDT for con-
sistency. 

2.4. Scale-Free Dynamic Downscaling 
The core of ClimateDT is based on dynamic downscaling proposed by Wang et al. 

for North America [46]. This method combines the use of a plane spatial interpolation 
(usually a bilinear interpolation) and local lapse rate adjustment to refine the climate pa-
rameter for a specific spatial location (point estimate, scale-free). The adjustment is based 
on the spatial coordinate of the location requested. This approach forms the core of other 
standalone tools, such as ClimateWNA for North America, [24,52], ClimateAP for Asia 
[26], and ClimateEU for Europe [25]. 

Following the submission of a data request in the ClimateDT portal, where latitude, 
longitude, and elevation are mandatory fields, the downscaling process starts with the 
identification of the location of the 1 km grid cell stored in the remote ClimateDT machine. 
Afterward, each location is processed separately in four steps. The first computes the bi-
linear interpolation of the 36 basic climatic data (monthly minimum and maximum tem-
peratures and total precipitation) for the baseline (i.e., the normal 1981–2010 climate), 
which is performed by means of a weighted interpolation of the climatic values the system 
extracts for the nearest 4 cells of the raster (Figure 1, left). The second step extracts the 
same 36 climatic variables for each of the 8 local grid cells surrounding the location plus 
the cell where the location falls (9 in total). A set of 36 unique pairs of differences (i.e., 
climate derived for the first cell versus all the others; then the same for cell 2, excluding 
cell 1; then cell 3; and so on), afterwards ∆c values are computed. The same procedure is 
applied to elevation data (∆e) for a total of 37 sets of data created by 36 unique pairs of 
differences each. After that, 36 simple linear regressions are built (Figure 2) based on the 
above 36 pairs plus the elevation set. 

Δ𝑐𝑐 = 𝑖𝑖 + 𝑚𝑚 ⋅ Δ𝑒𝑒  

This is performed to reflect the local relationship between ∆c and ∆e for each of the 
36 climatic variables (i.e., how large the change is in degrees of temperature or millimetres 
of rain when a change in elevation occurs). The slope of the regression line m represents 
the local (i.e., dynamic) lapse rate for the raster cell where the point of interest is located. 
Both temperature and precipitation variables are adjusted using the dynamic lapse rates 
when the regression of temperature or precipitation variation in elevation for ’local’ grid 
cells of the spatial raster are statistically significant. 
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Figure 1. Example of the bilinear interpolation process (left) and the extraction of climatic and ele-
vation data from the 9 grid cells surrounding the downscaling location. The wx letters corresponds 
to the weights ClimateDT uses for bilinear interpolation and the red dot indicates the location re-
quested by the user. 

 

 
Figure 2. Example of the environmental lapse rate calculated by ClimateDT for the maximum tem-
perature of May in a random sample testing location. 
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The difference between the actual elevation of the location and the spatially interpo-
lated elevation of the point of interest is used in the equation and summed to the spatially 
interpolated value as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚 ∙ (𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) ∙ 𝑅𝑅2  

where Sint is the spatial interpolation of climatic variable, m is the local lapse rate, Eint is the 
elevation the system calculates from the 1 km Digital Elevation Model by means of bilinear 
interpolation (the same method as Sint), Euser is the elevation provided by the user in the 
submitted file, and R2 is the adjusted R-squared of the regression calculated using ∆c and 
∆e values. Since elevation is required for ClimateDT, this information should be carefully 
checked by the user. Input data are used to calculate the difference (delta) between the 
reference elevation of the system (i.e., WorldClim DEM in ClimateDT) and the ‘real’ site 
elevation provided by the user. This delta is used for the dynamic lapse rate adjustment 
to be applied to the climatic value interpolated with the ‘flat’ bilinear interpolation. 

It is worth mentioning that the dynamic downscaling procedure is applied to the 
1981–2010 baseline period for the three main climatic parameters: monthly minimum tem-
perature, monthly maximum temperature, and monthly precipitation. After that proce-
dure is completed for all the locations, anomalies are spatially downscaled and summed 
(or subtracted/multiplied according to the sign of the numbers and of the target climatic 
parameters) to the dynamically downscaled baseline climate using the same bilinear in-
terpolation process on a 50 km grid. Finally, the historic (1901-now) and the future (now-
2098 for UKCP Global, climatic normals for CMIP6 GCMs) climate is ready. 

2.5. Climatic Indices Calculation 
Following the dynamic lapse rate adjustment on monthly variables, the full set of 

biologically relevant climate variables are either calculated (seasonal and annual summar-
ies) or estimated (e.g., growing degree days and frost-free period) using a correlative ap-
proach with values derived from daily weather station data [24–26,52]. The main outputs 
of ClimateDT are three monthly variables (minimum temperature, maximum tempera-
ture, and precipitation) calculated for each year requested by the user. Additional climatic 
variables and indices (annual or monthly) over the whole time period can be calculated as 
well. Some of these parameters, such as the 19 bioclimatic parameters from WorldClim, 
are calculated using the “dismo” package in R [53], while SPEI and SPI indices are derived 
using the “SPEI” package [54]. The dismo package, an acronym for “species DIStribution 
MOdeling”, is an R package which includes several algorithms for modeling, such as DO-
MAIN, Mahalanobis distance, and MaxEnt, as well as functions to compute climatic indi-
ces. The package includes a set of functions for computing potential evapotranspiration 
and several widely used drought indices, including the Standardized Precipitation–Evap-
otranspiration Index (SPEI), which is employed in ClimateDT. Other drought and frost 
indices available in the literature and widely used in ClimateNA, ClimateAP, and Cli-
mateEU systems can be calculated using simple equations, including Growing Degree 
Days above 0 °C, 5 °C, and 18 °C (GDD0, GDD5, and GDD18, respectively). The coeffi-
cients are derived by fitting a set of linear and nonlinear functions on observed daily me-
teorological station data from the European Climate Assessment and Dataset (ECAD, 
https://www.ecad.eu/, accessed on 17 January 2024) to calculate the derived climate vari-
ables and then building the relationship (or function) between the derived variables and 
the observed data. The resulting parameters allow ClimateDT to adjust the climate indices 
from downscaled monthly climate data and offer more accurate estimations of future cli-
mate. 
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2.6. Quality Assessment of ClimateDT Estimates 
To validate ClimateDT parameter estimates, a quality assessment was carried out by 

comparing the observations obtained from various weather stations worldwide with cli-
mate variables generated by the downscaling tool. However, it is worth noting that all or 
most of the records included in the validation step may have been used for the develop-
ment of interpolated climate grids CHELSA and CRU-TS, and this might represent a ma-
jor though unsolvable limitation to the adopted approach. Therefore, our quality assess-
ment could not use an independent validation test but rather an evaluation of how well 
ClimateDT reflects the real data and how the dynamic downscaling process could im-
prove the reliability and quality of the climatic variables. We evaluated the benefits of the 
environmental lapse rate adjustments and the effectiveness of delta downscaling ap-
proach [24,25]. 

