Architecture Specification Language:
Design and Implementation

D. Castelli, C. Meghini, D. Musto

Technical Report on Activity A4.2

May 1988

Architecture Specification Language: Design and
Implementation (*)

D. Castelli, C. Meghini, D. Musto

Consiglio Nazionale delle Ricerche
Istituto di Elaborazione della Informazione
Via Santa Maria, 46
I-56100 Pisa, Italy

(*} A short version of this paper has been accepted
at the IFIP WG 8.4 Working Conference on 'OFFICE INFOR-
MATION SYSTEMS: The Design Process’, to be held in
Linz, Austria, 15-17 August, 1988.

Abstract

The report presents the design and the implementation of
ASL, a Language for specifying Office Information System
Architectures. An Office Information System Architecture is
seen as a set of interconnected hardware components, running
software packages that perform typical office activities.
The Language presented adopts the object oriented represen-
tation paradigm, and organizes the specification of an
Architecture through four 1level of abstractions. The
knowledge on commercial hardware and software components
that are employed in architectures is collected in the ASL
Catalogue. ASL is implemented on top of PSN, an extension of
Lisp with knowledge structuring facilities. Data structures
and programs that handle architectures are then embodied in
a PSN knowledge base and manipulated by the PSN interpreter.
The interface provided with the Language uses windows, menus
and Sunwindow text editing capabilities to facilitate the
specification of ASL operations and the visualization of
their results.

1. Non Technical Summary

The present report is part of Activity T.4.2, Architecture
Specification Language, of Work Package 4 (WP4). It
presents the results of Activity A4.2.4, Implementation of
ASL Knowledge Base. In the Project Workplan, there is no
provision for this report. However, we think that the
separation of the development of ASL from the development of
the simulation tool makes it necessary. Moreover, it has
been thought that this report might be a helpful companion
of the demonstration of the ASL prototypical implementation.

1.1. Contents

In Section 3 the concepts that have guided the Language
design are described, along with an introduction to the
implementation framework. In Section 4 we present the opera-
tions that can be used to manipulate the various components
of architectures. Section 5 introduces the Language imple-
mentation, while Section 6 presents a description of the ASL
User Interface. In Section 7, a sample insertion in the ASL
Catalogue is given, as an example of the use of ASL. In
Appendix A the complete is-a hierarchy of ASL is shown,
whereas in Appendix B a complete description of the ASL
Interface operations is presented.

1.2. Relation to Previous Work

The work reported in this document is the complement of
Activities A.4.2.1 (Architecture Specification Language
Design), and A.4.2.2 (Definition of ASL Knowledge Base), on
the development of a language for representing architectures
that support office information systems.

1.3. Relation to Future Work

The Architecture Specification Language will be the target
language of Activity A.4.3.3 (Mapping Techniques from Con-
ceptual Models to Architecture Models) and will serve as a
basis for A.4.3.5 (Architecture Simulation). The former
Activity concerns the transformation of a TCL Conceptual
Schema into a set of ASL Architectures; the latter deals

with the simulation of office activities on an ASL Architec~
ture.

1.4. Relation to Work in Other Work Packages

The description of the equipment employed in the Office 1is
part of the information that must be collected by Work Pack-
age 1 (WPl), in the Requirements Collection and Analysis
Phase. The Architecture Specification Language could be use-
fully adopted for such description. To this end, there have
been contacts between WPl and WP4, and a Meeting in Milan,

in which the model underlying ASL has been illustrated to
ITALTEL.

1.5. Effort

The preparation of this report has required about 60 man
days.

2. Introduction

The design of an Office Information System is seen in the
TODOS Methodology [Pern86] as consisting of four strongly
integrated phases: requirements collection and analysis,
logical design, rapid prototyping and architecture design.

While the first three phases are common to any tradi-
tional software development methodology, the architecture
design phase is a contribution of the TODOS Project to the
area of office information system design. The aim of the
architecture design phase is the identification of an archi-
tecture that «realizes the office information system being
designed. By architecture any set of interconnected hardware
components, running software packages, 1s meant. Thus,
rather than implementing the office information system Dby
developing software, the TODOS methodology focuses on the
use of existing software packages and emphasizes the design
of the architecture that will support the information sys-
tem.

