A Distributed Operational Semantics for CCS
Based on Condition/Event Systems

Pierpaolo Degano *, Rocco De Nicola+ and Ugo Montanari *»1

* Dipartimento di Informatica, Universita di Pisa, PISA
+ Istituto di Elaborazione dell’Informazione, C.N.R., PISA

Thu, Sep 17, 1987

Abstract. A new set of inference rules for the guarded version of Milner’s Calculus
of Communicating Systems is proposed. They not only describe the actions agents
may perform when in a given state, but also say which parts of the agents move when
the global state changes. From the transition relation a Condition/Event system, called
ZcCs, is immediately derived and two demonstrations are given of its adequacy as a
truly concurrent and distributed CCS semantics. First, we prove that the abstract

interleaving case graph of Zccg (i.e., the case graph with arcs labelled by single
actions) is homomorphic to the transition system defined by Milner’s inference rules.
Since the homomorphism preserves transitions, we also have that the synchronization
trees of two corresponding nodes are identical. Thus, our construction gives a
semantics which is consistent with the original interleaving semantics of CCS
whatever behavioural equivalence is chosen. Second, we prove that the transition
system expressing a multiset semantics for CCS is transition-preserving
homomorphic to the abstract case graph of Zccg (i.e., the case graph with arcs
labelled by multisets of actions) and thus that the amount of parallelism exhibited by

Zccs and by multiset CCS is the same.

Running head:
A Distributed Semantics for CCS Based on C/E Systems

1 Research performed in part while on leave at SRI International, Menlo Park, USA.
Research supported by Office of Naval Research Contract NO0014-86-C-0450.

1. Introduction

The operational semantics of concurrent languages has often been described in terms of
labelled transition systems [13]. The states are terms of the language and the transitions
between states are labelled by actions [1, 14, 16]. This approach relies on the well-known idea
of describing system behaviours as sequences of transitions. Terms are considered to be
processes that may perform certain actions to become other processes; the fact that process p
evolves to process q by performing an action o is rendered by p—o—q.

A drawback of this approach is that it describes transitions between global states only,
and does not offer a full account of the causal dependencies between the actions (possibly due
to independent/parallel subsystems) which are performed when passing from one state to
another. As a result, transition systems provide concurrent languages with a so-called
interleaving operational semantics, where the operator for the parallel composition of
processes is not primitive: given any finite term containing this operator, another term always
exists without it and exhibiting the same behaviour. In the case of CCS this property is
reflected by the so-called expansion theorem [14].

A slight variation of the transition systems approach includes multisets of actions as
possible transition labels; languages like Meije [1] and SCCS [15] are equipped with an
operational semantics based on this generalization. Multiset labels give a direct representation
of the amount of “parallelism” available in the system and help in distinguishing the behaviour
of systems in some obvious cases, like aNIL|BNIL and oNIL + BaNIL. However, causal
dependencies remain non-recoverable (for instance, the behaviour of aNIL|BNIL + afNIL
and that of oNIL|BNIL cannot be differentiated, see also Figure 6.1); weaker versions of the
expansion theorem still hold. Indeed, labelled transition systems turn out to be satisfactory to
describe temporal dependencies between actions or multisets of actions but not causal
dependencies.

Our long term goal is to equip concurrent languages with operational definitions which
are also able to describe their causal behaviour. In this paper, we show how the centralized
assumption on transition systems can be relaxed to express this kind of cperational semantics
by letting Petri Nets play the rdle of “distributed” transition systems. Indeed, Petri Nets [10,
19] can be viewed as a generalization of transition systems, in which concurrency and causal
dependency between transition occurrences are explicitly represented. To make the choice of a
particular Petri net less arbitrary, we propose two properties which we consider essential for
any net semantics of a language previously equipped with an interleaving and a multiset
semantics. We will require that:

i) the interleaving semantics is retrievable from the net semantics;
ii) the net semantics captures all and only the parallelism present in the multiset
semantics of the language.

As a case study, we extend the original interleaving semantics of Milner’s Calculus of
Communicating Systems (CCS) [14] to provide the language with a causality preserving
semantics based on Petri Nets.

Indeed, CCS, which is a primitive language for describing communicating processes
with a (deceptively) simple and well-defined operational semantics, has been a touchstone for
many of the proposed theories of concurrency. On the other hand, many different kinds of
Petri Nets have been defined. They can be divided into two families. The first contains those
more intensional nets which represent models of real systems, and may thus have cycles. The
nets in the second family can be seen as behaviours of systems, with a partial ordering
structure obtained by unfolding nets of the first class. Privileged representatives of the first
class are Condition/Event (C/E) Systems, where the occurrence of events causes changes in
local states, called conditions. Typical elements of the second class are Occurrence Nets.

We map CCS into a minor extension of C/E Systems which we call Augmented
Condition/Events (A-C/E) Systems. Actually, we consider “pure” and “guarded” CCS, i.e.,
the calculus without value passing and, like in the original definition of [14], with all the
variables bound in recursively defined terms prefixed by an action. The proposed extension to
C/E Systems permits self-loops and is needed to enable a transition for which some
preconditions coincide with some postconditions. Self-loops arise naturally when considering
recursive CCS agents like rec x. ox. The conditions for enabling events and the property of
contact-freeness have been modified accordingly, still maintaining the properties that an event
whose preconditions hold is always enabled, and that no token is ever lost. An extension
similar to ours is proposed in [21].

In order to define the new CCS operational semantics, like in the traditional interleaving
semantics, we follow the Structured Operational Semantics (SOS) approach [18] which
provides the means of defining the transitions of a compound system in a syntax-driven way.
A different transition relation is introduced which we call partial ordering derivation relation. It
relates sequential (sub)processes of CCS agents, rather than their whole global states.
Roughly, sequential processes are obtained by decomposing CCS agents, and the partial order-
ing derivation relation describes both the actions the sequential processes may perform and
their effects. The transitions defined by the derivation relation have the form H' - K~—u—H"
where H' and H" represent the initial and final sets of sequential processes, |L is an action, and

K' has a purely technical réle. The A-C/E system, called Z¢ s, is obtained straightforwardly

from the partial ordering derivation. More precisely, sequential processes are conditions;
decompositions of CCS agents are cases; and elements of the partial ordering derivation
relation (discarding the second argument K') are evenis.

Our achievement is twofold: first we equip CCS with a fully concurrent and fully
distributed semantics: concurrency and causal dependencies between the actions the various
agents can perform are explicitely represented. Second, we provide the basis for an adequate
linguistic level for the particular class of Petri Nets which can be defined through CCS
operators, and move a step toward removing one of the generally acknowledged inadequacies
of Petri Nets: their lack of compositionality and modularity. Our results should also provide a
framework for evaluating the expressive power of CCS in this context, and for understanding
the relationships between CCS and Petri Nets, so that analytic concepts and techniques might
be transferred form one theory to the other.

Our concurrent distributed semantics for CCS is adequate in that it satisfies criteria i)
and ii) discussed above.

Criterion i) is shown to hold by proving that the abstract interleaving case graph of
Zeces (.e., the case graph with arcs labelled by single actions) is homomorphic to the
transition system defined by Milner’s inference rules. Since this homomorphism preserves
transitions, the synchronization trees of two corresponding nodes are identical. Thus, our
construction gives a concurrent semantics which is consistent with the original interleaving
semantics of CCS whichever behavioural equivalence is chosen.

In order to prove that criterion ii) is satisfied, we introduce a new transition system
which, following the approach of Meije [1], precisely defines the multisets of independent
actions the agents may perform. We then prove that the A-C/E system we associate to CCS has
the same capabilities of this transition system. Formally, we prove that the multiset transition
system is transition-preserving homomorphic to the abstract case graph of L g (i.e., the
case graph with arcs labelled by multisets of actions instead of sets of events). Also in this
case, the synchronization trees of two corresponding nodes are identical.

The net semantics we propose is such that truly concurrent behaviour is also exhibited
in the presence of nondeterminism or recursion. For instance, the case corresponding to agent
E = aNILIBNIL + yNIL (see Figure 1.1) contains two conditions, and three events, labelled by
o, B and v, are enabled by them. The two conditions, which are obtained by decomposing E,
are ¢NILIid + yNIL and idIBNIL + yNIL. Conditions are represented by special terms which
represent sequential processes and are called grapes. Events o and B have disjoint
preconditions, and thus can fire in parallel. Conversely, both pairs <o, v> and <f, v> have
intersecting preconditions and thus cannot fire in parallel. According to Milner’s transition
relation we have aNILIBNIL + yNIL —a—» NILIBNIL. Here when event ¢ fires, the case
{NILIlid, idIBNIL + yNIL} is reached which contains a non updated sequential process, i.e., a

process where the YNIL choice is still present. This is a necessary consequence of the
distributed control in Petri Nets: a condition not involved in the transition cannor be
modified. However, we must still make sure that the set {NILIld, idIBNIL + yNIL} has the
same behaviour as the sets of grapes obtained by decomposing agent NILIBNIL.

Fig. 1.1. A C/E system corresponding to CCS agent aNILIBNIL + yNIL. The initial case
consists of the two topmost conditions.

This simple example gives an idea of the difficulties we have encountered. We need to
represent global decisions in a completely distributed way, and in doing so we have to give up
a one-to-one correspondence between agents and cases. A rather clean result such as that
presented here is in our view rather surprising. The proofs, which rely on syntax-directed
techniques, are often simple.

The rest of the paper is organized as follows: Section 2 summarizes the indispensable
notions of CCS, and presents our proposed extension of Petri’s C/E Systems. Section 3
contains the decomposition and the partial ordering derivation relations for CCS agents.
Section 4 shows how the new derivation relation naturally leads to an Augmented C/E system,
the behaviour of which is in agreement with the original interleaving operational semantics and
with a multiset based semantics. Finally, Section 5 compares our approach with other work on
related subjects and Section 6 contains some concluding remarks.

2. Background

Here, we briefly introduce the relevant definitions for Milner’s Calculus of Communicating
Systems (CCS) [14], Petri’s Condition/Event (C/E) Systems [10, 19] with the extensions
needed to describe the operational semantics of CCS agents.

First, we recall the operators of the CCS, and then we present the traditional interleaving
operational semantics of [14].

