
A	dynamic	OAI	Publisher	Service	in	the	

DRIVER	Repository	Infrastructure	
	

Michele	Artini	

	

Istituto	di	Scienza	e	Tecnologie	dell’Informazione	“Alessandro	Faedo”	

CNR	Via	G.	Moruzzi,	1	-	56124	PISA	–	Italy	

Email:	michele.artini@isti.cnr.it	

	

Abstract—OAI-Publishers	are	 software	modules	enabling	harvesting	of	metadata	 records	describing	

the	 digital	 resources	 of	 a	 Digital	 Repository.	 Typically,	 such	modules	 are	 manually	 configured	 and	

implemented	 to	 export	 records	 contained	 into	 a	 local	 store	 according	 to	 a	 predefined	 number	 of	

metadata	formats.	Due	to	their	static	nature,	these	are	not	apt	to	the	dynamic	context	of	Repository	

Infrastructures,	where	a	virtual	store,	made	of	a	dynamic	pool	of	distributed	physical	stores,	may	hosts	

records	of	unpredictable	metadata	formats.	In	this	document,	we	describe	the	internal	architecture	of	

the	OAI-Publisher	Service	built	for	the	DRIVER	Repository	Infrastructure.	The	Service	is	capable	of	self-

configuring	 its	 internals	 so	as	 to	adapt	 to	 the	variable	 content	of	 the	virtual	 store.	 Finally,	we	 shall	

describe	some	extensions	for	the	creation	of	dynamic	collections	and	formats.		

	

I.	INTRODUCTION		

	

In	the	Digital	Library	(DL)	context,	the	term	Repository	generally	refers	to	“containers	of	digital	

objects”,	namely	technologies	for	maintaining	a	store	of	digital	resources;	Fedora	[1],	DSpace	[2]	are	

examples	 of	 known	 Repository	 technology.	 OAI-PMH	 compliant	 Repositories	 (OAI-Repositories)	 are	

Repositories	endowed	with	an	OAI-Publisher	component,	which	is	a	software	component	implementing	

the	OAI-PMH	protocol	standard	interface	[3].		



By	adopting	this	standard,	Repositories	enable	access	 to	 their	digital	 resources	as	 if	 they	were	OAI-

Items,	i.e.	entities	adhering	to	the	OAI-Item	Model	[4]	(See	Figure	1).	According	to	the	model	an	OAI-

Item	 represents	 the	 existence	 of	 a	 real	world	 resource	–	 be	 it	 digital	 or	 physical	 –	 and	 exposes	 its	

description,	given	in	terms	of	a	number	of	metadata	records.	Such	records	conform	to	specific	metadata	

formats,	one	of	which	must	be	Dublin	Core	[5].		

	

	
Figura	1:	OAI-PMH	Model	

	

OAI-Publishers	 enable	 bulk-extraction,	 namely	 harvesting,	 of	 OAI-Items	 w.r.t.	 to	 one	 of	 the	

metadata	 formats	 exposed	 by	 the	 Repository	 metadata	 store.	 Typically,	 OAI-Publishers	 are	 build	

around	the	such	store,	not	expecting	changes	in	the	exported	metadata	formats,	and	expecting	only	

rare	changes	in	the	OAI-Sets	to	be	exported.	As	such,	the	technology	required	for	their	implementation	

is	quite	ad-hoc,	entailing	only	rare	maintenance	human	interventions.	å	

The	 DRIVER	 Repository	 Infrastructure	 is	 a	 dynamic	 distributed	 environment,	 where	 several	

Service-oriented	 DL	 applications	 can	 coexist.	 An	 application	 is	 here	 intended	 as	 a	 dynamic	 pool	 of	

Services	orchestrated	by	 the	application	 logic	 in	 order	 to	 deliver	 the	 functionality	 expected	 by	 the	

application	user	community.	Service	instances	can	join	or	leave	the	infrastructure	at	any	time	(register	

or	unregister,	 in	a	peer-to-peer	 fashion)	and	be	part	of	one	ore	more	applications.	 In	such	dynamic	

environment	applications	can	share	between	them	content	(e.g.	metadata	records),	which	they	either	

harvested	 from	OAI-Repositories	 or	 natively	 created	 into	 the	 infrastructure	 and	 placed	 in	 a	 highly	

distributed	storage	space,	supported	by	special	Store	Services;	the	“union”	of	their	distributed	running	

instances	 forms	 a	 virtual	 store,	 namely	 the	 Information	 Space,	 populated	 and	 accessible	 by	 all	 DL	

applications	in	the	infrastructure.		