To achieve its aim, the architecture design phase is
subdivided into two stages. In the first stage, which we
call the architecture generation stage, a number of alterna-
tive architectures, suitable for realizing the office infor-
mation system, is identified. The input to the architecture
generation is quantitative and qualitative information about
the office activities. The qualitative information is pro-
vided Dby the logical design phase, in the form of a concep-
tual schema describing the data objects manipulated by the
office activities and the functions abstracting such activi-
ties [Barb87]. The gquantitative information is provided by
the requirements collection and analysis phase [Bass87], and
integrates the conceptual schema with data such as the fre-
quency of activities, and the size of the involved data.
Given these two kinds of information, architectures are gen-
erated by the interaction of the office system designer with
the architecture generation tool, which assists the designer
in the specification of architectures satisfying the
requirements given as input.

In the second stage of the architecture design phase,
called architecture selection stage, the most appropriate
architecture, among those identified in the first stage, is
selected. To this end, each candidate architecture is
transformed into an equivalent queuing network model, on
which transactions simulating the office activities are run.
The performance of the architecture is so evaluated, so that

the most appropriate architecture can be selected on the
basis of a cost-benefit tradeoff.

In [Cast88] a Language for Architecture Specification
(ASL) that can be usefully employed within the architecture
generation phase of the TODOS methodology has been intro-
duced. 1In the present report, a refinement of the Language
design and an implementation of the Language 1is described.
Such implementation consists of a (prototypical) language
interpreter and user interface. The ASL interpreter is built
on top of the interpreter of PSN, an extension of Franz Lisp
with knowledge structuring facilities. The user interface is
written on top of the Sunwindow software package; it uses
windows, menus and graphics to facilitate the interaction of
the wuser with ASL. The prototypical ASL implementation is
being developed on a SUN3 Workstation, running Unix 4.2,
release 3.2.

The report is organized as follows: in the next Section
the principles of ASL will be outlined, while in Section 4 a
high level description of the operations available for mani-
pulating architectural objects will be pPresented. Section 5
describes the knowledge base supporting the language, show-
ing how the relevant knowledge on hardware and software com-
ponents, and on complex combinations of them, has been
structured. The ASL Interface is introduced in Section 6,
while an example of the use of ASL is given in Section 7. In
Appendix A the complete is-a hierarchy of ASL is shown,
whereas in Appendix B a description of the ASL Interface
operations is presented.

3. Architecture Specification Language: Ideas and Concepts.

The Architecture Specification Language (ASL) is a language
for representing computer system architectures of office
information systems. Such architectures consist of inter-
connected hardware components, supporting the functionali-
ties of software components.

A hardware component is any physical device that can be
employed in an information system; computers, input/output
peripherals, local area networks are typical hardware com-
ponents. Software components are the software packages that
run on the computers of architectures, performing tasks that
may involve other hardware components.

The connections among hardware components may point-
to-point or multipoint. A point-to-point connection is a
physical link between two hardware components that allows
the communication between them. A multipoint connection
enables the communication among several hardware components,
so establishing a computer network. Within the variety of
computer networks that have been proposed [Stal84], ASL only
considers Local Area Networks (LAN’s), as they are typically
employed in Office Information Systems.

Architectures, in their most general form, are modelled
by ASL as consisting of LANs which communicate between each
other. A LAN, in turn, is seen as a set of Subsystems,
where a Subsystem represents a local host in a computer net-
work. Finally, a Subsystem is constituted by a computer
Unit, point-to-point connected to other hardware Units. This
view determines a top-down decomposition of Architectures
through four levels:

(1) Architecture level, where Architectures are defined in
terms of LAN’s;

(2) Local Area Network level, which we will simply call Net-
work level, where LAN’s are defined as sets of intercon-
nected Subsystems;

(3) Subsystem level, including the definition of Subsystems
as sets of point-to-point connected hardware Units; and

(4) Unit level, the lowest level, where Units are defined.

Units are thus simplest constituents of Architectures
and refer directly to commercial components. In fact, a Unit

represents a particular hardware or software component of an
Architecture. The relationship between commercial components
and Units resembles that between a prototype and its
instances [Sowa84], and 1is clearly one-to-many: many
instances of the same component may be employed in an Archi-
tecture; each one of these instances will be represented by
a Unit, but all these Units will refer to the same com-
ponent.