Prior to the quality assessment, we combined and filtered the datasets from the 
weather stations, retaining only those having climate time series exceeding 30 years of 
collected data and less than 10% of missing values. We also removed nearby duplicate 
stations by retaining only the highest-quality station records. Overall, approximately 
12,000 weather stations for precipitation and 4000 for temperature were retrieved from the 
ECAD website. Only Europe and Russia were adequately covered (Figure 3) in the North-
ern Hemisphere. 

 
Figure 3. Spatial distribution of the validation dataset retrieved from the ECAD website. Red points 
indicate the geographic location of ca. 12,000 meteorological stations selected for testing the Climat-
eDT estimates. 

Nonetheless, this dataset covers a wide range of ecological conditions and therefore 
was considered suitable to test the performance of ClimateDT both across altitudinal 
ranges (for the sea level up to 3500 m) and different climatic zones (from the Mediterra-
nean Basin to the Boreal and Artic biogeographic zones). For these stations, we evaluated 
the performance of ClimateDT to describe the historical estimates (1901-current) based on 
the variance explained in original climate station data. The goodness-of-fit of a simple 
linear model between predicted and an observed climate value was assessed using its R2 
and the Mean Absolute Error (MAE), i.e., the mean absolute difference (in °C for temper-
ature and in mm for precipitation) between ClimateDT estimates and observed station 



Environments 2024, 11, 82 8 of 19 
 

 

data. This procedure is similar to published studies on ClimateEU and ClimateNA [24,25] 
with an additional analysis grouping climate station by country and showing the MAEs 
and R2 values for some locations in key geographic zones and climates (e.g., Mediterra-
nean climate and continental climate). 

3. Results 
Climatic time series in the ECAD dataset were available from a larger number of 

weather stations since 1901, with a huge increment in the available data around the 1980s 
(Figure 4), especially for the precipitation data, which, however, had a higher proportion 
of missing data. Nonetheless, sufficient records with few missing data over the period 
1901–1950 were also available for testing the performance of ClimateDT. 

 
Figure 4. Number of available records from weather stations for each year and for the four tested 
parameters. 

While the number of precipitation data stations registered a maximum value around 
1990, with 12,357 records, but with a subsequent decrease (around 10 k in 2015), the tem-
perature data steadily increased over the whole period. For the last 2 years of testing (2017 
and 2018), the available records slightly decreased, probably due to missing data and a 
different release from ECAD. 

The performance of ClimateDT was assessed using four main climatic variables, 
which represent the raw data used in the calculation of the climatological indices and in-
clude the maximum monthly temperature (TX), the average monthly temperature (TAVE), 
the minimum monthly temperature (TN), and the total monthly precipitation (RR). Cli-
mateDT estimates for the four climatic parameters were tested against the values from 
meteorological stations at the same location both over the 1981–2010 baseline period and 
the whole 1901–2022 period. Regarding the baseline period (Table 1), the MAE for tem-
perature ranged between 1.61 °C for the minimum temperature of May and 0.49 °C for 
the average temperature of September. Overall, the average MAE for monthly values was 
1.24 °C for TX, 0.67 °C for TAVE, and 1.19 °C for TN. Regarding monthly total precipita-
tion, MAE values were always lower than 12 mm, with an average of 9.46 mm and a max-
imum value of 11.68 mm in December. A shortcoming of MAE as an indicator is that it is 
impossible to detect whether ClimateDT’s predictions are higher or lower than the ob-
served values, but the analysis of raw errors indicates that RR and TN were slightly 
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overestimated, while TX and TAVE are underestimated. As for the proportion of variance 
explained, average R2 values were around 0.961, 0.968, and 0.918 for TX, TAVE, and TN, 
respectively. A slightly lower amount of explained variance was found for RR, with an 
average value of 0.850. The maximum value was detected in August (0.882), and the lowest 
was detected in April (0.820). 

Table 1. Mean Absolute Error (MAE) and the proportion of explained variance (R2) for the four raw 
climatological variables obtained by comparing the observed value from the ECAD dataset with the 
predicted ClimateDT estimates at the same location over the 1981–2010 baseline period. 

 Maximum Temperature 
(TX) 

Average Temperature  
(TAVE) 

Minimum Temperature 
(TN) 

Precipitation 
(RR) 

Month R2 MAE (°C) R2 MAE (°C) R2 MAE (°C) R2 MAE (mm) 
1 0.966 1.01 0.975 0.85 0.947 1.34 0.840 11.28 
2 0.969 1.04 0.977 0.76 0.948 1.32 0.836 8.52 
3 0.968 1.17 0.976 0.69 0.944 1.18 0.827 9.02 
4 0.961 1.41 0.969 0.74 0.928 1.00 0.820 6.74 
5 0.948 1.61 0.960 0.73 0.906 0.97 0.860 7.33 
6 0.941 1.58 0.954 0.64 0.881 1.01 0.866 8.25 
7 0.941 1.59 0.950 0.58 0.864 1.14 0.880 9.06 
8 0.956 1.44 0.961 0.52 0.877 1.30 0.882 9.08 
9 0.969 1.20 0.969 0.49 0.902 1.29 0.871 9.51 

10 0.972 0.97 0.974 0.55 0.932 1.17 0.869 11.61 
11 0.970 0.88 0.975 0.70 0.944 1.19 0.821 11.48 
12 0.967 0.94 0.974 0.84 0.944 1.34 0.824 11.68 

Average 0.961 1.24 0.968 0.67 0.918 1.19 0.850 9.46 
St. dev 0.011 0.26 0.009 0.11 0.030 0.13 0.023 1.63 

When the full temporal coverage (1901–2022) was considered (Table 2), the MAE for 
temperature was consistent to some extent with the previous results. The estimation error 
ranged between 1.59 °C for the maximum temperature of July and 0.60 °C for the average 
temperature of September. The average MAE for monthly values was 1.26, 0.80, and 1.32 
°C for TX, TAVE, and TN, respectively. For precipitation, MAE values were higher than 
those calculated over the baseline period (average MAE = 19 mm). In agreement with the 
previous analysis, a slight overestimation was found for RR and TN over the normal 1981–
2020 period, while values for TX and TAVE were slightly underestimated. R2 values 
showed average values of 0.960, 0.966, and 0.919 for TX, TAVE, and TN, respectively, 
which substantially corresponded to the results obtained from the comparison of pre-
dicted and observed values over the baseline period. Again, a lower amount of explained 
variance was found for RR, with an average value of 0.675; the highest value was in Octo-
ber (0.718), and the lowest was in July (0.621). 

In general, the precision of climate predictions from ClimateDT increases with the 
length of time considered, e.g., TAVE annual estimates from Climate DT were more pre-
cise than seasonal variable estimates, which in turn were more precise than monthly var-
iable estimates. Also, predictions for precipitation-related variables were generally less 
precise than those for temperature, likely due to the data gaps in the ECAD dataset. An 
overlap between explained variance and MAE is graphically shown in Figure 5 for some 
key months. 
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Table 2. Mean Absolute Error (MAE) and the proportion of explained variance (R2) for the four raw 
climatological variables obtained by comparing the observed value from the ECAD dataset with the 
predicted ClimateDT estimates at the same location over the full period available (1901–2022). 