Currently,	the	largest	DL	application	running	over	the	DRIVER	Infrastructure,
1	is	called	DRIVER	

European	Information	Space.	The	application	includes	a	set	of	Aggregator	Service	instances,	capable	of	

harvesting	records	from	valid	OAI-Publishers	of	European	Digital	Repositories.	The	harvesting	activity	

collects	all	records	from	OAI-Repositories	in	Europe,	regardless	of	the	kind	of	metadata	records	they	

yield	and	the	size	of	their	content.	When	a	Repository	is	willing	to	join	the	Information	Space,	it	registers	

to	the	infrastructure	by	providing	the	information	required	for	its	harvesting;	i.e.	geographical	location,	

URL,	metadata	 formats,	 and	OAI-Sets.	 The	 application	 logic	 orchestrates	 (i)	 the	 Aggregator	 Service	

instances	 in	order	 to	harvest	all	metadata	 formats	available	 from	 the	Repository;	and	 (ii)	 the	Store	

Service	instances	in	order	to	allocate	the	storage	space	required	to	host	the	incoming	records.		

The	DRIVER	OAI-Publisher	Service	must	implement	an	OAI-PMH	interface	over	the	virtual	store,	i.e.	the	

DRIVER	 Information	Space,	 in	order	 to	provide	 the	available	 records	 to	whoever	 is	willing	 to	access	

them.	Accordingly,	it	has	to	be	devised	to	automatically	adapt	to	the	potential	changes	determined	by	

the	harvesting	of	new	Repositories,	 so	as	 to	always	provide	OAI-PMH	 responses	 coherent	with	 the	

actual	content	of	 the	 Information	Space.	 In	 this	document	we	present	how	this	can	be	done	 in	 the	

dynamic	environment	of	the	DRIVER	 infrastructure	and	show	how	powerful	variations	of	traditional	

OAI-Publisher	technology	can	be	added	to	this	implementation.		

	

A. Outline	

	
In	Section	II	we	shall	first	describe	the	notion	of	Digital	Library	applications	built	on	top	of	the	

DRIVER	Repository	Infrastructure,	while	in	Section	III	we	describe	how	the	virtual	DRIVER	Information	

Space	is	maintained	by	the	infrastructure.	In	Section	IV	we	explain	how	self-configurable	and	powerful	

OAI-Publisher	Services	can	be	devised	to	operate	over	such	Information	Space.	Finally,	in	Section	VI	we	

summarize	the	work	done	so	far	in	such	direction	and	underline	possible	future	avenues.		

II.	DRIVER	REPOSITORY	INFRASTRUCTURE		

Nowadays	some	DL	user	communities	have	changed	their	requirements,	by	posing	no	constraints	on	

time,	 space,	 and	 functionalities.	 DL	 applications	 range	 from	 temporary	 work	 spaces	 to	 elaborate	

collaborative	 environments	 (e.g.	 DL	 endowed	 with	 peer-review	 mechanisms),	 and	 very	 large	

																																																								
1	Largest	in	terms	of	resources	involved,	currently	more	than	350’000	records.	



distributed-federated	object	stores,	whose	functionality	may	change	very	frequently	in	time.	In	order	

to	 face	 this	 new	 requirements	 we	 envisage	 the	 shift	 from	 DL	 applications	 based	 on	 standalone	

Repository	 technology	 to	 a	 loosely	 coupled	 Service-oriented	 architecture,	 which	 offers	 greater	

reusability	and	helps	to	reduce	development	and	maintenance	costs.		

The	aim	of	Repository	Infrastructures	is	that	of	enabling	the	construction	and	maintenance	of	

DL	 applications	 with	 higher	 orders	 of	 sustainability.	 Infrastructures	 exploit	 the	 Service-oriented	

architecture	 in	 order	 to	 provide	 distribution	 and	 sharing	 of	 content	 and	 functionality,	 i.e.	 Services	

offering	efficient	content	storage/access	and	business	logic.	Organizations	building	their	DL	applications	

on	top	of	an	Infrastructure	can	profit	from	reusing	the	Services	offered	by	other	Organizations	and	add	

(therefore	themselves	share)	their	own	Services	when	those	available	are	not	enough	for	their	needs.		