Definition 2.1.

Let A ={0a,B,y... } beafixedsetand A- = {o-loe A}, then A= A UA- (ranged

over by A) will be used to denote the set of visible actions. Moreover, symbol T will be used

to denote a distinguished invisible action notin A; A L {t} will be ranged over by L.

CCS terms are the terms generated by the following BNF-like grammar:
Tou=xINILIpTI TN I T[¢] I T+ TITIT Itec x. T,

where x is a variable and ¢ is a bijection of A U {t} which preserves t and the operation - of

complementation. ¢

Following [14] we impose a slight constraint on CCS terms: all recursively defined terms
are such that every occurrence of the bound variable is prefixed by an action from A U {1}.
This restriction guarantees that all recursive definition of agents have a unique solution.

Definition 2.2.
Let guarded be the least relation on CCS terms which satisfies:
1) NIL and pT are guarded,
1) if T is guarded then T\, T[¢] and rec x. T are guarded;
iii) if T and T' are guarded then T + T and TIT" are guarded. ¢

Definition 2.3.

CCS agents are guarded CCS terms which do not contain any free variable. ¢

In the rest of the paper we will use E and T (possibly indexed) to range over CCS agents and
terms, respectively; moreover we will assume that the precedence of the operators is given by:
N >[d] >u>rec>+> 1.

CCS interleaving operational semantics is based on a labelled transition system; the
transition relation of this system is defined by the following set of inference rules over agents.

Definition 2.4.

Milner’s derivation relation E;—u—E9 is defined as the least relation satisfying the

following axiom and inference rules:

Act) ME—u—E

Res) Ej—u—Epand y ¢ {o,0-] implies E{\oa—u— Ej\a,

Rel) Ej—p—Ey implies Eq[¢]—o()— Ex[¢]

Sum) Ej—u— Ep implies E{+E—t—» Ey and E+E{—u— Ep

Com) E{—u—Ep implies E{l[E—u— EplE and EIE] —u— EIEy
E1{—A—E» and E'1 —A-—E'yp implies E{[E'1—1— EjlE»

Rec) Tlrec x. T/x]—u—E implies rec x. T—u— E. ¢

This relation completely specifies the CCS operational semantics which, given an agent,
determines the actions (and sequences of actions) it may perform, and the new agents which
are obtained as results. We aim at defining a Petri net which, in addition to the above
information, also carries information about the causal dependencies and possible concurrency

among the actions performed by every CCS agent.

We now introduce the class of Petri Nets which will be used in the rest of the paper to
describe CCS. We call this class Augmented Condition/Event (A-C/E) Systems since it is
obtained by straightforwardly extending C/E Systems [19]. Indeed, A-C/E Systems are
obtained by slightly relaxing the condition for enabling events and by removing the simplicity
condition.

Although the simplicity requirement could be kept, we drop it since we want to naturally
represent situations of pure nondeterminism, such as that expressed in CCS by agent
oE + BE, which may evolve to E in two ways, firing an event either observed as o or as f.

The actual extension to C/E Systems consists in relaxing the conditions under which a
transition may occur. This is mainly because we want to consider as enabled an event the pre-
and postset of which are not disjoint. Indeed, loops arise when dealing with CCS agents

involving recursion, e.g., rec X. OX.

Definition 2.5.

A net is a triple <B, E; F>, where
e B is the set of conditions;
e E is the set of events;

« BNE=(;
» Fc (BXE) U (ExB) is the flow relation. ¢

Definition 2.6.
Given anet N =<B, E; F>, let x,y e BUE,
o -x denotes {y | yFx]}, called preset, and x' denotes {y | xFy}, called postset;
o x is isolated if x U x* = @;
» asubset ¢ ¢ B is called case. ¢

Definition 2.7.
Givenanet N=<B, E; F>and acasec,

¢ aneventeisa-enabled by cif andonly if ‘e ccand e e U B-c.
Given c1,c0 € B and G C E, the a-step ¢ [[G> ¢y, is defined if
e VeeG,eisa-enabled bycy;
e Ve,epeG,epe) implies 'e] N er=e1 Ney =3,
° Cp=(c1-G) VG &

Definition 2.8.
An Augmented Condition/Event system (A-C/E system) is a quadruple
2. =<B, E; F, C>, where
o <B, E; F>is a net with no isolated elementand BUE = @;
« C 2B isan equivalence class of the reachability relation R=(r U r“l)*, being

r < 2Bx2B, where ¢ r ¢j if and only if 3G ¢ E such that c1 [[G> ¢33

¢ VeeE, dce C such that e is a-enabled by c. ¢

Definition 2.9.
An A-C/E system <B, E; F, C> is a-contact-free if and only if VeeE, VceC
e Ccimpliese C eV B-c;

e e Ccimplies-e < e U B-c. ¢

Definition 2.10.
Given an A-C/E system 2, = <B, E; F, C>, if P = {(c1, G, ¢p) | ¢1 [[G> ¢y is an a-step of 2}
then the labelled graph @ = (C, P) is called the case graph of 3. ¢

The only differences between C/E and A-C/E Systems concern simplicity and event
enabling: the former must be simple (formally, ‘x="y and x'=y" imply x=y) while the latter
may not be; enabling in C/E Systems requires pre- and postsets to be disjoint (formally, ‘e C ¢
and e' ¢ B-¢), a-enabling does not.

The following propositions and definition clarify and characterize a-contact-freeness.

Property 2.1.
Given an a-contact-free A-C/E system <B, E; F, C> and a case ¢ in C, an event is a-enabled if

and only if its preset is a subset of c. @

Definition 2.11.
A case c of a net N = <B, E; F> is critical if there exists an event e such that either

‘eccand(c-e)ne =@ or e ccand(ce)N-ex?. é

Note that, in a critical case, the preset of an event holds which, if fired, would cause the
“loss of some tokens”. Actually, the case reached after firing would be the union of c--¢ and

e and, if the two sets were intersecting, some token would be lost. Alternatively, the dual
property might hold.

Proposition 2.2. (a system is a-contact-free iff no token is lost in the token game)
An A-C/E system 2, = <B, E; F, C> is a-contact-free if and only if no case in C is critical.

Proof. Immediate. ¢

It is easy to define a non contact-free C/E system which shows that the if-part of the above
proposition is not true for standard C/E Systems. Indeed, the set of (contact-free) C/E Systems
is a proper subset of (a-contact-free) A-C/E Systems, as shown by Fig. 2.1. below.

Fig. 2.1. A non contact-free A-C/E system which is a-contact-free.

3. A Partial Ordering Derivation Relation for CCS

In this section we present a new set of inference rules for CCS which relate parts of CCS
agents, rather than whole global states. These rules are not only able to express the temporal
dependencies between the actions performed by the agents but also make it possible to recover
causal dependencies and the parallelism of CCS agents. In fact, we decompose these agents
into sets of sequential processes, called grapes, and then we define the new relation between
sets of grapes; the new transition relation, together with the actions an agent E may perform,
also specifies which sequential processes of E perform these actions. The transitions have the
form H' - K~~~ H", and their intuitive meaning is that set of grapes H' may become set H"
by performing action . Set of grapes K' has only a technical meaning: it forbids deductions of
incorrect transitions; it will be ignored in the construction of the A-C/E system mirroring CCS.
The new axioms and inference rules are in direct correspondence with those of Section 2.
Before defining the new transition relation we need to show how sequential processes are
obtained from agents.

Definition 3.1. (defining CCS sequential processes)
A grape is a term defined by the following BNF-like grammar
G:=NIL! uE |G\ I1G[¢] IG+G11diIG | Glidlletx=Tin G
where E, T, \a and [¢] have the standard CCS meaning.
We will use I, J, H, K (possibly indexed) to denote sets of grapes and g, g1, ... to denote
single grapes. ¢

Intuitively speaking, a grape represents a subagent of a CCS agent, together with its access
path. The latter is used to take into account the context in which sequential processes operate.
This information is crucial in many occasions. For example, it allows us to differentiate the

behaviour of processes like (aNIL | a™NILMN\o and (eNILMN\o | (a7 NIL)\o.. We have an
operator on grapes for each CCS operator and we keep the same name for all the operators
apart from that for parallel composition. This is replaced by two unary operators, lid and idl,
which are tags recording that there are other processes that can perform actions concurrently
with those of the given sequential process. We derive sets of grapes from CCS agents by using
a ternary relation, decrel (E, I, J), which relates agents and sets of grapes. The second
argument I represents the distributed state corresponding to agent E. The role of the third
argument is purely technical: it allows agents 10 be recovered uniquely from sets of grapes and
avoids wrong decompositions of them.

10

The decomposition relation is defined below. In this relation and in what follows we
understand constructors as extended to operate on sets, e.g., No={g\a | ge J}. Moreover,
everywhere in the paper, we will use the symbol U to represent disjoint set union.

Definition 3.2. (decomposing CCS agents into sequential processes)

Relation decrel between CCS terms and two sets of grapes is the least relation satisfying the
following axioms and inference rules.