 Maximum Temperature 
(TX) 

Average Temperature 
(TAVE) 

Minimum Temperature 
(TN) 

Precipitation 
(RR) 

Month R2 MAE (°C) R2 MAE (°C) R2 MAE (°C) R2 MAE (mm) 
1 0.969 1.09 0.968 1.02 0.950 1.55 0.705 18.45 
2 0.968 1.13 0.971 0.95 0.950 1.54 0.693 15.02 
3 0.968 1.19 0.975 0.83 0.945 1.37 0.673 15.29 
4 0.960 1.39 0.969 0.84 0.930 1.14 0.655 14.73 
5 0.945 1.57 0.961 0.83 0.910 1.08 0.636 17.40 
6 0.937 1.57 0.952 0.76 0.881 1.13 0.637 20.07 
7 0.939 1.59 0.952 0.71 0.861 1.25 0.621 22.88 
8 0.954 1.42 0.960 0.64 0.874 1.38 0.650 21.96 
9 0.968 1.20 0.970 0.60 0.901 1.37 0.696 20.26 

10 0.973 1.01 0.974 0.65 0.933 1.25 0.718 19.86 
11 0.972 0.94 0.970 0.81 0.948 1.29 0.706 19.51 
12 0.969 1.03 0.967 0.98 0.949 1.46 0.712 19.18 

Average 0.960 1.26 0.966 0.80 0.919 1.32 0.675 18.72 
St. dev 0.013 0.23 0.007 0.13 0.032 0.15 0.033 2.54 

The assessment of MAEs and R2 values at the regional scale showed that the perfor-
mance of ClimateDT was almost stable in all the climates and at any geographic scale 
(Table 3). 

Table 3. Mean Absolute Error (MAE) and the proportion of explained variance (R2) for the mean 
annual temperature and total annual precipitation obtained by comparing the observed value from 
the ECAD dataset with the predicted ClimateDT estimates at the same location over the full period 
available (1901–2022) and grouping the results by country. 

  
Average Temperature 

(TAVE) 
Precipitation 

(RR) 
Geographic Zone Selected Countries R2 MAE (°C) R2 MAE (mm) 

Arctic 
Norway, Sweden, Finland, Denmark, Rus-

sia 0.895 0.79 0.698 23.57 

Continental Germany, Romania, Bulgaria, Russia 0.965 0.70 0.639 21.32 
Oceanic Portugal, France, UK, Ireland 0.927 0.60 0.601 22.55 

Mediterranean  Spain, Italy, Greece, Turkey 0.901 0.97 0.522 27.17 
North Africa Morocco, Algeria, Tunisia, Libia, Egypt 0.907 0.82 0.602 19.23 

Others Others 0.911 0.83 0.632 20.01 
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Figure 5. Quality assessment of ClimateDT estimates for the four main climatic parameters (maxi-
mum monthly temperature, TX; average monthly temperature, TAVE; minimum monthly tempera-
ture, TN; monthly rainfalls, RR) on four key months. The lines represent the proportion of explained 
variance (R2) on monthly data and across the whole observed period (1901–2022), while the straight 
lines represent the same value in the normal 1991–2020 period. MAE values are also reported at the 
bottom of each diagram. 

3.1. Effectiveness of the Dynamic Lapse-Rate Adjustment 
The main feature of ClimateDT is the dynamic downscaling approach to the gridded 

baseline data to generate scale-free climate predictions at a global level. The lapse-rate 
adjustments are shown to be effective by comparing the MAE observed with and without 
adjustment in mountainous areas and in cases of complex topography. As expected, 
MAEs of climate estimates were higher for climate values directly obtained for mountain-
ous areas, with lapse rate adjustments for temperature-related variables ranging between 
−0.40 and −0.67 °C every 100 m of elevational shift. This adjustment substantially 
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improved the quality of climate estimates in mountainous regions, resulting in an average 
decrease in MAE between −0.20 and −0.50 °C, which represents an improvement of up to 
65%. The effectiveness of the adjustment was more noticeable for TX and TAVE, while 
improvements were relatively minor for TN. 

The adjustment for precipitation-related variables was observed to be more difficult 
because of the weaker relationship between rainfall and elevation. Despite that, and in 
contrast to climatic software such as ClimateEU (v4.63) and ClimateNA (v6.40a) , the lapse 
rate adjustment for precipitation was filtered and applied only in the case of significant 
fitting of the regression of climate parameters to elevation. This results in a fairly low but 
still meaningful improvement in ClimateDT estimates, with the lapse rate adjustment hav-
ing an impact of about −5% of MAE on precipitation estimates. 

The second metric used for assessing the performance of ClimateDT, i.e., the propor-
tion of variance explained (R2), also supports the effectiveness of the dynamic lapse rate 
adjustment to obtain more accurate and reliable values of the climatic variables considered 
in mountainous terrains. Indeed, a substantial difference in the accuracy of monthly pre-
cipitation and temperature estimates was detected, with R2 increased by +20% in some 
cases. Overall, non-adjusted predictions showed average R2 values of about 0.85, whereas 
the adjustment improved the R2 up to 0.95–0.97. Finally, the effectiveness of the lapse rate 
adjustment was more important for TAVE and TX than for TN and RR during the summer 
months. 

3.2. Requests Counter and Processing Rate 
Since its release in November 2022, a total of 1321 submissions (updated February 

2024) were processed and downscaled, with an overall number of locations successfully 
processed equal to 165,869 (130.6 ± 195.4 locations per request, on average). Currently, the 
ClimateDT tool employs a parallelization of the R code on 3 CPUs with a Xeon processor 
on a shared server. The performance of this hardware configuration is shown in Figure 6. 

 
Figure 6. Performance of ClimateDT; the number of locations (1321 in total) requested by the users 
since the first release (November 2022) is reported on the x-axis, while the elapsed time (in minutes) 
to process the request is reported on the y-axis. 

y = 1.533 + 0.014∙x 
R2= 0.962 
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Less than 2 min was necessary to calculate the full set of climatic parameters at 45 
locations and around 9 min was necessary for the maximum number of localities that can 
be requested (512 records). We acknowledge a relatively high fluctuation in terms of pro-
cessing rate, and this was due to other simultaneous processes running on the CPUs (e.g., 
system updates and other tasks internal to the Operating System). More than 65% of re-
quests were characterized by a low number of records (less than 50), and only 3% were 
requests for large coverage, which has been limited for internal needs to 512 locations per 
submission. Almost all of the submissions requested full temporal coverage (1901–2098), 
and most selected the standard GCM (variant01) and rcp8.5. Several users have repeated 
their submissions for the same locations to obtain local climatic estimates under different 
future scenarios. In this case, a total of 5 GCMs was the most frequent request by the same 
user. Most of the requests were submitted from all the European countries, but more re-
cently, they have also been from Asian countries, North America and Africa, representing 
altogether 18% of the total submissions. 