A	real	running	Repository	Infrastructure	has	been	implemented	in	the	DRIVER	project	[6].	The	project	

has	been	funded	by	the	European	Commission	with	the	goal	to	contribute	in	implementing	the	future	

knowledge	infrastructure	of	the	European	Research	Area.	The	project	concluded	in	November	2007	and	

has	 focused	 on	 (i)	 the	 production	 and	 maintenance	 of	 a	 Repository	 Infrastructure	 and	 (ii)	 the	

construction	of	the	first	DL	application	on	top	of	it.	The	application,	named	European	Information	Space,	

aims	 at	 harvesting	 Open	 Access	 content	 from	 all	 European	 OAI-Repositories	 into	 the	 Repository	

Infrastructure	so	as	 to	make	 it	accessible	as	a	whole	 to	world-wide	academics	and	students	 trough	

advanced	 user	 functionalities.	 Other	 DL	 applications	 have	 been	 subsequently	 built,	 exploiting	 the	

Repository	Infrastructure	populated	by	the	European	Information	Space	application.		

The	DRIVER	Infrastructure	consists	of	three	layers	of	running	Service	instances:	Enabling,	Data,	

and	Application	Layers.		

	



	
Figura	2:	Driver	infrastructure	

		

A. Enabling	Layer	

	

The	 layer	 includes	 instances	 of	 Information	 Service,	 Manager	 Service,	 and	 Authentication	 and	

Authorization	 Service.	 These	 accomplish	 core	 tasks	 typical	 of	 “volatile”	 infrastructures,	 such	 as	

registering,	unregistering,	authenticating,	authorizing	Service	instances	residing	at	different	nodes	on	

the	Internet.	Differently	from	similar	SOA-oriented	architectures,	an	application	is	not	here	intended	as	

a	 specific	 set	 of	 dedicated	 and	 interconnected	 Service	 instances.	 Apart	 from	 User	 Interfaces,	

applications	can	use	any	of	the	Service	instances	which	are	available	in	a	certain	moment	in	time	and	

whose	 functionality	 is	 required	 to	 accomplish	 a	 certain	 operation.	 To	 this	 aim,	 the	 layer	 provides	

resource	 discovery	 and	 orchestration	 logic	 mechanisms.	 The	 former	 enable	 discovery	 of	 Service	

instances	satisfying	certain	functional	condition;	searches	are	based	on	the	Service	profile	information	

provided	 at	 Service	 instance	 registration	 time.	 The	 latter	 perform	 application	 activities	 by	 applying	

discovering	 techniques.	 For	 example,	 user	 running	 queries	 entail	 a	 number	 of	 orchestration	 logic	

activities.	The	query	can	be	sent	by	the	UI	to	any	of	the	Search	Service	instances	available	(part	of	the	

Data	Layer).	To	this	aim,	the	logic	discovers	the	“best”	instance	available	(e.g.	the	less	overloaded,	the	

IP-closest),	and	sends	the	query	to	it.	The	same	holds	for	the	Search	Service	instance,	which	needs	to	

discover	the	Index	Service	instances	capable	and	available	to	run	the	query,	decide	which	to	use	(query	

optimization),	and	then	send	them	the	query.	In	such	scenario,	for	example,	Index	Service	instances	

may	be	added/removed	at	any	time,	without	the	need	of	reconfiguring	the	available	Search	Services.		

	



B.	Data	Layer		

	

The	 layer	builds	on	top	of	the	Enabling	Layer	and	 includes	 instances	of	Store	Service,	 Index	Service,	

Search	Service,	Collection	Service,	Aggregation	Service,	and	OAI-Publisher	Service.	As	such,	the	Data	

Layer	can	be	considered	an	application	with	a	specific	orchestration	logic.		

	

	
Figura	3:	Index	Factory	Services	

Store	Services	and	Index	Services	instances,	also	called	factory	services,	can	return	new	empty	

stores	 and	 indexes	 to	 the	 consuming	 applications.	 Such	 entities	 are	 called	Data	 Structures	and	 are	

registered	to	the	infrastructure	with	a	descriptive	profile.	In	practice,	there	is	a	distinction	between	a	

Store	Service	and	the	Store	Data	Structures	(DS)	it	manages:	consuming	Services	may	ask	a	Store	Service	

instance	to	generate	a	new	Store	DS	for	their	use,	as	well	as	to	put	or	retrieve	some	metadata	records	

from	the	Store	DS.	Similarly,	Index	Service	instances	can	be	asked	to	create	Index	DSs,	feed	them	with	

metadata	records,	or	query	them	to	search	for	records.	The	same	Index	and	Store	Service	instances	can	

therefore	serve	different	DL	applications,	as	well	as	the	DS	created	in	the	context	of	one	application	can	

be	reused	in	the	context	of	another;	i.e.	sharing	of	Store	DSs	and	Index	DSs.	This	is	the	case	for	Search	

Service	instances,	which	resolve	queries	by	discovering	the	Index	DSs	capable	of	answering	the	query	

in	the	shortest	amount	of	time.	After	identifying	the	candidate	Index	DSs,	they	need	to	interact	with	

the	responsible	Index	Services	in	order	to	send	the	query,	merge	the	results,	and	send	the	answer	to	

the	consumer,	e.g.	the	User	Interface.		