Nil) decrel(NIL, {NIL}, {NIL})

Act) decrel(UE, {LE}, {LE})
Res) decrel(E, I, 1) implies decrel(E\x, N\, Nav)
Rel) decrel(E, 1L, D implies decrel(E[¢], I[¢], J[6])
Sum) decrel(E', I',I) and decrel(E", I",I") implies decrel(E'+E", I'+I", I'+I")
Com) decrel(E', I',J) and decrel(E", I",J") implies decrel(E'IE", I'id w idlI", J)
where J is either @ or J'lid or idlJ" or J'lid U idJ"

Rec) decrel(Tlrec x. T/x], I,) implies decrel(rec x. T, let x=T in I, let x=T in I)
Ups) decrel(E, I' U T, J) and decrel(E, I, I) and I'#0

implies decrel(E', I' U I+]', I+])

and decrel(E', I' W J'+1, J'+I)
Upr) decrel(E, I U J[rec x. T/x], J[rec x. T/x]) and I=@

implies decrel(E,Iuletx=TinJ, letx=T inJ) @

The decomposition goes inside the structure of agents and only stops when a process
prefixed by an action or the NIL process are encountered, since these cannot be considered but
atomic sequential processes. All the other rules allow a set of grapes I to be built whose
correspondence with agent E is immediate except for rules Ups) and Upr). These two rules are
needed to allow generation of those grapes which may come into existence when only parts of
the global state of an agent perform an action. Here, we diverge substantially from the classical
transition system approach since we want to give a distributed account of the transitions of
agents and to assume independent loci of control. In fact, transition systems carry with them
the assumption of a centralised control, and in our case this assumption forces all concurrent
processes which occur in the same “+” or “rec” context to participate in the decision
concerning the choice or the unwinding. An immediate consequence of distributed control is
that subparts of the global states are left behind and are non-updated with respect to the choice
or to the unwinding. So, Ups) and Upr) allow sets of grapes to be extended by “ornating”
proper subsets of I with recursive definitions or alternative sets resulting from the

11

decomposition of other agents. It should be noted that rules Ups) and Upr) can be applied only
after rule Com) with J equal to either @ or J'lid or idIJ" has been applied to differentiate the
second and the third argument of decrel. Indeed, if we always have I = J then relation decrel
can be seen as a total injective function from agents to sets of grapes which coincides with the
decomposition function dec' proposed in [6]. There, it was also shown that given any set of
grapes which can be generated by dec', it is always possible to recover the CCS agent which
has generated it simply as the unique unifier of the grapes representing the sequential
processes, when all the “id” atoms are seen as distinct variables. Actually, those sets I such that
decrel(E, I, I) holds, represent completely updated states of CCS agents. However, as
mentioned above, decrel also allows those states of CCS agents which are only partially
updated to be generated.

Example 3.1 shows how different sets of grapes can be obtained by decomposing the same
agent aNIL | BNIL. On the other hand, Example 3.2 shows a possible decomposition of an
agent (((rec x. ax+Px) | rec x. ax+yx) | rec x. a-x)\a which will be used as a running example
in the rest of the paper.

Example 3.1.
a) decrel (aNIL | BNIL, {oNILld, idIBNIL}, {aNILId, idIBNIL}):
b) decrel (aNIL | BNIL, {aNILIlid, idIBNIL+NIL}, {idIBNIL+NIL});
¢) decrel (aNIL | BNIL,{oNILIid, let x=NIL in id|[BNIL+NIL},

{let x=NIL in idIBNIL+NIL}).

Let us completely work out the proof of the second predicate:
1. decrel (aNIL, {aNIL}, {aNIL}) and decrel ((BNIL, {BNIL}, {BNIL}) by Act);

2. decrel (aNIL | BNIL, {aNILIid, idIBNIL}, {idIBNIL}) by Com) and 1;
3. decrel (aNIL | BNIL, {oNILlid, idIBNIL+NIL}, {idIBNIL+NIL}) by Ups) and 2.
L

Example 3.2. Let agent E be (((rec x. ox+Bx) | rec x. ax+yx) | rec x. a-x)\a.. We have
decrel(E, I, I), where

I={ (((let x=0x+Bx in o(rec x.ox+Px)+Prec x.ox+Bx)id)lid)\a,
((idllet x=0x+yx in afrec x.0x+yx)+yrec x.ox+yx)id)\o,
(idllet x=0-x in orrec x.ox)\o } ¢

At this point the r6le played by the third operand of decrel can be explained more clearly.
This operand acts as a controller of relation decrel and guides the decomposition process to
obtain only those sets of grapes which exhibit the same behaviour. In fact, it makes possible to
derive from

12

decrel(aNIL | BNIL, {aNIL lid, idl BNIL}, {idl BNIL})
that

decrel(oNIL | BNIL, {aNIL lid, id! BNIL + yNIL}, {idl BNIL + yNIL}) holds.
However, it is not possible to derive from the latter predicate

decrel(oNIL | BNIL, {aNIL lid + yNIL, idl BNIL + yNIL}, {idl BNIL + yNIL}).
This derivation would be wrong, since {oNIL lid + yNIL, idl BNIL + YNIL} has a behaviour
different from that of oNIL | BNIL; indeed, it corresponds to oNIL | BNIL + yNIL.

The next definition precisely characterizes the class of sets of grapes which can be obtained
by decomposing CCS agents. We call regular any set of grapes representing a distributed,
possibly not updated, state of a CCS agent, and we call complete any set of grapes represent-
ing a completely updated state. Lemma 3.1 and Theorem 3.1 stress the relationships between
the three arguments of the relation decrel.

Definition 3.3.
A set] of grapes is
 regular if and only if there exists a CCS agent E such that decrel(E, 1, I);
» complete if and only if there exists a CCS agent E such that decrel(E, L, I).

Often, we will use I (possibly indexed) to denote a regular set of grapes. ¢

Lemma 3.1.
Let decrel(E, 1, J), then
i) IfI contains a grape g of the form G + G, then J consists of all the grapes in I of the same
form.
ii) If I contains a grape g of the form let x=T in G, then J consists of all the grapes in I of the
same form.
iii) If decrel(E, I, J) then I cannot contain a grape of the form G + G and a grape of the form
let x=T in G at the same tme.

Proof. i) All the grapes in J have the same operator at the top level (considering lid and id! as
the same operator) and J is a subset of 1. So, to prove the claim, it is sufficient to show that any
grape g belonging to I having the form G + G must belong to J as well. Let us consider any
proof of decrel(E, I, J). If, by absurdum, g does not belong to I, then the last rule used must
have been either Ups) or Upr). In fact Sum) would imply I = J, and none of the remaining
rules and axioms would unify with a set I containing even a single grape of the form G + G.
But both rules Ups) and Upr) preserve the grapes not in J. Thus g belongs, by backward
induction, to all the goals of the proof, which uses only Ups) and Upr). But this is false since
the proof must use an axiom.

A similar proof applies to ii).

Claim iii) follows trivially from i) and ii). 3

13

The next theorem is particularly important since it guarantees the soundness of decrel in that
to different agents are associated different sets of grapes, and in that it is not possible to find
proper subsets of sets of grapes representing a distributed state which directly correspond to a
CCS agent, i.e., no proper subset of a regular set is complete.

Theorem 3.1.
1) If decrel(E', I, J') and decrel(E", I, J") then E' = E".
i) If decrel(E, I, J), then decrel(E', I', I') does not hold for every I' strictly contained in L.

Proof. Both properties are proved by induction on the length of the proof of 1.

For i), we have to prove that the binding for E in the last step is unique. Let us set as goal
decrel(E, 1, J) where I is the given set and E and J are variables. We have to see which pairs of
rule heads unify, once the second argument has been instantiated to I. It can be seen
immediately that all clauses except for Ups) and Upr) do not pairwise unify. This includes
axioms Nil) and Act) which provide the basis of the induction. Com) might be applied in three
ways, but in all cases the subgoals will be the same, with the same binding for E and I. Thus if
I does not contain grapes of the form G + G or let x=T in G, precisely one rule will match. But
set I cannot contain grapes of both kind because of Lemma 3.1.iii). If G contains a grape of
the form let x=T in G then J is known, by Lemma 3.1.ii). If J = I, then only Rec) applies, else
only Upr) applies. If G contains a grape of the form G + G, then again J is known, by Lemma
3.1.i). If and only if J = I then Sum) applies. Otherwise, let us decompose the cartesian
product J =J' + J" into its components J' and J". If J' is complete then the first implication of
Ups) applies and if J" is complete then the second implication of Ups) applies. It is always
possible to tell which one is complete, because the other set will be smaller than a regular set
with a shorter proof than I, and thus is not complete by the inductive hypothesis for ii).
Proving inductively property ii) for I is trivial. The basis is obvious, since in Nil) and Act) the
I argument is a singleton, and the empty set is not complete. Furthermore, given any proper
subset I' of I, only the same goal reduction of I can be used, if any exists at all; this generates a
subgoal which has also a smaller I, and it is possible to use the induction hypothesis for
proving the claim. The only apparent exception is when the last rule for I was Ups) or Upr),
and in I' all the grapes with last constructor + or let-in respectively have been removed. In this
case I' would be also a subset of the regular set of grapes which I reduces to, and the inductive

hypothesis can again be applied. é

Theorem 3.2.
For any CCS agent E there exists always a set of grapes I such that decrel(E, I, J').

14

Proof. Structural induction can be used to show that by using the first seven rules of

Definition 3.2 it is always possible to find the wanted 1. The base cases are NIL and oE. The
proof terminates since rule Rec) unfolds E once for every rec-context. This relies on the fact
that E is guarded. Notice that no rule for x is needed. ¢

Below we define our new partial ordering derivation relation which is given in the SOS
style.

Definition 3.4. (partial ordering derivation relation)

The partial ordering derivation relation H' - K~—u—» H" is defined as the least relation
satisfying the following inference rules:

act) decrel(E, L I) implies {UE} - {UE} —pu— 1
res) H-K'—p— H'and p¢ {o, o~} implies H'\x - K'\o—u— H"\o.
rel) H-K-—pu— H" implies H'[¢] - K'[¢] —u— H"[¢]

sum) HUK'- K—1— H" and decrel(E, I, I) implies HuU K'+I - K'+I—u— H"
and Hu+K' - [+K—u— H"

com) H' - K~—pu— H" implies H'lid - X —u— H"lid where X = @ or K'lid
and idH' - X—u— idH" where X =@ oridlK'
Hy'-Ki;'—A— Hj"and Hy' - Kp'—A™— Hy"
implies Hq'lid U idiHy' - X —1— H{"lid U idIHp"
where X =@ or Ky'lid or idIKy' or K1'lid U idIKy'

rec) Hu K'rec x.T/x] - K'[rec x. T/x] —1— H"
implies HuU let x=T in K' - let x=T in K' —p— H". ¢

The basic meaning of H' - K'—pu— H" is that set of grapes H' evolves to set H" by
performing action [. As in the definition of decrel, the extra argument K', with K'c H,,
forbids incorrect derivations. Set K' represents the most out-of-date grapes within H'. No
extra argument is required on the right member of the transition, since the rewritten grapes are
all in the most updated form.