4. Discussion 
ClimateDT can be used for downscaling various raw climatic parameters and indices 

between 1901 and 2098. This tool incorporates three different sources of climatic data: a 
high-resolution grid as a baseline for the normal period of 1981–2010, a dataset of monthly 
anomalies for the historical climate derived from CRU-TS, and future scenarios from 
UKCP Global surfaces. Input data are spatial coordinates and elevation used in the scale-
free statistical downscaling procedure. The system has global coverage, and the speed of 
analysis is currently comparable to other available resources, such as ClimateEU, Clima-
teNA, and ClimateAP [24–26,41]. Small differences in MAE values were found when com-
pared against ClimateEU, likely due to the different climate time series used for evalua-
tion or validation. A large- number of weather stations were used for ClimateDT, and a 
large spatial coverage was also provided. The evaluation process demonstrated a weak 
effect of the dynamic lapse rate adjustment for the minimum temperature. This was also 
found in other case studies [24,25,41], likely due to the occurrence of temperature inver-
sions that make it difficult to derive reliable lapse rates. For ClimateDT, this effect was 
limited and probably fixed in most cases due to the use of CHELSA surfaces as the base-
line, which is known to capture such climatological effects in the spatial pattern resulting 
from the method climatologists have used to generate CHELSA layers [37]. 

After decades of research on the possible climate change impacts on plants and forest 
resources associated with a changing climate [55–59], many of the geographic regions in 
the world have been studied. Published research includes efforts on various aspects such 
as retrospective analysis [44,60,61], statistical models [62,63], and various spatial modeling 
techniques across different species [64–66]. In general, reliable climatic surfaces are im-
portant for prediction, and databases to train models have been stressed as an important 
added value to climate-related studies [48,67,68]. An important strength of ClimateDT is 
the use of a unique surface at the global level that provides consistent results across the 
whole globe. The admixing of different climatic data sources, such as PRISM surfaces in 
the case of ClimateNA for North America [34], WorldClim surfaces for ClimateEU in Eu-
rope [35,69], and other datasets around the globe [26,41,70], may introduce biases in the 
calculation of statistical models and could affect predictions [48,71]. In this context, the 
use of a unique baseline deployed by ClimateDT represents a novel and standardized ap-
proach in that both historical climate and future scenarios are placed as anomalies. In ad-
dition, the realization of a web portal instead of an app or software to be installed on client 
operating systems reduces the system requirements on the end-user side. Further, updates 
in the ClimateDT tool are applied on the server side automatically. For example, every 
time a new surface is released by climatologists (e.g., new CRU-TS layers), it is easily in-
corporated into the system and made immediately available to users. Finally, ClimateDT 
relies on a quality check against the Google Map™ APIs for spatial coordinates, elevation, 
and data consistency before submission. This also improves the usability of the system 
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and ensures a proficient and efficient tool with an R code engine at the core. This results 
in a quick and user-friendly system available for users worldwide. 

4.1. Usage of ClimateDT and Potential Benefits of Its Estimates 
The validation process stresses the importance of accurate geographic input data for 

downscaling. The availability of the large number of records included in the ECAD al-
lowed us to test the downscaling system over a large range of different environments. 
Several attempts were made to compensate for the missing values in the dataset, to com-
plete the missing information (mainly elevation data), and to check the spatial coordi-
nates. On average, most records were provided with minutes of latitude, and elevation 
was often rounded to 50 meters. This creates spatial uncertainty in the location of weather 
stations of about 2 km, which can drastically affect the downscaling process in mountain-
ous areas. ClimateDT can adjust input data with user approval by means of external da-
tasets (e.g., extracting the elevation from a high-resolution DEM) since the need for precise 
coordinates is mandatory in the process. On average, ClimateDT calculates a lapse rate 
range between −0.4 °C/100 m and −0.6 °C/100 m of elevation, which is fully consistent with 
the MAE obtained during the validation process. The reliability of spatial coordinates has 
been acknowledged as a key component in the ClimateDT functioning, and users are 
highly encouraged to check the input data very carefully to obtain unbiased values. The 
need for reliable coordinates has been helped by using an overlay with Google Maps™ to 
check the input data before submission. 

The use of tailored downscaled data and climatological indices (more than 80 in Cli-
mateDT) can allow researchers to develop an ecological modeling procedure faster and 
easier. One of the main outputs of ecological models such as Species Distribution Models 
[72], Joint Species Distribution Models [73,74], reaction norms [28,30], response functions 
[71,75–77], and transfer models [27,78] is the prediction of the possible changes in the spa-
tial distribution and/or the performance of living organisms under changing climatic re-
gimes. An additional feature is to detect provenances that may show better adaptation to 
the future climate predicted in a specific area [79–81]. Such models may be used as valid 
tools to support assisted gene-flow and assisted-migration strategies, but their perfor-
mance is highly dependent on the quality of the climatic information used to drive the 
model and to make predictions [81,82]. The higher the uncertainty in the modeling steps, 
the more uncertain and biased the predictions could be. In this case, the probability of 
failure is proportional to the discrepancy between the climate forecasted by the models 
and the actual climate occurring in the future at a specific location. The main modeling 
issues associated with future projections could be represented by errors or bias occurring 
in the spatial interpolation of climatic variables; the use of inappropriate equations to cal-
culate daily derived indices from monthly data, e.g., the Number of Frost-Free Days 
(NFFD), Growing Degree Days (GDD); and other biologically relevant indices. Therefore, 
according to the literature, an uncertainty assessment is fundamental in any modeling 
step [27,83–86]. 

4.2. Raster Surfaces Availability and Consistency with CHELSA Layers 
ClimateDT has been developed to generate scale-free climatological variables for 

multiple locations around the world, though their number is currently limited to 512 per 
submission. The pre-check of the requested locations before submission is based on 
Google Maps™ APIs and prevents the downscaling system from failure and/or unex-
pected bugs due to misleading coordinates or elevation data. However, applying the 
above limit allows the submission of only 10% of the potential usage of the system. The 
reason for maintaining a limit to submitted locations is to allow multiple submissions in 
parallel and to deliver faster results. Our evidence shows that the overlocked version of 
ClimateDT can process up to 10,000 locations per submission, which leaves large room for 
future improvement to the system. However, increasing the current site limit per submis-
sion would commit the downscaling tool to processing a single request for several hours, 
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with the possible consequence of long queues. For this reason, submissions of a larger 
number of records/localities are possible upon request but will be handled separately 
through the application. Indeed, future hardware improvements (number of cores, solid 
state storage, etc.) are expected to speed up the downscaling process, allowing for a larger 
number of localities per submission and reduced processing time. 

While point estimates are an excellent source used to derive the climate of origin of 
provenances tested in common garden experiments [71,87] or to derive the fundamental 
niche of forest tree species based on occurrence data [88,89], spatial data surfaces are nec-
essary to make spatial predictions [90,91]. In this context, it is worth mentioning that Cli-
mateDT estimates are fully compatible with any global layer available in the CHELSA 
repository, where the 1981–2010 baseline is available at a 1 km spatial resolution, as well 
as future scenarios under CMIP6. Users can therefore run the models on the climate ob-
tained from ClimateDT (point estimates) and make predictions on the CHELSA layers. 
Finally, new downscaled raster surfaces with higher spatial resolution for specific areas 
may be released on the ClimateDT portal. Several case studies in Italy have produced 
maps at a 250 m resolution [17,28], including the most recent normal 1991–2020 climate 
and several future scenarios. 