Aggregator	Service	instances	can	harvest	records	from	OAI-Repositories,	clean	and	enrich	the	

records	according	to	special	rewriting	rules	(to	be	provided	by	an	administrator),	and	store	them	into	a	

given	Store	DS.	Aggregator	Services	can	also	map	records	of	an	input	metadata	format	into	another	

possibly	proprietary	metadata	 format,	 thus	 generating	 records	native	 to	 the	 specific	DL	application	

involved.		



The	Data	Layer	orchestration	logic	is	in	charge	of	maintaining	the	Information	Space	consistent	

and	robust.	It	therefore	reacts	to	operations	such	as	Repository	registering	and	unregistering	to	and	

from	 the	 infrastructure.	 For	 example,	 the	 registration	 of	 a	 Repository	 tells	 the	 infrastructure	what	

metadata	 formats	 are	 to	 be	 harvested	 from	 the	 Repository.	 The	 logic	 assigns	 the	 Repository	 to	 a	

discovered	Aggregation	Service	instance	(currently	it	chooses	the	one	in	the	same	geographical	region	

of	the	Repository),	together	with	information	on	which	Store	DSs	should	be	used	to	save	the	harvested	

records.	In	the	case	of	need,	the	logic	also	creates	the	Store	DSs	required	to	host	the	incoming	records:	

it	first	discovers	the	Store	Service	instances	available	to	do	so,	creates	the	Store	DSs,	then	informs,	i.e.	

dynamically	 configures,	 the	 Aggregator	 Service	 involved	 on	where	 to	 divert	 the	 harvested	 records.	

Furthermore,	any	new	record	should	be	inserted	into	at	least	one	Index	DS,	in	order	to	be	reachable	

through	searches.	The	logic	ensures	this,	by	sending	the	incoming	records	to	the	appropriate	Index	DS	

and	 creating	 new	 Index	 DSs	 when	 necessary.	 Finally,	 the	 logic	 ensures	 robustness	 by	 managing	

replication	 of	 Store	 and	 Index	 DSs	 and	 space	 optimization	 by	 removing	 obsolete	 DSs	 from	 the	

infrastructure.	

	

C.	Application	Layer	

		

The	largest	application	running	into	the	layer	is	the	European	Information	Space	application.	It	

builds	on	top	of	the	Data	Layer	and	Enabling	Layer	by	adding	new	Service	typologies.	Among	these:	

User	 Profiling	 Services,	 Community	 Services,	 Recommendation	 Services,	 and	 User	 Interfaces.	 Its	

administrators	operate	a	number	of	Aggregator	Service	instances	to	aggregate	Open	Access	content	of	

Repositories	 from	 countries	 including	 the	 Netherlands,	 Germany,	 France,	 Belgium,	 Italy,	 Ireland,	

Poland,	 Spain,	 and	 UK.	 Currently,	 the	 application	 has	 registered	 and	 harvested	 from	 64	 OAI-

Repositories,	reaching	the	threshold	of	about	300.000	Open	Access	OAI-Items	from	all	over	Europe.		

	

III.	DRIVER	INFORMATION	SPACE		

	

In	principle,	one	Index	DS	and	one	Store	DS	must	contain	records	of	the	same	metadata	format,	

but	not	necessarily	originating	from	the	same	Repository.	Such	a	choice	depends	on	the	orchestration	



logic,	which	can	apply	different	storage	and	indexing	policies	exploiting	the	factory	Service	instances	at	

hand.	In	particular,	each	Store	and	Index	DS	specifies	 in	 its	registration	profile	the	kind	of	metadata	

format	it	supports.	More	specifically,	the	infrastructure	envisages	special	system	Data	Structures,	called	

MDFormat	DSs,	created	whenever	a	new	metadata	format	is	introduced	into	the	system;	this	event	can	

be	implicit,	when	harvesting	from	a	Repository	records	matching	a	format	that	was	never	harvested	

before,	or	explicit,	when	an	Aggregator	Service	is	used	to	generate	records	of	an	DL	application-specific	

metadata	format.	In	both	cases,	a	new	MDFormat	DS	is	created	and	its	profile	registered	to	the	system,	

specifying	the	name	of	the	format,	the	relative	XML	schema,	and	other	relevant	information,	not	to	be	

explained	here.		