We now comment on our rules in detail. Separation of concerns suggests to ignore in a first
discussion the second argument K' and to concentrate on the evolution of H' to H" via . In
rule act), a single grape is rewritten as a set of grapes, since the occurrence of the action makes
the (possible) parallelism of E explicit. The rules res) and rel) and the first two rules for com)

15

simply state that if a set of grapes H' can be rewritten as H" via yt, then we can combine the
access paths of the grapes in both sets with either path constructors Mo, .[¢], .lid or idl., and
still obtain a derivation, labelled, say, by W' Clearly, when dealing with restriction we have
that ' is |, but the inference is possible only if 1 ¢ {a, o-}; in rel) ' is ¢(11) and in the first
two rules of com) ' is simply p. The second rule for com) is the synchronization rule.

To comment sum), let us first consider the case H = @. If so, before enabling K' to
perform its action, we must make sure that this alternative has not been discarded by the
occurrence of actions of I. Certainly, we must avoid situations where, given two pairs of non
intersecting sets of grapes J'1,J'2 < J and J"1,J"y < J", the two sets J'1+ J"1 and J'p+ J%)
(both contained in the sum J' + J") perform successive actions via both the right and the left
operands of +. For this reason, a set of grapes is enabled to perform an action only if it is
alternative to a complete set of grapes. When H # @ a similar reasoning appﬁes; we only have
to consider that the transition is the result of a communication between H and K' and that the
presence of alternative I does not influence the overall outcome.

The rule for rec) determines the transitions of a recursively defined agent by considering
the transitions of the set of grapes obtained by unwinding the relevant part of the recursively
defined grapes. Again we have that if H = @ and K'[rec x. T/x]) may evolve to H" via a
particular action, then also grape let x =T in K' may evolve, via the same action, to H"; and if
H # @ considerations similar to sum) apply.

Let us now take into account argument K, stressing again that it contains the most out-of-
date grapes of H' which perform the action. As expected, in rule act) we have K'= H'. In rule
sum) the claim is obvious when H = @; otherwise exactly K' + I (or I + K') is given as
second argument of the consequent of the rule. Quite a similar reasoning applies to rec). In the
first rule of com) we infer from a derivation involving set H' a derivation concerning this set
when plugged into a | context. In this case, the most out-of-date grapes belong either to H' or
to the context or to both; hence, we have that the second argument of the consequent is K'lid or
empty or K'lid respectively. Symmetrically, in the second rule of com). In the third rule the
most out-of-date grapes may belong to either set H' or H" or both, and the second argument in
the consequent is accordingly set. An inductive reasoning vindicates the role of K' in the partial
ordering derivation relation. An example of a derivation follows which is not deducible by
using K' as a controller and is deducible when K' is ignored.

{odid + BNIL, idle—+ yNIL} - K'—t— {NILlid, idINIL}.

Further comments on this issue can be found in Section 5.

We can now give additional motivations for our decomposition relation by showing how

the direct correspondence between agents and sets of grapes resulting from a rewriting is lost
whenever a pair of parallel processes is put either in a sum or in a recursion context.

16

As an example, consider again agent

E = {aNIL | BNIL + yNIL}
of Figure 1.1; when decomposed, E gives rise to

{oNILHd + yNIL} U {idIBNIL + yNIL}
and when action o is performed the global state moves to

{NILlid} v {idIBNIL + yNIL}.
This set does not directly correspond to any CCS agent although it will always exhibit the same
behaviour as the set

{NILIid} v {idIBNIL}
which corresponds to agent

NILIBNIL.
In fact, when using Milner’s derivation relation to perform action o the choice of process YNIL
is discarded by borh components aNIL and BNIL. In our distributed relation, instead, we
discard YNIL only from the grape which has actually contributed to action a. The same
happens when E is put into a rec context such as rec x. aNILIBNIL. In fact, when dealing with
a recursive definition we unwind only the set of grapes which performs an action whereas
Milner always unwinds the whole agent.

It is now necessary to extend the derivation relation to regular sets of grapes (notation

>—1—). This extension is crucial for proving that our new semantics meets criteria i) and ii)
discussed in the introduction.

Definition 3.5.
seq) H' U I>—u— H" U I if and only if decrel(E, H' U I, J') and H' - K'—u—H". ¢

The next theorem establishes the relationships between our distributed approach and
Milner’s. Claim i) guarantees that, given a derivation H' - K'—u—H", H' is always a subset
of a regular set of grapes, and thus there always exists an agent that originates a distributed
state to which the above derivation can be applied. Claims ii) and iii) say that derivations are
independent of those grapes which are concurrent with the rewritten ones, but inactive. This
result should evidence the asynchrony of our derivation relation. In other words, we have
defined a rewriting system, rather than a transition system. Claim i) provides the basis for
proving that every event of the A-C/E system for CCS defined in the next section has a case
enabling it; parts ii) and iii) are essential for showing contact-freeness of that system. Claim iv)
shows that it is possible to derive the proofs of I' >—1— I" and of decrel(E", I", J") from the
proofs of decrel(E', I', J') and of E—u—E". Part v) shows that the converse also holds.

17

Theorem 3.3.
i) If H' - K'—u—H" then there exists I such that H' U I is regular;

ii) H' ulregular and H' - K'—u—H" implies that I and H" are disjoint and that I U H"
is regular;

iii) H" U Iregular and H' - K~p—H" implies that I and H' are disjoint and that I U H'
is regular;

iv) if decrel(E', I', J') and I' >—u—> I" then there exists E" such that E~—u—E" and
decrel(E", I", J™);

v) if decrel(E', I', J) and E' —u—> E" then there exists I" such that [' >—j—> I" and
decrel(E", I", J").

Proof.
i) Given a proof of H' - K' —u—> H", it is easy to derive a proof of decrel(E', H' U L I').
Rules Act), Res), Rel) and Com) immediately correspond to rules act), res), rel) and com).
Rule Sum) corresponds to sum) if H' = @; otherwise Ups) corresponds to sum). Similarly for
Rec), Upr) and rec).

In order to prove claims (ii-v) it suffices showing the connection between decrel, —u—>

between CCS agents, >—{1— between regular sets of grapes, and —1— between sets of
grapes. To this aim we introduce a new relation encompassing all of them which we denote by

[‘-u-> (E' - I! - J7 N H' - Kl [_u"> E" - I" - JH - Hll)'

Act.
decrel(E, I, I) implies PE - {UE} - {UE} - {LE} - {HE} [[0->E-I-1-1

Res.
E-I'-V-H-K[>E"-1I"-J"-H" and pef{o, o}
implies E\o - INa - I\ - HNoe - Kot [-p-> E™a - I - T - H™a

Rel.

E-I'-J-H-K' [u-> E"-1"-J"-H"

implies E'¢] -I'[¢] - J'¢] - H[¢] - K'[0] [-p->E"[¢] - I"[¢] - J"[6] - H'[¢]

Sum.

E-TUH -TUH' -H'-H'[-p->E"-T'UH"-I' - H" and dcrl(E, I, I)

implies E'+E - I'+tIUH'+I - I'+IUH'+I - H'+I - H'+I [-p-> E" - I'+IUH" - I'+] - H"
and E+E' - I+I'UI+H' - I+I'VI+H' - I+H' - I+H' [-p-> E" - [+'UH" - I+]' - H"

18

Com.
E-I'-J-H-K [-u> E"-I"-J"-H" and decrel(E, I, J)
implies E'IE-I'lid vidll-X'-H'lid - Y' [-u-> E"IE - I"lid U idlI - X" - H"lid
where X', Y'and X" are either all @; or J'lid, K'lid and J"lid;

or idlJ, @ and idlJ; or J'lid L idlJ, K'lid and J"lid w idlJ
and
EE -idl'ulid-X'-idH' -Y' [-u-> EE"-idI"uUllid - K" - idIH"
where X', Y'and X" are either all @; or idlJ', idIK' and idIJ";
or Jlid, @ and idlJ; or idlJ' U Jlid, idIK' and idiJ" U Jlid

El' - Il' - Jl' - Hl'_ Kll [_x_> Eln _ Iln _ Jlu _ Hl,, and

Ey'-Ip'-Jp' -Hp- Ko [[A™->Ep" - Ip" - Jo" - Hy"
implies Eq'IEp' - I1'liduidlly’ - X' - Hy'lidUidHp' - Y' [-1->
E1"[Ep" - I "liduidlly" - J1 "liduidllp" - Hy "liduid/Hy "
where X', Y'and X" are either all @; or J1'lid, K1'lid and Jq"lid;
or idlJp', idlK»" and idlJ3"; or J1'lid w idlJy', Kq'lid U idIK5' and J1"lid Lidlly"

Rec.
T'[rec x. T'/x] - I'[rec x. T'/x] U H'[rec x. T'/x] - I'lrecx. T'/x] U H[rec x. T'/x] -
H'[rec x. T'/x] - H'[rec x. T'/x]

[-u-> E" -I'[rec x. T'/x]JUH" - I'[rec x.T'/x] - H"
implies
rec x.T' - let x=T"in I'Ulet x=T"in H' - let x=T" in I'Ulet x=T"in H' - let x=T"in K’
-let x=T"in H'

[-u-> E" -let x=T"in 'UH" - let x=T"in I' - H"

Ups.
E'-TUJUK'UH - JUK'- K'UH' - K' [-u-> E" - TUJ'UH" - J' - H"
and decrel(E,) and I'UH' = @
implies
E' - TUT+IUK'+IUH' - J'+IUK'+] - K'+IUH' - K'+I [-u->E" - 'UJ'+IUH" - J'+1 - H"
and
E' - [TUI+J'UI+K'UH' - [+J'UI+K' - I+K'UH' - I+K' [-u-> E" - ['UI+J'UH" - I+]' - H"

19

Upr.
E' - T'UJ[rec x. T/x]JUK'Trec x. T/xJu H' - J'[rec x. T/xJUK'[rec x. T/x] - K'[rec x. T/xJUH'
- K'[rec x. T/x] :
[-u-> E" - I'UJ'[rec x. T/x]JUH" - J'[rec x. T/x] - H" and I'UH' = &
implies
E' - I'V let x=T in J'Ulet x=T in K'UH' - let x=T in J'Ulet x=T in K' - let x=T in K'UH'
-let x=T in K'
[-u-> E"-T'ulet x=T in JUH" - let x=Tin J' - H"

By examining the rules one by one, it is easy to see that from proofs of decrel(E', H' U L, I)
and of H' - K—u—H" it is possible to derive a proof of

E-HuUI-J-H-K' [-(u->E"-H'vIl-J"-H".