5. Conclusions 
ClimateDT is an open-source web tool that is continuously being developed. Users 

can submit the geographic coordinates of their study locations through the web interface 
without any registration by simply providing a valid email address. The system processes 
the locations and returns by e-mail- a link where the downscaled dataset can be down-
loaded, along with a short report summarizing the downscaling results. New indices, in-
terpolation methods, baselines, historical and future datasets, and tools are planned to be 
included in the system in future releases. The possibility of an additional section of the 
ClimateDT portal to request raster surfaces is also under development, as well as the im-
plementation of additional features using new packages provided by other research-
ers/developers in R language. Any additional feedback from users is welcome, and new 
ideas and needs can be sent to the staff to implement new indices currently missing in the 
ClimateDT output files. 

Author Contributions: Conceptualization, M.M. and D.R.; methodology, M.M, G.B. and D.R.; soft-
ware, M.M., G.B., P.I. and D.R.; formal analysis, P.I.; investigation, G.B. and D.R.; resources, G.B. 
and D.R.; data curation, M.M. and P.I.; writing—original draft preparation, M.M. and D.R.; writ-
ing—review and editing, M.M., G.B., P.I. and D.R.; project administration, D.R.; funding acquisition, 
M.M. and D.R. All authors have read and agreed to the published version of the manuscript. 

Funding: The ClimateDT conceptualization and realization was funded by the EU in the framework 
of the Horizon 2020 B4EST project “Adaptive BREEDING for productive, sustainable and resilient 
FORESTs under climate change”, UE Grant Agreement 773383. M.M., G.B. and P.I. were also par-
tially funded by the project IR0000032—ITINERIS, Italian Integrated Environmental Research Infra-
structures System—CUP B53C22002150006 (D.D. n. 130/2022) Funded by the EU—Next Generation 
EU—Mission 4 “Education and Research”—Component 2: “From research to business”—Invest-
ment 3.1: “Fund for the realisation of an integrated system of research and innovation infrastruc-
tures” and by the PRIN2022—CONIFIR project “GenetiC Origin and structural setting of douglas-
fir plaNted forests in Italy For their management, conservatIon and valoRization”, project number 
DBA.PN011.009, CUP B53D23015090006. 

Data Availability Statement: The original contributions presented in the study are included in the 
article, further inquiries can be directed to the corresponding author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

  



Environments 2024, 11, 82 16 of 19 
 

 

References 
1. Bärring, L.; Berlin, M.; Andersson Gull, B. Tailored Climate Indices for Climate-Proofing Operational Forestry Applications in 

Sweden and Finland. Int. J. Climatol. 2017, 37, 123–142. https://doi.org/10.1002/joc.4691. 
2. Perdinan, P.; Winkler, J.A. Changing Human Landscapes under a Changing Climate: Considerations for Climate Assessments. 

Environ. Manag. 2014, 53, 42–54. https://doi.org/10.1007/s00267-013-0125-6. 
3. Fady, B.; Esposito, E.; Abulaila, K.; Aleksic, J.M.; Alia, R.; Alizoti, P.; Apostol, E.-N.; Aravanopoulos, P.; Ballian, D.; Kharrat, 

M.B.D.; et al. Forest Genetics Research in the Mediterranean Basin: Bibliometric Analysis, Knowledge Gaps, and Perspectives. 
Curr. For. Rep. 2022, 8, 277–298. https://doi.org/10.1007/s40725-022-00169-8. 

4. Franklin, J.; Davis, F.W.; Ikegami, M.; Syphard, A.D.; Flint, L.E.; Flint, A.L.; Hannah, L. Modeling Plant Species Distributions 
under Future Climates: How Fine Scale Do Climate Projections Need to Be? Glob. Chang. Biol. 2013, 19, 473–483. 
https://doi.org/10.1111/gcb.12051. 

5. Sinclair, S.J.; White, M.D.; Newell, G.R. How Useful Are Species Distribution Models for Managing Biodiversity under Future 
Climates? Ecol. Soc. 2010, 15, 8. 

6. Araújo, M.; Pearson, R.; Rahbek, C. Equilibrium of Species’ Distribution with Climate. Ecography 2005, 28, 693–695. 
7. Hamann, A.; Roberts, D.R.; Barber, Q.E.; Carroll, C.; Nielsen, S.E. Velocity of Climate Change Algorithms for Guiding Conser-

vation and Management. Glob. Chang. Biol. 2015, 21, 997–1004. https://doi.org/10.1111/gcb.12736. 
8. Carroll, C.; Roberts, D.R.; Michalak, J.L.; Lawler, J.J.; Nielsen, S.E.; Stralberg, D.; Hamann, A.; Mcrae, B.H.; Wang, T. Scale-

Dependent Complementarity of Climatic Velocity and Environmental Diversity for Identifying Priority Areas for Conservation 
under Climate Change. Glob. Chang. Biol. 2017, 23, 4508–4520. https://doi.org/10.1111/gcb.13679. 

9. Picard, N.; Marchi, M.; Serra-Varela, M.J.; Westergren, M.; Cavers, S.; Notivol, E.; Piotti, A.; Alizoti, P.; Bozzano, M.; González-
Martínez, S.C.; et al. Marginality Indices for Biodiversity Conservation in Forest Trees. Ecol. Indic. 2022, 143, 109367. 
https://doi.org/10.1016/j.ecolind.2022.109367. 

10. Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping Ecosystem Services: The Supply and Demand of Flood Regulation Services in 
Europe. Ecol. Indic. 2014, 38, 198–211. https://doi.org/10.1016/j.ecolind.2013.11.010. 

11. Hamann, A.; Wang, T. Potential Effects of Climate Change on Ecosystem. Ecology 2006, 87, 2773–2786. 
12. Fleischer, P.; Pichler, V.; Flaischer, P.; Holko, L.; Mális, F.; Gömöryová, E.; Cudlín, P.; Holeksa, J.; Michalová, Z.; Homolová, Z.; 

et al. Forest Ecosystem Services Affected by Natural Disturbances, Climate and Land-Use Changes in the Tatra Mountains. Clim. 
Res. 2017, 73, 57–71. https://doi.org/10.3354/cr01461. 

13. Ummenhofer, C.C.; Meehl, G.A. Extreme Weather and Climate Events with Ecological Relevance—A Review. Philos. Trans. R. 
Soc. B: Biol. Sci. 2017, 372, 20160135. https://doi.org/10.1098/rstb.2016.0135. 

14. Barros, C.; Guéguen, M.; Douzet, R.; Carboni, M.; Boulangeat, I.; Zimmermann, N.E.; Munkemuller, T.; Thuiller, W. Extreme 
Climate Events Counteract the Effects of Climate and Land-Use Changes in Alpine Tree Lines. J. Appl. Ecol. 2017, 54, 39–50. 
https://doi.org/10.1111/1365-2664.12742. 

15. Paniccia, C.; Di Febbraro, M.; Frate, L.; Sallustio, L.; Santopuoli, G.; Altea, T.; Posillico, M.; Marchetti, M.; Loy, A. Effect of 
Imperfect Detection on the Estimation of Niche Overlap between Two Forest Dormice. IForest 2018, 11, 482–490. 
https://doi.org/10.3832/ifor2738-011. 

16. Thuiller, W.; Lavorel, S.; Sykes, M.T.; Araújo, M.B. Using Niche-Based Modelling to Assess the Impact of Climate Change on 
Tree Functional Diversity in Europe. Divers. Distrib. 2006, 12, 49–60. https://doi.org/10.1111/j.1366-9516.2006.00216.x. 