The hardware and software components referenced by
Units form the Catalogue of the ASL. The ASL Catalogue may
be thought of as staying at the fifth level of the Architec-
ture decomposition shown above, in the sense that the
objects that it contains are used to define Units. In a
more general sense, however, the relationship between Units
and Catalogue objects is different from the relation between
the other levels of the decomposition, thus we have pre-
ferred to keep the Catalogue as a Separate concept. From a
more formal point of view, the Catalogue can be seen as the
domain of ASL, containing the language constants used by
higher level constructors to build the language objects.
Thus the role of the Catalogue in the ASIL is analogous to
that played by numbers and strings in traditional data
modelling languages. Of course, ordinary constants like
numbers and strings are also available in ASL.

At the knowledge level, ASL can then be seen as embody-
ing two different kinds of knowledge:

(1) the knowledge about hardware and software components,
collected in the ASL Catalogue, and used at the basic
level of the Language;

(2) the knowledge about combinations of hardware and
software products into architectural units of various
complexity (i.e. Units, Subsystems, Networks, and Archi-
tectures).

The complexity of both these kinds of knowledge Justi-
fies the wuse of a knowledge representation language for
implementing the ASL. Moreover, the naturalness of semantic
network formalisms in representing knowledge about a domain
of strongly interrelated objects, motivates the use of a
formalism of such kind in coping with the ASL Catalogue. The
second kind of knowledge that must be handled by ASL, might
have found in a rule based language a more appropriate
representation scheme, as the R1 experience shows [McDe80].
However, the tight interaction of these two kinds of

knowledge in ASL has suggested us the wuse of Procedural
Semantic Network (PSN, see next Section). In doing so, we
have retained the advantages of semantic networks, while
encoding into classes and programs the rules for combining
hardware and software components. A discussion on the logi~
cal adequacy of rules versus that of procedural semantic
nets in modelling office information system architectures is
clearly beyond the scope of this paper. However, when in
Section 5 we will illustrate the most significant implemen-
tation details, we will show how the use of programs not
necessarily implies a defeat of knowledge representation; at
least in those languages, like PSN, where declarative and
procedural knowledge coexist to model complementary aspects
of knowledge

In the next Sections we will give an overview of the

ASL components identified so far, after having introduced
the implementation framework of the Language.

3.1. The Implementation Framework

The basic concepts of ASL, introduced in the previous Sec-
tion, are implemented by using Procedural Semantic Network
(PSN) [Leve78], a knowledge representation language that
formalizes traditional semantic network concepts within a
procedural framework. PSN provides the mechanisms for
representing and manipulating objects and binary relation-
ships between them, according to the modelling principles of
obiject oriented languages. These principles can be summar-
ized as follows:

(1) there is a one-to-one correspondence between the objects
in the reality being modelled (in our case office infor-
mation system architectures) and the model objects, and
between the real world (binary) relationships and the
model relationships;

(2) three of these relationships are factored out and used
as abstraction mechanisms that permit the organization
of the knowledge in the model; they are:

(2.1) the instance-of relationship, corresponding to the
classification abstraction mechanism, by which
objects with common properties are gathered into
classes; an object 4is then an "instance-of" the
class where it belongs; in turn, classes may be

- 10 -

instances of metaclasses. Metaclasses, beside
helping the organization of knowledge at a meta
level, allow the definition of properties of
classes, a feature that turns out to be very use-
ful, as it will be shown in Section 5. Notice that
this notion of <c¢lass instance 1is fundamentally
different from the notion of prototype instance,
mentioned above;

(2.2) the part-of relationship, corresponding to the
aggregation abstraction mechanism, by which an
object is seen as the aggregate of the obijects
which are related to it; these relations can be
further divided into structural (the ones that
"constitute" the object, also called properties},
and assertional (those that merely make an asser-
tion about the object, and can be later retracted)
[Wood75] ;

(2.3) the is-a relationship, corresponding to the spe-
cialization abstraction mechanism, by which a
class of object is seen as a special case (or sub-
class) of another class; the former class is then
"is-a" the latter.

The three abstraction mechanisms interact with each
other by means of inheritance: a subclass inherits all the
properties defined by its superclass, whereas an instance of
a subclass is always an instance of its superclass.

Four operations are possible on PSN classes:

(1} create an instance of a class, realized by the to-put
procedure associated to the class;

(2) remove an instance from a class, performed by the class
to~rem procedure;

(3) get all the instances of a class, for which the to-get
procedure is defined;

(4) test whether an object is an instance of a class,
corresponding to the to-test procedure.

These procedures give the semantics of the class, as they
interpret the c¢lass structure in the intended way. The PSN
interpreter provides a standard procedure for each of the
four operations, to be used when the semantics of a class is

- 11 -

standard. However, a class may be given a non standard
semantics by specifying ‘ad hoc’ programs to perform one or
more of its four operations. We will see in Section 5 how
this feature of PSN can be used in representing some kinds
of knowledge involved in architecture modelling.