It is then possible to see that I and H" are disjoint. Furthermore, from this proof it is possible
to derive proofs of E'—u— E" and of decrel(E", H" U I, I"). Similarly, from the proofs of
decrel(E", H" W I, J") and of H——H" it is possible to derive a proof of
E-HuIl-J-H-K'[-u4->E"-H"UI-J"-H" Itis then possible to see that I and H' are
disjoint. From this proof it is possible to derive a proof of decrel(E', H' U I, I'). Finally, from
the proofs of decrel(E', I', J') and of E'—1— E" it is possible to derive a proof of
E-T'-J-H-XK[-u->E"-I"-J"-H"; and from this, in turn, proofs of I' >—1—I" and
of decrel(E", I", J").

Let us look to the rules for E'-I'-J'- H' - K' [-u-> E" - I" - J" - H" a little more in detail.
The meanings of the arguments are as follows. The agent E' and alternatively the grapes I'
form the initial state of the transition. Similarly E" and I" represent the final state. Grapes J'
and J" are the most out-of-date grapes of I' and I" respectively. Grapes H' and H" are those
grapes of I' and I" respectively which are active in the transition: the remaining grapes stay
idle. Finally, K' are the most out-of-date grapes of I' participating in the transition. Thus the
following conditions hold:

e J T, J"c I
sH cI, H' c I';
*JNH =K, I"'NnH"=0.

We now comment in detail Ups., one of the most complicate rules given above. The basic
idea is that the regular set of grapes which is the second argument of the left member of [-p->
can be partitioned in two ways: those most out-of-date and those not (a distinction relevant for
the proofs for decrel of both left and right members of [-j->), and those participating in the
move and those not (relevant for the proofs of —1— between sets of grapes and —p—>
between CCS agents). Thus we partition the regular set in four parts (see also Figure 3.1):

20

I': the grapes which are neither most out-of-date nor participating in the move;

J': grapes most out-of-date and not participating;

K': grapes most out-of-date and participating;

H': grapes not most out-of-date and participating.
This explains the left member of the first premise. Obviously, I' and J' are also part of the right
member of the first premise, since they are left unchanged by the move. The other premises
contain the requirement that I be complete, the condition that I' U H' must be not empty,
otherwise rule Sum. should be used, as happens in decrel for rule Ups). Finally, in the conse-
quences of the rule, only the most out-of-date grapes (namely, J' and K') are operated upon
with the constructor “+I” or “I+” (see again Figure 3.1). This is consistent with Ups) of decrel.

$é

UK -K'UH' [4-> E"- H" -T-HT
Jl
. KL and decrel(E, I, D)
and ' UH' # @
and I 20
AT 1]
E -] -T+I UH'+I - H'+I [-L-> E'- H" -I'+I-H"
[7+1] T+ |

Fig. 3.1. A graphical representation of the first implication of rule Ups.

While the reverse implication of v) above is true (we practically have shown it while proving
part iii)), the reverse implication of iv) does not hold. In fact, if we take
E' = NILIoNIL and E" = NILINIL,
we have that
NILIoNIL —o—> NILINIL and
decrel(NILINIL, {NILHd,idINIL+NIL}, {idINIL+NIL}),

but there is no I' such that
decrel(NILIeNIL, I', J') and I' >—a— {NILIlid, idINIL+NIL}.

21

The next theorem states that relation decrel permits to associate to CCS agents only those
sets of grapes which are reachable from complete sets of grapes via partial ordering
derivations. Therefore, decrel precisely characterizes the distributed states which are reachable
through executions of CCS agents.

Theorem 3.4.
Set I is regular if and only if there exists an agent E and a sequence of actions

§ = [t1}17... iy, 120, such that decrel(E, I3, I1) and Il>——u1~—>l'1>-—u2——>... I'p-1>—up—>1p
(denoted by I1 >—s5—I7).

Proof. The if-part is an immediate consequence of Theorem 3.3.ii).
For proving the only if-part, let us consider the relation decrel’ defined by the same clauses
Nil), Act), Res), Rel), Sum), and Rec) of decrel, but where

Com") decrel'(E, T,J) and decrel'(E", I",J")
implies decrel'(cE'laE", I'lid U idII", @)
and decrel'(@E'E", I'id v idil", idlJ")
and decrel'(E'laE", I'lid L idII", J'lid)
and decrel'(E'E", I'id widll", J'lid L idJ"™)

Ups) decrel'E, 1'UJ,J) and decrel'(E,I,I) and I'# @
implies decrel'(E+E', I' U I+]', I+]")
and decrel'(E'+E, I' U I'+1, J'+D)

Upr) decrel'(TT/x], I w J[rec x. T/x], J[rec x. T/x]) and 120

implies decrel'(rec x. T, T U let x=T in J, let x=T in J)

Given a proof of decrel(Ep, 17, J) a similar proof that there exists an E; such that
decrel'(E1, Iy, Jp) can be immediately exhibited. We now show that if decrel(Eg, Iy, I1),
then I} >—a—I5, n 2 0. The proof is by induction on the length of the proof of
decrel'(Eq, In, Jp). The basis is trivial: Ey = Ep, I} = I3, n = 0. The induction step is
immediate if the last clause is anything except Com'), Ups') or Upr"): it is sufficient to apply
the same clause to all the proofs of the transitions in the sequence I1>—o"— I5. The induction
step is also easy if the fourth alternative of Com') is used (it is the same as the fourth alternative
of Com)). To give a proof for the first alternative of Com'), let us assume that

decrel'(E1', I, J2), decrel(Eq', I1', I1") and I}’ >—ol— Iy
decrel'(E1", In", J2"), decrel(E1", I1", I1") and 11" >—ok
then we have

- Ir"

22

decrel'(@E1'IaE1", Ip'lid L idll", @),
decrel(0E1'I0E ", {@E1'lid} U {idlcE1"), @), and
{oE1id} U {idlaE1") >—a— {oE1'lid} U idil;"
>—o— Ip'lid Uidll}" >—ah+K 1l U idiLy”

Similarly, for giving a proof for the second alternative of Com’), let us assume that
decrel'(E1’, In', 12", decrel(E1’, I, I1) and Iy’ >abho Ip'
decrel'(E1", I", J"), decrel(E1", 11", I1") and I}" >ak— I"
then we have
decrel'(@E1'IE1", Ip'lid U idily", idlJ»™),
decrel(aE1'E1", {0E'lid} widll1", {aE1'lid} L idly") and
{0E}lid} Uidly" >—o— Iy'lid U idll} " >—oh ko Iy'ld U idi,”

A symmetric proof applies to the third alternative of Com’).

For Ups"), we assume

decrel'(E1', Ip' U J', J9"), decrel'(E, I, I) and I = @; decrel(Eq', I1', I1) and
*) Ii'>—all—> Iy u Jy.
We must have

decrel (E+E1, Iy' U I+]y), I+]5")

decrel(E+E1’, I+I1', I+I1") and

I+ >—0a— Iy' U I+]y'

The first statement is immediate and the second descends from the fact that decrel'(E, I, I) if
and only if decrel(E, I, I). To prove the last statement we will of course use (*), but we need to
further assume the following inductive hypothesis:

I1'>—ol—1,’UJy implies I+]1"' >—all— Ip' U I+]y".

It is easy to see that this assertion goes through all clauses immediately except for Com'). The
proof of the first alternative of Com') does not need the inductive hypothesis. We have to
prove that

{aE1'lid} U {idleE1"} >—o— I1'lid U {idlaE]"}
>—o— Iy'lid uidll;" >—ohtk_, I'lid U Jp'lid v idiy" v idlTy"
implies -
I+ {0E{lid} UI+ {idlaE1"} >—o— I{'lid U I+ {idlaEq"}

>—ao— Iy'lid uidll;" >—ahtk_, Ir'lid U Jp'lid widlly" u idlly"
which is obvious. In order to prove the assertion for the second alternative of Com’), let us

23

inductively assume that

+) 11'>—ak———> vy implies I'+11'>—ak—~> Iyu I+Jy'

and we have to prove that

(0B1'lid} LUidlI1" >—o—s I1lid L idiTp " >—a Ko Tylid U Tp'id U idiTy" U idip”
implies
I+{0E1'lid} L I+idI; " >—o— I7'lid U I+dI"
>tk I,lid U Jy'lid L idily" U T+idly"

which is immediate from (+).

The third alternative of Com’) is symmetric. For proving the assertion of the fourth alternative
let us inductively assume that

I1'>—ols Iy u Iy implies I+I">—all— Ip' U I+]y’
(&)

I1">—o0X5 " UTy" implies I+11" >—oX— I" U T+Jy"
and we have to prove that

Ip'lid L idi " >—ab Ko Iplid U Jp'lid L idilp" L idiy"
implies
I+11'Hd U I+dI " >—oP Ko Iy'lid U I+Ip%d L idily" L T+idip”

which is immediate from (&).

Similar arguments apply for the second implication of Ups') and for Upr’). ¢

The proof of the above theorem is constructive. In order to exemplify how to find the CCS
agent which can be transformed via a sequence of derivations into a given regular set of grapes,
let us follow the pattern of the above proof in the simple case of Iy = {NILlid, idINIL + NIL}.
We have

decrel(NILINIL, {NILIid, idINIL + NIL}, {id/INIL + NIL}).
Now, if NILINIL is “decomposed” with decrel’, we get
decrel'(aNILINIL + NIL, {NILHd, idINIL + NIL}, {idINIL + NIL}).
The required complete set of grapes can now be obtained by
decrel(aNILINIL+NIL, {aNILid+NIL, idINIL+NIL}, {aNILlid+NIL, idiINIL+NIL}).
In fact, we have that
{aNILld + NIL, idINIL + NIL} >—o—> {NILIlid, idINIL + NIL}.

4. CCS as an Augmented C/E System

4.1. From CCS to an Augmented C/E System

In this section we build Z¢ (g, the non-simple, a-contact-free A-C/E system which
behaves like CCS agents. We use as starting point the partial ordering transition relation
defined in the previous section.