17. Corona, P.; Bergante, S.; Marchi, M.; Barbetti, R. Quantifying the Potential of Hybrid Poplar Plantation Expansion: An Applica-
tion of Land Suitability Using an Expert-Based Fuzzy Logic Approach. New For. 2024. https://doi.org/10.1007/s11056-023-10026-
6. 

18. Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical Downscaling and Dynamical Downscaling of Regional Climate 
in China: Present Climate Evaluations and Future Climate Projections. J. Geophys. Res. Atmos. 2016, 121, 2110–2129. 
https://doi.org/10.1038/175238c0. 

19. Flint, L.E.; Flint, A.L. Downscaling Future Climate Scenarios to Fine Scales for Hydrologic and Ecological Modeling and Anal-
ysis. Ecol. Process. 2012, 1, 2. https://doi.org/10.1186/2192-1709-1-2. 

20. Moriondo, M.; Bindi, M. Comparison of Temperatures Simulated by GCMs, RCMs and Statistical Downscaling: Potential Ap-
plication in Studies of Future Crop Development. Clim. Res. 2006, 30, 149–160. https://doi.org/10.3354/cr030149. 

21. De Cáceres, M.; Martin-StPaul, N.; Turco, M.; Cabon, A.; Granda, V. Estimating Daily Meteorological Data and Downscaling 
Climate Models over Landscapes. Environ. Model. Softw. 2018, 108, 186–196. https://doi.org/10.1016/j.envsoft.2018.08.003. 

22. Liu, S.; Liang, X.; Gao, W.; Stohlgren, T.J. Regional Climate Model Downscaling May Improve the Prediction of Alien Plant 
Species Distributions. Front. Earth Sci. 2014, 8, 457–471. https://doi.org/10.1007/s11707-014-0457-4. 

23. Moreno, A.; Hasenauer, H. Spatial Downscaling of European Climate Data. Int. J. Climatol. 2016, 36, 1444–1458. 
https://doi.org/10.1002/joc.4436. 

24. Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical 
and Future Periods for North America. PLoS ONE 2016, 11, e0156720. https://doi.org/10.1371/journal.pone.0156720. 

25. Marchi, M.; Castellanos-acuña, D.; Hamann, A.; Wang, T.; Ray, D.; Menzel, A. ClimateEU, Scale-Free Climate Normals, Histor-
ical Time Series, and Future Projections for Europe. Sci. Data 2020, 7, 428. https://doi.org/10.1038/s41597-020-00763-0. 

26. Wang, T.; Wang, G.; Innes, J.L.; Seely, B.; Chen, B. ClimateAP: An Application for Dynamic Local Downscaling of Historical and 
Future Climate Data in Asia Pacific. Front. Agric. Sci. Eng. 2017, 4, 448–458. https://doi.org/10.15302/J-FASE-2017172. 



Environments 2024, 11, 82 17 of 19 
 

 

27. Hallingbäck, H.R.; Burton, V.; Vizcaíno-palomar, N.; Trotter, F.; Liziniewicz, M.; Marchi, M.; Berlin, M.; Ray, D.; Benito-Garzón, 
M. Managing Uncertainty in Scots Pine Range-Wide Adaptation under Climate Change. Front. Ecol. Evol. 2021, 9, 724051. 
https://doi.org/10.3389/fevo.2021.724051. 

28. Marchi, M.; Bergante, S.; Ray, D.; Barbetti, R.; Facciotto, G.; Chiarabaglio, P.M.; Hynynen, J.; Nervo, G. Universal Reaction 
Norms for the Sustainable Cultivation of Hybrid Poplar Clones under Climate Change in Italy. IForest 2022, 15, 47–55. 
https://doi.org/10.3832/ifor2380-010. 

29. Booth, T.H. Assessing Species Climatic Requirements beyond the Realized Niche: Some Lessons Mainly from Tree Species Dis-
tribution Modelling. Clim. Chang. 2017, 145, 259–271. https://doi.org/10.1007/s10584-017-2107-9. 

30. Benito Garzón, M. Phenotypic Integration Approaches Predict a Decrease of Reproduction Rates of Caribbean Pine Populations 
in Dry Tropical Areas. Ann. For. Sci. 2021, 78, 69. https://doi.org/10.1007/s13595-021-01076-x. 

31. Hartkamp, A.D.; De Beurs, K.; Stein, A.; White, J.W. Interpolation Techniques for Climate Variables Interpolation. Soil Sci. 1999, 
26. 

32. Sluiter, R. Interpolation Methods for Climate Data: Literature Review; KNMI Intern Rapport; Royal Netherlands Meteorological 
Institute: De Bilt, The Netherlands, 2009. 

33. Hofstra, N.; Haylock, M.; New, M.; Jones, P.; Frei, C. Comparison of Six Methods for the Interpolation of Daily, European 
Climate Data. J. Geophys. Res. Atmos. 2008, 113, 1–19. https://doi.org/10.1029/2008JD010100. 

34. Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically Sensitive 
Mapping of Climatological Temperature and Precipitation across the Conterminous United States. Int. J. Climatol. 2008, 28, 2031–
2064. https://doi.org/10.1002/joc.1688. 

35. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 
2017, 37, 4302–4315. https://doi.org/10.1002/joc.5086. 

36. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global 
Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. https://doi.org/10.1002/joc.1276. 

37. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. 
Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. 
https://doi.org/10.1038/sdata.2017.122. 

38. Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate 
Dataset. Sci. Data 2020, 7, 109. https://doi.org/10.1038/s41597-020-0453-3. 

39. Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Van Vuuren, D.P.; Van Den Berg, M.; Feng, L.; Klein, 
D.; et al. Global Emissions Pathways under Different Socioeconomic Scenarios for Use in CMIP6: A Dataset of Harmonized 
Emissions Trajectories through the End of the Century. Geosci. Model. Dev. 2019, 12, 1443–1475. https://doi.org/10.5194/gmd-12-
1443-2019. 

40. Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections 
in the CMIP6 Forcing Scenarios. Earth’s Future 2020, 8, e2019EF001461. https://doi.org/10.1029/2019EF001461. 

41. Lin, H.Y.; Hu, J.M.; Chen, T.Y.; Hsieh, C.F.; Wang, G.; Wang, T. A Dynamic Downscaling Approach to Generate Scale-Free 
Regional Climate Data in Taiwan. Taiwania 2018, 63, 251–266. https://doi.org/10.6165/tai.2018.63.251. 

42. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: 
Vienna, Austria, 2023. 

43. Ray, D.; Petr, M.; Mullett, M.; Bathgate, S.; Marchi, M.; Beauchamp, K. A Simulation-Based Approach to Assess Forest Policy 
Options under Biotic and Abiotic Climate Change Impacts: A Case Study on Scotland’s National Forest Estate. For. Policy Econ. 
2019, 103, 17–27. https://doi.org/10.1016/j.forpol.2017.10.010. 

44. Isaac-Renton, M.G.; Roberts, D.R.; Hamann, A.; Spiecker, H. Douglas-Fir Plantations in Europe: A Retrospective Test of Assisted 
Migration to Address Climate Change. Glob. Chang. Biol. 2014, 20, 2607–2617. https://doi.org/10.1111/gcb.12604. 

45. Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleu-
nen, M.; Naya, D.E.; et al. The Effects of Phenotypic Plasticity and Local Adaptation on Forecasts of Species Range Shifts under 
Climate Change. Ecol. Lett. 2014, 17, 1351–1364. https://doi.org/10.1111/ele.12348. 

46. Wang, T.; Hamann, A.; Spittlehouse, D.L.; Aitken, S.N. Development of Scale-Free Climate Data for Western Canada for Use in 
Resource Management. Int. J. Climatol. 2006, 26, 383–397. https://doi.org/10.1002/joc.1247. 

47. Noce, S.; Collalti, A.; Santini, M. Likelihood of Changes in Forest Species Suitability, Distribution, and Diversity under Future 
Climate: The Case of Southern Europe. Ecol. Evol. 2017, 7, 9358–9375. https://doi.org/10.1002/ece3.3427. 

48. Pecchi, M.; Marchi, M.; Moriondo, M.; Forzieri, G.; Ammoniaci, M.; Bernetti, I.; Bindi, M.; Chirici, G. Potential Impact of Climate 
Change on the Spatial Distribution of Key Forest Tree Species in Italy under RCP4.5 for 2050s. Forests 2020, 11, 934. 
https://doi.org/10.21203/rs.3.rs-20281/v1. 

49. Knutti, R.; Masson, D.; Gettelman, A. Climate Model Genealogy: Generation CMIP5 and How We Got There. Geophys. Res. Lett. 
2013, 40, 1194–1199. https://doi.org/10.1002/grl.50256. 

50. IPCC. IPCC Fifth Assessment Report (AR5); IPCC: Geneva, Switzerland, 2013; pp. 10–12. 
51. Lowe, J.A.; Bernie, D.; Bett, P.; Bricheno, L.; Brown, S.; Calvert, D.; Clark, R.; Eagle, K.; Edwards, T.; Fosser, G.; et al. UKCP18 

Science Overview Report; Version 2.0; Met Office Hadley Centre: Exeter, UK, 2019. 
52. Wang, T.; Hamann, A.; Spittlehouse, D.L.; Murdock, T.Q. ClimateWNA-High-Resolution Spatial Climate Data for Western 

North America. J. Appl. Meteorol. Climatol. 2012, 51, 16–29. https://doi.org/10.1175/JAMC-D-11-043.1. 



Environments 2024, 11, 82 18 of 19 
 

 

53. Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling 2015. R Package Version 1.0-12. Available 
online: http://CRAN.R-project.org/package=dismo (accessed on 17 January 2024). 

54. Maca, P.; Pech, P. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks. Comput. Intell. 
Neurosci. 2016, 2016, 3868519. 

55. Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and Climate Change: Impact of Livestock on Climate and Mitigation 
Strategies. Anim. Front. 2019, 9, 69–76. https://doi.org/10.1093/af/vfy034. 

56. Shelia, V.; Hansen, J.; Sharda, V.; Porter, C.; Aggarwal, P.; Wilkerson, C.J.; Hoogenboom, G. A Multi-Scale and Multi-Model 
Gridded Framework for Forecasting Crop Production, Risk Analysis, and Climate Change Impact Studies. Environ. Model. Softw. 
2019, 115, 144–154. https://doi.org/10.1016/j.envsoft.2019.02.006. 

57. Williams, M.I.; Dumroese, R.K. Preparing for Climate Change: Forestry and Assisted Migration. J. For. 2013, 111, 287–297. 
https://doi.org/10.5849/jof.13-016. 

58. Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, Migration or Extirpation: Climate Change 
Outcomes for Tree Populations. Evol. Appl. 2008, 1, 95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x. 

59. Pawson, S.M.; Brin, A.; Brockerhoff, E.G.; Lamb, D.; Payn, T.W.; Paquette, A.; Parrotta, J.A. Plantation Forests, Climate Change 
and Biodiversity. Biodivers. Conserv. 2013, 22, 1203–1227. https://doi.org/10.1007/s10531-013-0458-8. 

60. Deal, R.L.; Smith, N.; Gates, J. Ecosystem Services to Enhance Sustainable Forest Management in the US: Moving from Forest 
Service National Programmes to Local Projects in the Pacific Northwest. Forestry 2017, 90, 632–639. https://doi.org/10.1093/for-
estry/cpx025. 

61. Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Spe-
cies Distributions? Glob. Change Biol. 2018, 24, 1150–1163. https://doi.org/10.1111/gcb.13925. 

62. Smith, B.; Knorr, W.; Widlowski, J.-L.; Pinty, B.; Gobron, N. Combining Remote Sensing Data with Process Modelling to Monitor 
Boreal Conifer Forest Carbon Balances. For. Ecol. Manag. 2008, 255, 3985–3994. https://doi.org/10.1016/j.foreco.2008.03.056. 

63. Zhang, Q.; Wei, H.; Zhao, Z.; Liu, J.; Ran, Q.; Yu, J.; Gu, W.; Zhang, Q.; Wei, H.; Zhao, Z.; et al. Optimization of the Fuzzy Matter 
Element Method for Predicting Species Suitability Distribution Based on Environmental Data. Sustainability 2018, 10, 3444. 
https://doi.org/10.3390/su10103444. 

64. Marchi, M.; Cocozza, C. Probabilistic Provenance Detection and Management Pathways for Pseudotsuga menziesii (Mirb.) Franco 
in Italy Using Climatic Analogues. Plants 2021, 10, 215. https://doi.org/10.3390/plants10020215. 

65. Chakraborty, D.; Schueler, S.; Lexer, M.J.; Wang, T. Genetic Trials Improve the Transfer of Douglas-Fir Distribution Models 
across Continents. Ecography 2019, 42, 88–101. https://doi.org/10.1111/ecog.03888. 

66. Falk, W.; Mellert, K.H. Species Distribution Models as a Tool for Forest Management Planning under Climate Change: Risk 
Evaluation of Abies Alba in Bavaria. J. Veg. Sci. 2011, 22, 621–634. https://doi.org/10.1111/j.1654-1103.2011.01294.x. 

67. Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-Resolution and Bias-Corrected CMIP5 Pro-
jections for Climate Change Impact Assessments. Sci. Data 2020, 7, 7. https://doi.org/10.1038/s41597-019-0343-8. 

68. Higa, M.; Tsuyama, I.; Nakao, K.; Nakazono, E.; Matsui, T.; Tanaka, N. Influence of Nonclimatic Factors on the Habitat Predic-
tion of Tree Species and an Assessment of the Impact of Climate Change. Landsc. Ecol. Eng. 2013, 9, 111–120. 
https://doi.org/10.1007/s11355-011-0183-y. 

69. Marchi, M.; Sinjur, I.; Bozzano, M.; Westergren, M. Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable 
Use of Forest and Environmental Resources in a Changing Climate. Sustainability 2019, 11, 3043. 
https://doi.org/10.3390/su11113043. 

70. Chen, F.W.; Liu, C.W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of 
Taiwan. Paddy Water Environ. 2012, 10, 209–222. https://doi.org/10.1007/s10333-012-0319-1. 