The	records	harvested	from	the	OAI-Repositories	become	part	of	a	virtual	 Information	Space	

(i.e.	 the	 union	of	 all	 Store	DSs),	which	 virtually	 hosts	 so-called	DRIVER	Objects.	One	DRIVER	object	

groups	all	records	relative	to	one	OAI-Item,	plus	extra	records	possibly	needed	by	the	DL	application	

responsible	of	harvesting.	 For	example,	 in	 the	 case	of	 the	European	 Information	Space	application,	

DRIVER	 Objects	 contain	 the	 original	 metadata	 records,	 plus	 a	 further	 record	 in	DRIVER	Metadata	

Format	(DMF).	DMF	records	are	intended	as	metadata	descriptions	of	the	OAI-Item	as	a	whole,	thus	

include	Dublin	Core	fields	(resource	description),	fields	containing	keywords	extracted	from	the	full-

text	(resource	synthesis),	provenance-related	fields	(resource	origin,	e.g.	Repository	name,	institution,	

geographical	 location,	etc)	and	others.	DMF	records	are	uniform	in	content,	meaning	that	values	of	

their	fields	are	derived	from	the	records	of	the	relative	OAI-Item	but	chosen	from	well-defined	DMF	

field	domains.		

As	 specified	 above,	 harvested	 records	 are	 kept	 in	 Store	DSs	 dedicated	 to	 a	 given	metadata	

format.	Accordingly,	records	of	the	same	OAI-Item,	virtually	belonging	to	the	same	DRIVER	Object,	are	

contained	into	different	Store	DSs.	In	DRIVER,	records	are	uniquely	identified	in	the	Information	Space	

with	a	 triple:	OAI-Item	 identifier	 (unique	by	definition	 in	 the	context	of	 the	originating	Repository),	

Repository	 identifier	 (unique	and	created	by	the	 infrastructure	at	Repository	registration	time),	and	

Store	 DS	 identifier	 (unique	 and	 created	 by	 the	 infrastructure	 at	 DS	 registration	 time).	 Accordingly,	

DRIVER	Objects	are	virtually	identified	by	the	pair	Repository	identifier	and	OAI-Item	identifier.		

Access	Services	enable	random	access	to	one	metadata	record,	given	its	record	identifier	(OAIid,	RepId,	

StoreId).	The	Service	discovers	the	location	of	the	Store	Service	in	charge	of	the	Store	DS	identified	by	

StoreId	and	fires	it	a	request	for	retrieving	the	given	record.		



	

IV.	DRIVER	OAI-PUBLISHER	SERVICE		

	

The	 DRIVER	 OAI-Publisher	 Service	 is	 designed	 to	 support	 an	 OAI-PMH	 interfaces	 over	 the	

dynamic	pool	of	Services	and	DSs	available	to	the	infrastructure.	The	Service	exploits	the	information	

available	 into	 the	 Service	 and	 DS	 profiles	 of	 the	 infrastructure	 to	 self-configure	 its	 internals	 and	

accomplish	 its	tasks	with	not	need	of	human	administration	and	maintenance.	 In	particular,	DRIVER	

OAI-Items	are	uniquely	 identified	by	 the	DRIVER	Object	 identifier	 and	 contain	all	metadata	 records	

available	to	the	DRIVER	Object;	OAI-Sets	are	intended	as	the	Repositories	harvested	so	far.	The	OAI-

PMH	methods	are	implemented	as	follows:		

	

	
Figura	4:	OAI	Publisher	

	

• Identify:	 the	 method	 returns	 the	 description	 of	 the	 “DRIVER	 Information	 Space	 Virtual	

Repository”;	 	

• ListMetadataFormats:	the	method	discovers	all	MDFormat	DSs	registered	to	the	infrastructure	

and	constructs	the	appropriate	response;	 	

• GetRecord:	the	method	expects	an	OAI-Item	identifier	and	returns	the	relative	record;	to	this	

aim,	 the	 Service	 discovers	 the	 first	 available	 Access	 Service	 and	 sends	 it	 a	 random	 access	

request;	it	then	returns	the	record	to	the	caller;	 	

• ListSets:	the	method	answers	with	the	list	of	Repositories	harvested	so	far;	 	