Hereto, we will use the following notation:

* A denotes the set of CCS agents;

T denotes the set of transitions Ej—{1—E belonging to Milner’s derivation relation;

* G denotes the set of all grapes;

* R denotes the set of regular subsets of G

° D denotes the set of derivations H—1—H" such that H' - K’ ——H" belongs to the
partial ordering derivation relation.

Definition 4.1. (from CCS to the corresponding a-contact-free A-C/E system)
Let 2ccs = <B, E; F, C>, where
» B=QG;
+ E=D;
* g1 F(H—u—H") and H—u—H") F g»,
forall gy € H', gy € H", and H—u—H" € E;
e C=R. ¢

Property 4.1. (X is an A-CIE system)
i) Cisan equivalence class of the reachability relation;
ii) Every event has a case in C which enables it.

Proof. i) The regular sets of grapes are closed with respect to forward and backward firings
by Theorem 3.3.ii) and iii). They are connected with respect to the reachability relation since,
given any pair of regular sets I7' and I", by Theorem 3.4 it is possible to find agents E1' and
E1" such that

decrel(E1', I, I1) and 11" >—s'— Iy’

decrel(E1", I1", I1") and I" >—s"— I»"

25

where s and s' are sequences of actions; and thus if we consider the regular (and complete) set
{¢E1'+ 0E1"} we have
{aE{'+ aE1"} >—as'> I’ and {aEq'+0E1"} >—as"—> 1"

ii) Follows from Theorem 3.3.1). ®

Property 4.2.
The A-C/E system 2CCS is a-contact-free.

Proof. Immediate from Theorem 3.3.ii) and iii). '3

Example 4.1.
Let us consider the CCS agent of Example 3.2:
E = (((rec x. ox+Bx) | rec x. ax+yx) | rec x. a-x)\o.
Fig. 4.1 shows the relevant part of s corresponding to E, containing only the cases ¢ such
that decrel(E, I, I) holds and I r* ¢, the conditions in these cases, and the events enabled by
them. Actually, it has only one case c(), graphically represented by marking those conditions
which hold in it.
cg = {bg, b1, ba}, where
bg = (((let x=0x+Px in arec x.ax+Px)+Prec x.ox+Bx)lid)lid)\o;
b1 = ((idllet x=0x+Yx in orec X.0x+yx)+yrec x.ox+yx)lid)\ot;
by = (idllet x=0"x in or-rec X.0-x)\OL.

There are the following four transitions
eg : {bg, bp} —1— {bg, ba}; e1 : {bg} —B— (bg};
ey : {b1}—y— {b1}; e3: {b1, by} —— (b1, b2};

and the relevant part of flow relation F is

eg =g = {bg, b2} ep=er = {bo};
ey =¢ey = {b1}; e3 =e3 = {by, bp}. Y

26

CO b2 83 bl 32

Fig. 4.1. The fragment of 2 (s, as constructed in Example 4.1.
The case, represented by marked conditions, corresponds to agent

(((rec x. ox+Px) I rec x. ox+yx) | rec x. o-x)\ot decomposed in Example 3.2.
For the sake of clarity, we have labelled the events with the actions they contain.

In Figure 4.2. we see the case graph for the A-C/E system in Figure 4.1. .

-
{bo,by,b,}

{e 1,62} {C 1763}

Fig. 4.2.The case graph for the A-C/E system in Figure 4.1. It is also the relevant part of the
case graph of 2 g for agent (((rec x. ox+Bx) | rec x. ox+yx) | rec x. o-x)\x.

Events eq, €1, ey and e3 contain the actions 1, B, v, and T, respectively.

The above construction is suggestive and straightforward, but violates the simplicity
requirement for C/E Systems. Simplicity is felt as an important property within the theory of
Petri Nets, being imposed by the extensionality requirement. We now sketch an alternative
construction, slightly more cumbersome, that generates a system which is simple. Basically, it
extends the non-simple A-C/E system obtained above by attaching a new condition to every
event e (corresponding to the derivation H—u—H"). This condition occurs in both the pre-
and the post-conditions of e itself, and is constructed as a pair <e, cond>, where cond is a tag
which allows us to keep events and conditions disjoint. The A-C/E system obtained in this
way, called Sccs, is simple; furthermore, results similar to Properties 4.1 and 4.2 can be
easily proved.

27

Fig. 4.3 below shows the fragment of SC g corresponding to Example 4.1.

<e1, cond> <eq, cond> <ej, cond> <eq, cond>

B::(:)«-T:—t@‘——b
by

el bO eo

Fig. 4.3. The fragment of Sccg for agent (((rec x. ox+Bx) | rec x. ox+yx) | rec x. o-x)\ot.

4.2. Adequacy of the Petri Net Semantics

In this section we prove that the distributed semantics we propose satisfies criteria 1) and ii)
discussed in the introduction. Since our framework is now more precise we can rephrase these
criteria:

1) any semantics based on the original transition systems of CCS must be recoverable from

Zces:

i) Let ¢ be a regular case of g, namely a set of grapes, corresponding to a CCS agent E.

The multisets of actions contained in the sets of events concurrently enabled by ¢ must

coincide with the labels of the possible moves of E according to the multiset semantics of
CCS.

In order to show that our semantics satisfies criterion i) we prove a stronger property: the
original CCS transition system is retrievable from the A-C/E system we have built above. In
fact, we assume to describe the interleaving behaviour of Xcg by its interleaving abstract
case graph, i.e., the case graph obtained from 2 g case graph by ignoring those arcs which
are labelled by more than one event, and by taking actions rather than events as labels. We will
prove that there exists a transition-preserving surjective homomorphism from the interleaving
abstract case graph and the original transition system for CCS, as defined in Section 2. The
homomorphism guarantees that isomorphic labelled trees are obtained when unfolding two
related nodes.

28

Definition 4.2. (extracting actions from evenis)
Let abstr: E — A U {1}) be a function defined as abstr(Ii—u—1p) = W. ¢

Definition 4.3. (interleaving abstract case graph)
Let Pip = {(cy1, abstr(e), cp) I ¢y [[{e}> cp is a (singleton) a-step of s), then the
labelled graph @;,,, = (C, Pj,,) is the interleaving abstract case graph of 2s. ¢

Note that passing from 2ccgs to ®;,,, corresponds to an abstraction step, since more than
one arc can be mapped together; additionally, ®;,,, deletes arcs with parallelism. For instance,
the arcs labelled by {eg} and {e3} of the case graph of Figure 4.2, both corresponding to
derivations labelled by 7, are mapped into the single arc, labelled by 7, of the interleaving
abstract case graph in Fig. 4.4.a); the arcs labelled by {eq, e2}, {e1, ez} and {e1, e3} are
discarded.

Definition 4.4. (CCS rransition graph)
The labelled graph ¥ = (A, T) is the transition graph of CCS. ¢

T T

()
Coom D (D

a) b)

Fig. 4.4. The relevant part of the interleaving abstract case graph of g (in a), and of the
transition graph of CCS (in b) relative to the agent E of Example 4.1.

Definition 4.5.
A labelled graph I'y = (Ny, AI) is transition-preserving (tp-) homomorphic to a labelled
graph Iy = (N2, A,) if and only if there exists a surjective mapping h: Nj— Nj such that
1) (n1', label, n1") € Ay implies (h(n1"), label, h(n;")) € Ap; and
ii)¥n1' with h(n1") = np' and (ny', label, ny") € A»,
dni" with h(n1") =np" such that (n7',label,ni") e A1. ¢

29

Property 4.3.
LetI'y = (N1, Ay) and I'y = (N2, A,) be two labelled graphs which are tp-homomorphic via a
mapping h and ng, ny be two nodes of I'{ and I'; such that np = h(ny); then the labelled trees

obtained by unfolding I'y and I'y starting from nj and np are isomorphic.

Theorem 4.1. (interleaving > s is CCS)
The interleaving abstract case graph @;,,. of 2>Cg is tp-homomorphic to the transition graph

¥ of CCS, via the mapping gt R — oA defined as (D) = E iff decrel(E, L, I).

Proof. According to Theorem 3.1, decrel(E, I, J) is a function which maps regular sets of
grapes to CCS agents when the second argument is given. Moreover, Theorem 3.2 guarantees
that such function is surjective. Properties i) and ii) which the transition-preserving

homomorphism has to satisfy are thus simply points iv) and v) of Theorem 3.3 respectively. ¢

We can now show that the synchronization tree obtained by unfolding the interleaving
abstract case graph of 2 g from any node n, corresponding to a regular set I of grapes, is
isomorphic to the synchronization tree of the unique E such that decrel(E, I, I).

Corollary 4.1.

The tree obtained by unfolding the interleaving abstract case graph of > from any node n

is isomorphic to the tree obtained by unfolding the transition graph of CCS from node hgc¢(n).
¢

In Figure 4.4. we see the relevant parts of ®;,,; (in a)) and of ¥ (in b)) for the agent E of
Example 4.1: they happen to be isomorphic.

This corollary is obviously sufficient to prove that our construction meets criterion i).
Additionally, it shows that the correspondence between the two models is at a very basic level
since the synchronization trees of an agent and of the corresponding complete set of grapes are
identical. As a consequence we have that whichever observation mechanism we define
(bisimulation [14, 16], testing [9], ...), the correspondence between our net semantics and the
interleaving one will be always preserved.

To prove criterion ii), we define a multiset semantics for CCS in order to be more precise
about the parallelism expressed by a term. Another transition system is introduced which
extends the original system in that all the interleaved transitions are kept, but also transitions
labelled by multisets of concurrent actions are introduced in the spirit of SCCS [15] and Meije

30

[1]. We will use this new transition system, which we call multiset transition system, to prove
that our Petri Net semantics captures all and only the possible concurrency which is expressed
by a CCS term. Of course, we should first agree that the multiset transition system expresses
all possible parallelism; however the rules for SCCS and Meije have stirred little controversy,
and in fact it is difficult to conceive, as multiset semantics of CCS, anything different from
what we propose. In order to prove criterion ii), we show that decrel defines a transition-
preserving homomorphism also from the multiset transition system to the case graph of 2CCS
labelled by actions rather than by events. Thus, as before, we have that there is a one-to-one
correspondence between the trees obtained by unfolding the abstract case graph and CCS
multiset transition system starting from nodes related via decrel.