71. Zhao, Y.; Wang, T. Predicting the Global Fundamental Climate Niche of Lodgepole Pine for Climate Change Adaptation. Front. 
For. Glob. Change 2023, 6, 1084797. https://doi.org/10.3389/ffgc.2023.1084797. 

72. Guisan, A.; Thuiller, W. Predicting Species Distribution: Offering More than Simple Habitat Models. Ecol. Lett. 2005, 8, 993–1009. 
https://doi.org/10.1111/j.1461-0248.2005.00792.x. 

73. Wilkinson, D.P.; Golding, N.; Guillera-Arroita, G.; Tingley, R.; McCarthy, M.A. A Comparison of Joint Species Distribution 
Models for Presence–Absence Data. Methods Ecol. Evol. 2019, 10, 198–211. https://doi.org/10.1111/2041-210X.13106. 

74. Warton, D.I.; Blanchet, F.G.; O’Hara, R.B.; Ovaskainen, O.; Taskinen, S.; Walker, S.C.; Hui, F.K.C. So Many Variables: Joint Mod-
eling in Community Ecology. Trends Ecol. Evol. 2015, 30, 766–779. https://doi.org/10.1016/j.tree.2015.09.007. 

75. Poupon, V.; Chakraborty, D.; Stejskal, J.; Konrad, H.; Schueler, S.; Lstibůrek, M. Accelerating Adaptation of Forest Trees to 
Climate Change Using Individual Tree Response Functions. Front. Plant Sci. 2021, 12, 758221. 
https://doi.org/10.3389/fpls.2021.758221. 

76. Chakraborty, D.; Wang, T.; Andre, K.; Konnert, M.; Lexer, M.J.; Matulla, C.; Schueler, S. Selecting Populations for Non-Analo-
gous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe. PLoS ONE 2015, 10, 
e0136357. https://doi.org/10.1371/journal.pone.0136357. 

77. Yang, J.; Pedlar, J.H.; McKenney, D.W.; Weersink, A. The Development of Universal Response Functions to Facilitate Climate-
Smart Regeneration of Black Spruce and White Pine in Ontario, Canada. For. Ecol. Manag. 2015, 339, 34–43. 
https://doi.org/10.1016/j.foreco.2014.12.001. 

78. Pukkala, T. Transfer and Response Functions as a Means to Predict the Effect of Climate Change on Timber Supply. Forestry 
2017, 90, 573–580. https://doi.org/10.1093/forestry/cpx017. 



Environments 2024, 11, 82 19 of 19 
 

 

79. Fréjaville, T.; Fady, B.; Kremer, A.; Ducousso, A.; Benito Garzón, M. Inferring Phenotypic Plasticity and Local Adaptation to 
Climate across Tree Species Ranges Using Forest Inventory Data. Glob. Ecol. Biogeogr. 2019, 28, 1259–1271. 
https://doi.org/10.1111/geb.12930. 

80. Sáenz-Romero, C.; Lindig-Cisneros, R.A.; Joyce, D.G.; Beaulieu, J.; Bradley, J.S.C.; Jaquish, B.C. Assisted Migration of Forest 
Populations for Adapting Trees to Climate Change. Rev. Chapingo Ser. Cienc. For. Y Ambiente 2016, 22, 303–323. 

81. Vajana, E.; Bozzano, M.; Marchi, M.; Piotti, A. On the Inclusion of Adaptive Potential in Species Distribution Models: Towards 
a Genomic-Informed Approach to Forest Management and Conservation. Environments 2023, 10, 3. https://doi.org/10.3390/en-
vironments10010003. 

82. Márcia Barbosa, A.; Real, R.; Muñoz, A.R.; Brown, J.A. New Measures for Assessing Model Equilibrium and Prediction Mis-
match in Species Distribution Models. Divers. Distrib. 2013, 19, 1333–1338. 

83. Gastón, A.; García-Viñas, J.I.; Bravo-Fernández, A.J.; López-Leiva, C.; Oliet, J.A.; Roig, S.; Serrada, R. Species Distribution Mod-
els Applied to Plant Species Selection in Forest Restoration: Are Model Predictions Comparable to Expert Opinion? New For. 
2014, 45, 641–653. https://doi.org/10.1007/s11056-014-9427-7. 

84. Thuiller, W.; Guéguen, M.; Renaud, J.; Karger, D.N.; Zimmermann, N.E. Uncertainty in Ensembles of Global Biodiversity Sce-
narios. Nat. Commun. 2019, 10, 1446. https://doi.org/10.1038/s41467-019-09519-w. 

85. Buisson, L.; Thuiller, W.; Casajus, N.; Lek, S.; Grenouillet, G. Uncertainty in Ensemble Forecasting of Species Distribution. Glob. 
Chang. Biol. 2010, 16, 1145–1157. https://doi.org/10.1111/j.1365-2486.2009.02000.x. 

86. Beale, C.M.; Lennon, J.J. Incorporating Uncertainty in Predictive Species Distribution Modelling. Philos. Trans. R. Soc. B Biol. Sci. 
2012, 367, 247–258. https://doi.org/10.1098/rstb.2011.0178. 

87. Benito Garzón, M.; Robson, T.M.; Hampe, A. ΔTraitSDM: Species Distribution Models That Account for Local Adaptation and 
Phenotypic Plasticity. New Phytol. 2019, 222, 1757–1765. https://doi.org/10.1111/nph.15716. 

88. Zhao, Y.; O’Neill, G.A.; Wang, T. Predicting Fundamental Climate Niches of Forest Trees Based on Species Occurrence Data. 
Ecol. Indic. 2023, 148, 110072. https://doi.org/10.1016/j.ecolind.2023.110072. 

89. Pecchi, M.; Marchi, M.; Giannetti, F.; Bernetti, I.; Bindi, M.; Moriondo, M.; Maselli, F.; Fibbi, L.; Corona, P.; Travaglini, D.; et al. 
Reviewing Climatic Traits for the Main Forest Tree Species in Italy. IForest 2019, 12, 173–180. https://doi.org/10.3832/ifor2835-
012. 

90. Franklin, J. Mapping Species Distribution. Spatial Inference and Prediction. Ecol. Biodivers. Conserv. 2009, 44, 615. 
91. Austin, M.P. Spatial Prediction of Species Distribution: An Interface between Ecological Theory and Statistical Modelling. Ecol. 

Model. 2002, 157, 101–118. https://doi.org/10.1016/S0304-3800(02)00205-3. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


	1. Introduction
	2. Materials and Methods
	2.1. Baseline Surface: CHELSA 2.1 (1981–2010)
	2.2. Historical Climate: CRU-TS
	2.3. CMIP5 and CMIP6 Future Scenarios
	2.4. Scale-Free Dynamic Downscaling
	2.5. Climatic Indices Calculation
	2.6. Quality Assessment of ClimateDT Estimates

	3. Results
	3.1. Effectiveness of the Dynamic Lapse-Rate Adjustment
	3.2. Requests Counter and Processing Rate

	4. Discussion
	4.1. Usage of ClimateDT and Potential Benefits of Its Estimates
	4.2. Raster Surfaces Availability and Consistency with CHELSA Layers

	5. Conclusions
	References