• ListRecords:	 the	method	expects	a	metadata	 format	and,	optionally,	 a	 from-to	condition	on	

dates	and/or	an	OAI-Set;	it	returns	a	list	of	records	with	relative	resumption	token,	according	to	



the	standard	specification.	Two	different	implementations	of	the	method	are	possible.	The	first	

exploits	the	Data	Layer	as	it	is,	by	discovering	all	Store	DSs	containing	records	of	the	given	format	

and	originating	from	a	specified	Repository,	that	is	located	in	a	given	OAI-Set;	given	the	Store	

DSs,	the	method	sends	the	relative	Store	Services	a	request	for	retrieving	the	records,	merges	

the	results,	and	delivers	to	the	caller.	The	second	exploits	instead	special	Index	DSs,	created	on	

purpose	to	efficiently	answer	such	calls;	the	Data	Layer	orchestration	logic	maintains	one	Index	

DSs	for	each	format	in	the	system,	enabling	record	searches	by	record	identifier,	by	date	range,	

and	 by	 Repository	 of	 origin.	 In	 this	 scenario,	 the	 OAI-Publisher	 Service	 searches	 for	 the	

appropriate	Index	DSs	and	efficiently	answers	the	call;	note	that	the	method	GetRecord	could	

exploit	such	Index	DS	too.	 	

• ListIdentifiers:	the	same	as	ListRecords,	but	returns	only	the	record	identifiers.	

	

A.	OAI-Publisher	extensions	

	

DRIVER	aims	at	experimenting	two	extensions	of	the	OAI-Publisher	Service.	User	and	application	

consumers	will	 be	 able	 to	 configure	 from	 the	outside	 the	OAI-Publisher	 Service,	 in	 order	 to	 define	

special	OAI-Sets	or	enable	record	harvesting	according	to	different	metadata	formats.	More	specifically,	

the	extensions	regard:	 	

	

1) Dynamic	format	configuration:	the	Service	accepts	format-to-format	mappings	(rewriting	rules),	

let’s	assume	from	format	A	onto	format	B.	This	operation	adds	to	the	MDFormat	DS	of	B	the	

dependency	from	A	and	registers	a	new	MDFormat	DS	for	B	in	the	Enabling	Layer,	if	B	does	not	

exist.	The	method	ListRecords,	when	called	for	records	of	 format	B,	will	 return	all	 records	 in	

Store	DSs	of	format	B,	plus	all	records	from	Store	DSs	of	format	A,	after	applying	the	mapping.	

This	feature	can	therefore	be	used	to	permit	consumers	to	harvest	formats	not	present	in	the	

Information	Space	or	to	enlarge	the	number	of	records	matching	an	existing	format	and	will	use	

the	same	techniques	used	by	the	Aggregator	Services	for	cleaning	and	enriching	the	harvested	

metadata	 records.	 The	 rewriting	 rules	 are	 composed	 using	 a	 transformation	 language	

specifically	 tailored	 for	metadata	 records.	The	OAI-Publisher	will	exploit	 this	 tool	 in	order	 to	

provide	the	transparent	mapping	between	formats,	when	possible.		



2) Dynamic	OAI-Set	configuration:	the	Service	accepts	user	defined	Collections	[7],	i.e.	named	and	

fielded	 queries	 over	 a	 given	 format,	 and	 builds	 and	maintains	 the	 corresponding	 OAI-Sets;	

harvesting	w.r.t.	such	OAI-Sets,	restricts	the	attention	to	the	records	matching	the	Collection	

query	at	the	time	of	harvesting;	the	OAI-PMH	listSets	call	to	this	Service	returns	the	names	of	

the	Repositories,	plus	the	names	of	the	Collections	submitted	so	far.		

	

	

B.	Incremental	harvesting		

	

The	 OAI-PMH	 protocol	 specifies	 a	 mechanism	 for	 continuous	 synchronization	 called	

“incremental	 harvesting”.	 Consumers	 of	 OAI-Items	 (harvesters)	 are	 able	 to	 retrieve	 only	 recent	

additions	to	the	source	repository	by	specifing	a	date	range.	Modifications	of	already	existing	metadata	

records	are	gracefully	propagated	as	each	modification	updates	the	date	stamp	associated	with	each	

OAI-Item,	while	the	OAI-Item	identifier	is	preserved.	However,	deleted	record	handling	proves	to	be	a	

problematic	area.		

According	to	the	OAI-PMH	standard,	OAI-Publishers	may	implement	three	levels	of	support	for	deleted	

records	by	announcing	it	in	the	OAI-PMH	Identify	response:		

	

• no:	the	repository	does	not	maintain	information	about	deletions.	A	repository	that	indicates	

this	level	of	support	must	not	reveal	a	deleted	status	in	any	response.		