Definition 4.6. (extending synchronization algebra to multisets)
Let M, M' and M" be multisets of action (notation {LL1, ..., ia}) and U denote multiset union;
the multiset synchronization relation is the least relation which satisfies:

Synch(M', M", M' Uy M") and

Synch(M', M", M) implies Synch(M' U {A}, M" U A}, MuU {t}) ¢

Definition 4.7. (multiser derivation relation)
The multiser derivation relation E1—M—Ej, where M is a multiset of CCS actions and ¢ is
extended to operate on multisets, is defined as the least relation satisfying the following axiom
and inference rules: ‘
ACT) UE—{u}—-E
RES) Ej—M—Ej and o,0- ¢ M implies Ep\o— M— Ex\a
REL) Ej—M— Ep implies E1[¢]—¢(M)— Ep[¢]
SUM) E;j—M—Ep implies Ej+E—M—Ey and E+E;—M—Ej
COM) E;j—M— Ep implies E{JE—M-— EjlE and EIE;—M— EIE,
E;—M'—=Ej and E'y —M"—>E'> and Synch(M', M", M)
imply E{IE'1 —M-— EplE'y
REC) T[rec x. T/x] —M—E implies recx. T— M—> E. ¢

This multiset operational semantics is very similar to that given for Meije in [1], although a
richer structure than multisets is assumed there (actually a commutative monoid), and the
language is slightly different. An alternative way of seeing this semantics is to consider it as a
generalization of the SCCS semantics [15] in which the restriction on the synchronous
execution of parallel actions is removed, so that actions can be executed asynchronously.

We now relate the operational semantics based on X g to the multiset operational
semantics. We will sometimes refer to CCS equipped with the multiset semantics as M-CCS.

31

Definition 4.8. (abstract case graph)
Let Papsr = ((c1, {abstr(eq), ..., abstr(ep)}, cp) L c1 [[{e1, ..., en}> c7 is an a-step of
2cCs}» then the graph @ 44, = (C, Pgpeyp) is the abstract case graph of the A-C/E system

2CCS- *

Again, passing from 2Cs to @,p,;, corresponds to an abstraction step. For instance, in
Fig. 4.5.a) we see the abstract case graph for the case graph in Fig. 4.2. Both arcs labelled by
{eg} and {e3} are mapped on the same arc labelled by {t].

Definition 4.9. (CCS transition graph)
The graph © = (A, M) is the multiset transition graph of M-CCS where M denotes the

set of transitions E1—M—E, belonging to the multiset derivation relation. ¢

{B,1} {v.t}
B bbby) (1)
{B.v} {1}
a) b)

Fig. 4.5.The relevant part of the abstract case graph of Z¢gs (in a), and of the multiset
transition graph of CCS (in b) relative to the agent E of Example 4.1.

Theorem 4.2. (abstract 2ccs is M-CCS)
The abstract case graph @, of 2§ is tp-homomorphic to the multiset transition graph

® of M-CCS via the mapping heeg: R — 54 defined as heg (I) = E iff decrel(E, L, J).

Proof. A reasoning similar to that of Theorem 4.1 guarantees that homomorphism hgcg is
well-defined. The proof of properties i) and ii) of Definition 4.5 is different since the two
transition systems have now larger sets of arcs. Let us prove ii) first. We start from I' to obtain
the unique E' such that decrel(E', I', J'). Let us now assume that we have a proof of

E~—{p1,....un}— E". For every element | in the multiset it is easy to extract a proof that
E—{y;}—E;". But it can be seen immediately that the same proof holds for Milner’s system:
E—1;—E;". Using Theorem 3.1, it is now possible to derive, from each proof, a proof that

Hj—1;—Hj". Furthermore, it is possible to see that Hj' and Hj', Hj" and H;" are disjoint if

32

1% j. Thus, all such transitions can fire at the same time, and we will have in ® the arc

I, M, I'), with decrel(E", I", I"), I' = (ui HYulandI"= (ui H;") U I, where I contains
the grapes which do not participate to any of the transitions.

Claim i) is proved by reversing the argument. @

Corollary 4.2.
The tree obtained by unfolding the abstract case graph of 2 s from any node n is isomorphic
to the tree obtained by unfolding the transition graph of M-CCS from node heeg(n). ¢

In Figure 4.5. we see the relevant parts of D, pstr (in) and of O (in b)) for the agent E of
Example 4.1: they happen to be isomorphic.

5. Related Work

There have been many attempts to use Petri Nets to describe CCS without value passing. In
many cases, however, either proper subsets of CCS have been considered or the interleaving
semantics of the resulting net has not been the standard CCS one.

De Cindio et al. [3] map CCS into a subclass of Petri Nets (Superposed Automata Nets)
whose elements are systems composed of interacting sequential automata. They restrict CCS
syntax to avoid generation of unboundedly many agents in parallel via a recursive definition.
For example, terms like rec x. aNIL | Bx are not allowed.

Goltz and Mycroft [12] give a denotational semantics of CCS in terms of Occurrence Nets
and an operational semantics in terms of Place/Transition Nets. In the former case, since
possibly infinite Occurrence Nets are composed, operationality is lost. In the latter, only a CCS
subcalculus which does not contain the restriction operator is considered. Moreover, the
semantics they give is not in complete agreement with the original interleaving operational
semantics; in particular, it does not respect all the causal dependencies between the actions
performed by agents. See [6] for an example of this anomaly and for a discussion on its
causes.

Winskel [20] also proposes a partial ordering denotational semantics for CCS which is
based on Event Structures, a domain very close to Occurrence Nets and thus also extensional.
Again, possibly infinite event structures must be operated upon, and thus this semantics cannot
be considered as operational. Furthermore, Winskel simply claims that the interleaved
semantics agrees with Milner’s synchronization trees semantics without making any formal
statement. In [21] and [22], a categorical interpretation of C/E Systems is proposed, and
various operators are defined on them thus providing an adequate linguistic level. These
operators are in close correspondence with those of CCS, and using them it should be easy to
give a denotational semantics of the calculus. Nevertheless, the sum operator defined there is
not in full agreement either with that defined in [14] or with operational intuitions about
nondeterministic choice. In fact, a net corresponding to an agent E] + Ep may perform actions
from both alternative subprocesses. Winskel claims that his choice operator agrees with that of
[14] if one considers only safe nets which have no event leading to the initial marking; and that
all the nets obtained from CCS are of this kind. However, no complete definition of CCS
semantics is given, and no proof of its relationships with the original interleaving semantics is
mentioned.

An approach similar to that proposed in this paper has already been followed in a
companion work by the authors [6] and by Olderog in [17] where a slightly different and
simpler language is considered. However, the semantics proposed in [6] does not enjoy
criterion ii). In fact, because of the choice of keeping an immediate correspondence between

34

sets of grapes and CCS terms and of maintaining Milner’s assumption of a centralized control,
it does not allow the intuitively possible concurrent execution of certain actions when a
nondeterministic choice is made or a recursion is unwinded. For instance, agent aE1/BEy can
concurrently perform actions o and 3, whereas agent (¢E1IBE2)+NIL cannot. The latter can
only perform the interleavings of actions a and B and only afterwards it can concurrently
perform the actions of Eq and Ej.

Two new rules sum’) and rec’) for sum and recursion were introduced in the Section "Open
problems" of [6], and proved unsatisfactory. The following amended version has been
considered by the authors as an alternative to the four-argument derivation relation of Definition
3.4:

act") decrel(E, I, 1) implies {pE}~pu—1
res") Hy~p— Hp and pe{a,0} implies Hij\o ~p— Hy\o
rel') Hp~p— Hp implies H1[¢] ~0(1)— Hp[0]
sum") Hyu H3z ~u— Hp and decrel(E, I, I) implies Hju (H3+I) ~u— Hp
and Hijv (I+H3) ~u— Hp
com") Hy ~u— Hp implies Hjlid~pu— Hplid
and idH~pu— idHp

Hy ~A— Hp and H'{ ~A"— H» implies HjliduidIH'y ~t— Hplid U idiH',
rec") Hjpuw Hz[rec x. T/x]) ~u— Hp implies Hjuletx=TinH3 ~p— Hp.

Relation Hi ~u— Hp does not coincide with the projection of relation Hy - K—u— Hp
defined in Section 3. A counterexample is as follows:

{alid + BNIL, idla—+ yNIL} ~t— {NILld, idINIL} (*)
but not
{odid + BNIL, idla—+ yNIL} - K' —t—> {NILlid, idINIL}

The two relations can be proved to coincide when Hy and Hp in Hj ~iu— Hp are always

subsets of regular sets of grapes. As a matter of fact set {alid + BNIL, idloc—+ yNIL} is not
contained in any regular set of grapes. However, taking the above defined derivations
Hj~u— Hp as events would not have produced an A-C/E system, because the event
corresponding to (*) would be enabled by no case.

In [17] and other manuscripts Olderog refines the approach of [6] to overcome its problems
about sum and rec, and independently proposes a new set of derivation rules very similar to
those defined above. These derivations are then used to associate a 1-safe P/T net to each CCS
agent, rather than an A-C/E system to the whole CCS, a la Milner. In doing that, also

35

derivations which are not needed are generated and then thrown away by a suitable separate
step in the construction. For example derivation (*) above is obtained and then discarded. Also
Olderog puts forward criteria to assess the proposed semantics. However, criterion 1) is stated
by relying on a specific extensional semantics based on strong bisimulation rather than being
independent from any extensional semantics. Its proof is rather intricate since equivalence class
of nets must be considered and reachable markings, which correspond to our regular sets, must
be given an additional syntactic structure. More involved and less general conditions are stated
instead of criterion ii), but not formally proved.

The authors have tackled the problem of partial ordering semantics also in other papers.
Particularly relevant to the work presented here are papers [4, 5, 8]. In [4] a partial ordering
semantics for CCS is given in terms of Concurrent Histories, a sequential rewriting system
previously developed by two of the authors. In [8], a new model for non-sequential
computations, called Distributed Transition Systems, is introduced in which states are sets of
processes and transitions specify which processes stay idle. There, both Condition/Event
Systems and Place/Transition Nets, and CCS are modelled in terms of DTS. In [5] the model
for CCS developed in [8] is used as the basis for defining new equivalence relations over the
set of CCS agents, and for studying the relationships between interleaving and partial ordering
observational semantics of the calculus. All the above mentioned papers use a decomposition
function rather than relation decrel used in this paper, and run into problems which are similar
to those of [6], in the sense that the maximal concurrency of every CCS agent is not captured.
In [7] these problems are overcome by resorting to transitions with more complicated labels,
which however do not lead directly to a Petri Net semantics, yet providing a fully concurrent
operational semantics. The reason seems to be that in [7] we keep a centralized locus of
control where decisions are taken when dealing with choice or recursion contexts.