3.2. The ASL Catalogue

The ASL Catalogue is a knowledge base of objects represent-
ing the commercial hardware and software components which
are typically employed in office information systems archi-
tectures. Following the representation paradigm of PSN,
illustrated in the previous Section, the Catalogue includes
one object for each component. Classes of components are
defined on the basis of a functionality criterion, i.e.
hardware and software products having the same functionali-
ties are arranged within the same class. For instance,
objects representing computers are classified in the Catalo-
gue as instances of the same (hardware) component class,
namely the class "Computer". The same applies to software
components, with the class, say, "CentralizedDBMS", having
as instances those objects representing centralized Database
Management Systems.

Classes are taxonomically organized by mean of the is-a
relationship, which defines a lattice, called the is-a
hierarchy. The most general class of the Catalogue is the
class "Catalogue", having as instances, by inheritance, all
the Catalogue objects. The criterion which has been used for
defining specializations of class "Catalogue"™, is again that
of object functionality. Thus, for instance, class "Com-
ponent®, a specialization of "Catalogue" collecting all com-
ponent objects, is specialized in "HardwareComponent"™ and
"SoftwareComponent™. In this sense, the is-a relationship is
used in the Catalogue to (partially) order classes of com-
ponents according to their functionality, with the most gen-
eral class having the least specified functionality. The
specialization of functionality reaches a level of granular-
ity that is meaningful with respect to the aims of Architec-
ture Design within the TODOS methodology. In other words, a
class of Catalogue objects is a leaf of the is-a hierarchy
when a further specialization of it would have not added
relevant details from the TODOS methodology viewpoint. The
Catalogue is-a hierarchy will be introduced in Section 5.2.
Appendix A.2 shows the whole Catalogue is-a hierarchy.

- 12 -

Relationships between components are described in the
Catalogue in two different ways: as properties (or slots) of
the corresponding objects, if such relationships represent
structural attributes of components (like the CPU model of a
computer, or the external interfaces of a peripheral); as
assertions on the corresponding objects if they represent
time varying statements (like the price of a component).

The scenario that we have envisaged in designing the
ASL, 1is one where the office system designer uses interac-
tively the ASL interpreter to incrementally make up an
Architecture, in a bottom-up fashion. As the objects defined
in the ASL Catalogue are the basic ingredients of Architec-
tures, the Catalogue must be made accessible through a
powerful query language to serve its purpose within this
scenario. Such query language must enable the office system
designer to retrieve information about components through a
number of different channels. In the next Section, we will
illustrate in detail the features of the query language to
operate on the Catalogue. What is relevant here, is that the
user of ASL will see the Catalogue as a repository of infor-
mation which he consults when creating architectural units.

In order to function, the Catalogue must be set up and
kept wupdated, with new products or new versions of already
existing products. To perform this task, we have defined an
"ad hoc’ «role, the Catalogue Administrator, who has the
responsibility of initializing the ASL Catalogue and of
maintaining it wup-to-date. To carry out this task, the
Catalogue Administrator must have an in-depth knowledge of
the Catalogue structure, i.e. of the classes constituting
the Catalogue and of their organization. The ASL System pro-
vides the Catalogue Administrator with a set of special
operations to perform the Catalogue maintenance. These
operations, to be described in more detail in Section 4, are
accessible from the Administrator Interface, an interface
based on the same principles of the ASL Interface.

3.3. The Unit level

Units are the atoms of Architectures, in that they are the
lowest level building blocks of Architectures. A Unit is an
object which represents a (hardware or software) component
effectively used in an office information system. As such, a
Unit refers directly to the Catalogue object that it
‘materializes’ as a part of an Architecture. Thus a Unit can

13

be either a hardware or a software Unit, depending on the
Catalogue component that the Unit realizes. The most
relevant Units, from the Architecture specification
viewpoint, are those representing computers and peripherals,
which are the basic constituents of Architectures. But con-
ceptually the model makes no difference between a computer
Unit and the Units which represent parts of it, as, for
instance, the computer’s external interfaces or display. All
these are Units as well, as they ’'materialize’ Catalogue
obijects.