• persistent:	 the	 repository	 maintains	 information	 about	 deletions	 with	 no	 time	 limit.	 A	

repository	that	indicates	this	level	of	support	must	persistently	keep	track	of	the	full	history	of	

deletions	and	consistently	reveal	the	status	of	a	deleted	record	over	time.		

• transient:	the	repository	does	not	guarantee	that	a	list	of	deletions	is	maintained	persistently	

or	consistently.	A	repository	that	indicates	this	level	of	support	may	reveal	a	deleted	status	for	

records.		

	

If	the	source	OAI-Publisher	supports	deleted	record	handling,	the	records	provided	by	the	OAI-PMH	

ListRecords	method	may	be	 tagged	with	a	deleted	 status	 label,	 informing	 the	OAI	harvester	 that	 it	

should	remove	the	record	from	its	store.		



If	an	OAI-Publisher	does	not	support	deleted	record	handling,	already	harvested	records	may	refer	

to	 unexisting	 items.	 Harvesters	 aware	 of	 that	 fact	 may	 decide	 to	 periodically	 refresh	 the	 whole	

repository	from	the	source,	in	order	to	minimize	the	probability	of	stale	data	accumulation.	The	DRIVER	

harvester	can	be	configured	to	perform	a	mixed	method	of	full	and	incremental	harvesting	strategies,	

according	to	performance	related	decisions	specific	to	each	single	source	repository.		

When	the	DRIVER	harvester	doing	a	full	refresh	delivers	the	records	to	a	store,	the	Store	Service2	

may	 compute	 the	 difference	 between	 the	 current	 content	 and	 the	 incoming	 records,	 in	 order	 to	

reconstruct	 the	 information	 relative	 to	 the	deleted	 records.	However,	 since	 such	operation	may	be	

impractical	 for	 large	 data	 sets,	 the	 system	 can	 be	 configured	 to	 avoid	 even	 trying	 this	 last	 resort	

strategy.	In	this	case	the	OAI-Publisher	exposing	the	infrastructure’s	virtual	store	contents	needs	to	able	

to	keep	track	of	 the	 inability	to	 implement	the	full	 level	of	deleted	record	handling	support,	and	to	

announce	the	real	level	of	compliance	through	the	OAI-PMH	Identify	response	of	the	exported	view.		

The	level	of	deleted	record	support	is	thus	highly	dependent	upon	the	dynamic	nature	of	the	virtual	

store	and	the	subset	of	the	records	to	be	exported.	Moreover,	since	the	announced	deleted	record	

support	level	must	be	shared	by	all	the	OAI-Sets	exported	by	the	same	OAI-PMH	entry	point,	multiple	

DRIVER	OAI-Publisher	instances	can	be	configured	to	provide	a	partition	of	the	virtual	store.		

A	similar	situation	may	arise	with	the	different	level	of	date	granularity	support.		

	

V.	REFERENCE	IMPLEMENTATION		

	

Our	current	implementation	of	the	OAI-Publisher	service	is	based	on	the	DRIVER	Testbed	infrastructure	

accessible	at	http://testbed.driver.research-infrastructures.eu.3	

	

																																																								
2	depending	on	the	specific	Store	Service	implementation.	
3	Currently	an	alpha	release,	to	be	released	definitively	in	June	2008.	



	
Figura	5:	DRIVER	Infrastructure	repositories	

The	DRIVER	Infrastructure	contains	data	from	a	117	European	repositories	(See	Figure	5),	

containing	more	than	350’000	items	describing	textual	documents	in	over	20	languages	authored	by	

more	than	200’000	authors.	

The	sizes	of	source	repositories	vary	between	very	small	ones	and	relatively	large	ones	(85’000	

items),	with	an	average	size	of	around	8’000	items.		

For	 each	 repository	 we	 keep	 the	 originally	 harvested	 metadata	 format,	 enriched	 with	

provenance-related	informations,	along	with	native	DRIVER	Metadata	Format	(DMF)	records,	obtained	

from	the	original	metadata.		

All	the	metadata	is	exported	through	several	redundant	OAI-Publisher	instances	which	expose	

each	repository	as	single	OAI-Set	of	the	whole	DRIVER	Information	Space.	