In this paper, we let C/E Systems play the role that transition systems have in the original
definition, and this allows us to contrast Petri Nets and CCS directly. As in the other papers,
the technique used to define the transitions of CCS agents is based on Plotkin’s SOS.

36

6. Conclusions

There have been many attempts to use Petri Nets to operationally describe CCS. To the best
of our knowledge, however, in no case a fully satisfactory formulation has been provided and
has been proved consistent with the ordinary interleaving semantics of CCS.

We have introduced Augmented Condition/Event Systems by slightly relaxing the classical
(simplicity and) enabling conditions for Condition/Event Systems. One system from this class,
called 2.cs., has been used to give a new operational semantics to Milner’s Calculus of
Communicating Systems. The interleaving case graph of X g has been proved homo-
morphic to the transition system of CCS and the homomorphism is such that the unfoldings
from two corresponding nodes are identical. We argue that our extensions do not affect the
results proved for standard C/E Systems, thus non-sequential processes defined for them [19]
can also be immediately defined for CCS.

The translation is in one direction only, mainly because synchronization in CCS involves
only two agents, whereas in Petri Nets the set of preconditions of an event may even be an
infinite set. CCS synchronization algebra needs extensions in order to cope with this problem.

We believe that lifting the restriction to guarded CCS terms might be conceptually easy but
formally cumbersome. In fact, if we apply our decrel definition to an unguarded CCS term, the
complete set of grapes we obtain may contain infinite grapes, or may be infinite, or both. For

instance, from
rec X. X

we get the singleton consisting of the infinite term
{let x=x in let x=xin ...}.

More interestingly, from

rec X. Olx
we can obtain the infinite case

I = {let x=ax in alid, let x=aulx in idllet x=alx in alid, ... }
which enables infinite events in parallel.

A careful treatment of infinite sets of grapes should maintain the validity of our results also
in the unguarded case. However, to our knowledge, no sufficiently well-developed theory of
infinite proofs (or perpetual processes, as they are called in logic programming) is now
available to concisely support the necessary formal development.

Furthermore, in order to maintain the operational character of our definition, it would be
necessary to handle the infinite sets of grapes on a “by need” basis. Notice, however, that in
the present development this is already the case for 2.cg: it is an infinite net, but its relevant
parts can be generated on demand by a finite set of rules. In particular, it would be convenient
to find a finite uniform encoding for every (possibly infinite) regular set of grapes I such that
the set of possible moves I >—1— I' is decidable.

37

A semantics in terms of Condition/Event Petri Nets is still very intensional. As was the case
for interleaving CCS, a further step is needed for defining a notion of observation and a
consequent congruence on the semantic domain. In this paper we have not been concerned with
this issue. However, the Petri net proposed here is a natural starting point of this further step.

In fact, a non-sequential process [19] (or, better, an action-labelled partial ordering
containing only its events [7]) can be associated to every path in the case graph, providing a
natural notion of partial ordering observation. From it, an observational equivalence and
congruence can be derived, by extending the notion of bisimulation. This can be done either
directly like in [2, 11], or on a class of partial ordering-labelled trees called NMS, like in [5].

The resulting extensional semantics of CCS do take into account the actual causal
dependencies between events in a way impossible for multiset semantics, let alone interleaving
semantics, thus eventually providing a firm motivation for the whole approach.

This fact can be appreciated considering the nets and the multiset transition systems
associated to the following CCS agents:

a) oNIL | BNIL and

b) oNIL | BNIL + oNIL.

Figure 6.1 shows the fragments of g relevant to these agents. Clearly the subsystem

in part b) describes the possible causal dependency of B from o, while the other does not.
GNLD CalphD 14 BNIL+ o NIES
S [e]

O NIL 1id + ¢ NI

a) b)

Fig. 6.1. The fragments of X-(g relevant to the CCS agents aNIL | BNIL (in part a)) and
oNIL | BNIL + o3NIL (in part b)).

38

It is of course possible to define a notion of observation which can be used for giving an
extensional semantics of Petri Nets which distinguishes the two C/E systems above. For
example if NMS’s [5] are used as the basis for defining behavioural equivalences, we have that
the labelled trees corresponding to the systems above are those of Fig. 6.2; any equivalence
would differentiate them, even a coarse trace equivalence considering only the sets of paths in

the trees.
® O K% ®
@® O® ©® ©®

L

a) b)

Fig. 6.2. The NMS’s corresponding to the two systems of Fig. 6.1.

On the other hand the two CCS agents, aNIL | BNIL and ooNIL | BNIL + aNIL, have a
very similar structure of multiset transitions:

—{o3— NIL | BNIL—{B}—NIL | NIL
oNIL | BNIL § —fo, B}— NIL | NIL
—{B}— aNIL | NIL—{a}—NIL | NIL

and
—{a}— NIL | BNIL—{B}—NIL | NIL
—{a, B}— NIL | NIL

olNIL | BNIL + oSNIL —{B}— aNIL | NIL—{a}—NIL | NIL

—{a}— BNIL—{B}->NIL | NIL

and it is thus impossible for any reasonable extensional semantics (e.g., with an idempotent +

operator) to differentiate the two CCS agents above.

Acknowledgements. The authors would like to thank E.-R. Olderog for stimulating
discussions, and the anonymous referees which have contributed to the actual shaping of the
paper through their detailed suggestions and pressing demands.

39

References

1.

10.

11.

12.

13.

14.

Austry, D. and Boudol, G. Algébre de Processus et Synchronization, Theoret.
Comput. Sci., 30, pp. 91-131 (1984) .

Boudol, G. and Castellani, I. On the Semantics of Concurrency: Partial Orders and
Transition Systems. Proc.TAPSOFT *87 (H. Ehrig et al., eds.), LNCS 249, pp. 123-
137, Springer-Verlag, 1987.

De Cindio, F., De Michelis, G., Pomello, L. and Simone C.: Milner’s Communicating
Systems and Petri Nets. In: Selected papers from the 374 European Workshop on
Applications and Theory of Petri Nets (A. Pagnoni and G. Rozenberg, eds.), IF 66,
pp. 40-59, Springer-Verlag, 1983.

Degano, P., De Nicola, R. and Montanari, U.: Partial Ordering Derivations for CCS.
Proc. 5th Int. Conf. on Fundamentals of Computation Theory (L. Budach, ed.), LNCS
199, pp. 520-523, Springer-Verlag, 1985.

Degano, P., De Nicola, R. and Montanari, U.: Observational Equivalences for
Concurrency Models. In: Formal Description of Programming Concepts I1I, (M.
Wirsing, ed.), pp. 105-132, North-Holland, 1987

Degano, P., De Nicola, R. and Montanari, U.: CCS is an (Augmented) Contact-Free
C/E System. To appear in Proc. Advanced School on Mathematical Models for the
Semantics of Parallelism. LNCS, Springer-Verlag, 1987.

Degano, P., De Nicola, R. and Montanari, U.: A Partial Ordering Semantics for CCS,
forthcoming.

Degano, P. and Montanari, U.: Concurrent Histories: A Basis for Observing Distributed
Systems. Journal of Computer and System Sciences, 34, pp. 442-461 (1987).

De Nicola, R. and Hennessy, M.: Testing Equivalences for Processes. Theoret.
Comput. Sci., 34, pp. 83-133 (1984).

Genrich, H.J., Lautenbach, K. and Thiagarajan, P.S.: Elements of General Net Theory.
In: Net Theory and Applications (W. Brauer, ed.) LNCS 84, pp. 21-163, Springer-
Verlag, 1980.

van Glabbeek, R. and Vaandrager, F.: Petri Net Models for Algebraic Theories of

Concurrency. Proc. PARLE Conf. (J. W. de Bakker, A.J. Nejman and P.C. Treleaven,
eds.) LNCS 259, Springer-Verlag, 1987.

Goltz, U. and Mycroft, A.: On the Relationships of CCS and Petri Nets. Proc. 11th
ICALP (J. Paredaens, ed.), LNCS 172, pp. 196-208, Springer-Verlag, 1984.

Keller, R.: Formal Verification of Parallel Programs. Communication of ACM, 7,
pp. 561-572 (1976)

Milner, R.: A Calculus of Communicating Systems. LNCS 92, Springer-Verlag, 1980.

40

15.

16.

17.

18.

19.

20.

21.

22.

Milner, R. Calculi for Synchrony and Asynchrony, Theoret. Comput. Sci., 285,
pp. 267-310 (1983).

Milner, R. Notes on a Calculus for Communicating Systems, in: Control Flow and
Data Flow: Concepts of Distributed Programming (M. Broy, ed.), NATO ASI Series F:
Vol. 14, pp. 205-228, Springer-Verlag, 1984.

Olderog, E.-R. Operational Petri Net Semantics for CCSP. In Advances in Petri Nets
1987, (G. Rozenberg, ed.) LNCS 266, pp. 196-223, Springer-Verlag, 1987.

Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Aarhus University, Department of Computer Science, Aarhus, 1981.

Reisig, W.: Perri Nets: An Introduction, EACTS Monographs on Theoretical Computer
Science, Springer-Verlag, 1985. '

Winskel, G.: Event Structure Semantics for CCS and Related Languages, Proc. 9th
ICALP (M. Nielsen and E. M. Schmidt, eds.), LNCS 140, pp. 561-567, Springer-
Verlag, 1982.

Winskel, G.: Categories of Models of Concurrency, (S. D. Brooks, A. W. Roscoe, G.
Winskel, eds.), LNCS 197, pp. 246-267, Springer-Verlag, 1985.

Winskel, G.: Petri Nets, Algebras, Morphisms and Compositionality, Info. and Co.,
72, 197-238 (1987).

41