		

VI.	CONCLUSIONS	AND	FUTURE	ISSUES		

	

In	this	work	we	presented	OAI-Publisher	technology	as	needed	in	the	context	of	highly	dynamic	

Repository	 Infrastructures.	 In	particular,	the	case	of	the	DRIVER	Infrastructure	OAI-Publisher	Service	

was	presented.	Currently	the	 Infrastructure	offers	an	OAI-Publisher	Service	capable	to	self-adapt	 its	

configuration	so	as	to	return	responses	consistent	with	the	dynamic	and	continuous	status	changes	of	



the	DRIVER	Information	Space.	Future	steps	will	be	those	of	extending	the	OAI-Publisher	with	dynamic	

formats	and	OAI-Set	configuration	interfaces	as	described	above.		

The	DRIVER	Project	has	been	 re-financed	 in	 the	7th	FP	 so	as	 to	extend	 the	 Information	Space	with	

Compound	Objects.	Compound	objects	are	sets	of	digital	objects	related	by	relationships	representing	

the	nature	of	 their	 association;	 for	example,	 a	 “Research	Package	Object”	might	 consist	 in	 a	 set	of	

publications,	e.g.	PDF,	DOC	files,	 interconnected	by	relationships	named	“refersTo”	and	a	set	of	raw	

data	 files	 linked	 to	 such	 publications	 through	 relationships	 named	 “experimentalData”.	 Compund	

object	 graphs	 will	 be	 exposed	 both	 through	 the	 OAI-ORE	 protocol	 [8],	 and	 through	 the	 OAI-PMH	

protocol	using	MPEG-21	DIDL	payload	[9].		

	

ACKNOWLEDGMENT		

	

This	work	is	partially	supported	by	the	Information	Society	Technologies	(IST)	Program	of	the	European	

Commission	as	part	of	the	DRIVER	(Project	no.	IST-034047).		

	

REFERENCES		

	

[1] C.	Lagoze,	S.	Payette,	E.	Shin,	and	C.	Wilper,	“Fedora:	An	Architecture	for	Complex	Objects	and	

their	Relationships,”	Journal	of	Digital	Libraries,	Special	Issue	on	Complex	Objects,	2005.	 	

[2] 	R.	Tansley,	M.	Bass,	and	M.	Smith,	“DSpace	as	an	Open	Archival	Information	System:	Current	

Status	and	Future	Directions,”	in	Research	and	Advanced	Technology	for	Digital	Libraries,	7th	

European	Conference,	ECDL	2003,	Trondheim,	Norway,	August	17-22,	2003,	Proceedings,	ser.	

Lecture	Notes	in	Computer	Science,	T.	Koch	and	I.	Sølvberg,	Eds.	Springer-Verlag,	2003,	pp.	446–

460.	 	

[3] C.	Lagoze	and	H.	Van	de	Sompel,	“The	open	archives	initiative:	building	a	low-barrier	

interoperability	framework,”	in	Proceedings	of	the	first	ACM/IEEE-

CSJointConferenceonDigitalLibraries.	ACMPress,2001,	pp.	54–62.	 	



[4] Carl	Lagoze	and	Herbert	Van	de	Sompel,“TheOAIProtocolforMetadata	Harvesting,”	

http://www.openarchives.org/OAI/openarchivesprotocol.	html.	 	

[5] “Dublin	Core	Metadata	Initiative”,	http://dublincore.org.	 	

[6] “DRIVER	Digital	Repository	Infrastructure	Vision	for	European	Research,”	http://www-driver-

repository.eu.		

[7] L.	Candela,	D.	Castelli,	and	P.	Pagano,	“A	Service	for	Supporting	Virtual	Views	of	Large	

Heterogeneous	Digital	Libraries,”	in	7th	European	Conference	on	Research	and	Advanced	

Technology	for	Digital	Libraries,	ECDL	2003,	ser.	Lecture	Notes	in	Computer	Science,	T.	Koch	and	

I.	Sølvberg,	Eds.	Trondheim,	Norway:	Springer-Verlag,	August	2003,	pp.	362–373.	 	

[8] Carl	Lagoze	and	Herbert	Van	de	Sompel,	“Object	Reuse	and	Exchange	(ORE),”	

http://www.openarchives.org/ore/.	 	

[9] H.	V.	de	Sompel,	M.	L.	Nelson,	C.	Lagoze,	and	S.	Warner,	“Resource	harvesting	within	the	oai-

pmh	framework,”	in	D-Lib	Magazine,	Volume	10	Number	12,	ISSN	1082-9873,	December	2004.	

[Online].	Available:	http://www.dlib.org/dlib/december04/vandesompel/12vandesompel.html	 	

	

	

	

	

	

	

	