The specification of an Architecture is done in a
bottom-up fashion, starting from the definition of the Units
that constitute the Architecture, and proceeding up to the
higher level objects, Subsystems, Networks, and Architec~
tures. This way of defining Architectures is imposed by the
implementation language that has been chosen for ASL. In
fact, a top-down Architecture specification methodology
would imply the specification of higher level objects in
terms of lower level objects, to be later defined. However,
PSN does not allow the creation of an object that is related
to undefined objects, and this definitely prevents the use
of a top-down methodology for Architecture specification. We
note that this limitation is not restrictive as far as the
TODOS methodology is concerned, and can be afforded without
suffering any problem.

Units can be created, removed, and queried to find out
which are the Units’ property values. An important operation
that can be performed on a computer Unit is the Unit expan-
sion. Expanding a computer Unit means (semantically) to
increase one of the computer’s functionalities by adding an
appropriate device. This device can be a hardware or a
software device. In the former case, we have a hardware
expansion, whereas in the latter we have a software expan-
sion. A typical hardware expansion is the addition of a
memory board to a computer, to increase the computer’s
storage capacity. A software expansion is the installation
on a computer of a software package, which enables the com~
puter to perform one more function, or to perform better one
of the computer’s functions.

The notion of expansion captures an operation that the
current technology has made very common in the practice of
computer systems configuration. For this reason, a consider-
able numbers of such extensions are currently possible. An
available expansion slot of a computer may be used to
install an expansion board whose functionality may be as

- 14 -~

variable as the function performed by a program. Further-
more, a large variety of hardware components can be
expanded, not only computers. For practical reasons, we have
limited the hardware expansions modelled by the ASL to com-
puter expansions of the following kinds:

(1) coprocessor, that is the installation on a computer of
an additional CPU, wusually done for increasing the
computer’s performance on calculations of a specific
kind (numerical, graphical, and so on) ;

(2) main memory:;

(3) diskette: most personal computers have a diskette expan-
sion slot available in their base models; this kind of
expansions obviously applies only to personal computers;

(4) fixed disk;

(5) cartridge: as in the case of diskette, this expansion
only applies to computers that may have a cartridge
driver;

(6) external interface: external interfaces are the adapters
by which a computer can be point-to-point connected to
another device; an expansion of disk kinds therefore
enables a computer to augment its capabilities of con-
nection;

(7) network interface: as for external interface, a network
interface expansion results in the installation on an
available computer expansion slot of an adapter which
enables the connection of the computer in a computer
network.

Of course, the conceptual machinery that has been
employed to model these expansions, may analogously be used
to extend ASL, so to include other hardware expansions, or
expansions to peripheral Units. Software expansions are of
only one kind, as it has been decided that it would not be
meaningful to further categorize them.

Expansions are treated as assertional properties of
Units, so that their value can be modified. Thus, a computer
Unit has no expansions when it is created, but may have free
expansion slots. If yes, the Unit can be later expanded by
an appropriate expansion operation. As a result of an expan-
sion, the Unit’s expansion relation will have a new value.

- 15 -

An expansion operation involves a number of checks: the com~
puter Unit being expanded must have a free expansion slot;
the free expansion slot must be of the appropriate kind;
most importantly, there must be an expansion board of the
desired kind which is compatible with the Unit.

To perform the last checking in a way which is uniform
with the model, expansion boards have been included in the
ASL Catalogue, as hardware components of a special kind; in
addition, special classes, generally called Compatibility
classes, have been defined to represent knowledge about the
compatibility of hardware and software components. There
are two basic kinds of Compatibility classes. One of these
kinds, consisting of Expansion Compatibility classes, deals
specifically with expansions. The other kind is given Dby
point-to-point Compatibility classes, and will be introduced
in Section 3.4. There is one Expansion Compatibility class
for each kind of expansion; for any hardware expansion, an
instance of the associated Compatibility class tells which
hardware component is compatible with which expansion board;
for software expansions, the Compatibility class provides
also additional information on the software required for
making the expansion. The use of Compatibility classes in
expansion operations should now be obvious: instances of the
appropriate Compatibility class are looked up to find out
whether a certain Unit (realizing a specific hardware com-
ponent) is compatible with a certain expansion board.

An expansion previously made to a Unit, may be later
retracted by using the Remove Expansion operation, also pro-
vided at the Unit level.

3.4. The Subsystem level

A Subsystem is an ASL object consisting of a set of point-
to-point interconnected computer or peripheral Units, with
the constraint that there be at least one computer Unit.
Subsystems represent the simplest form of aggregation of
components that can be found in an Architecture. Aggregates
of increasing complexity are modelled in ASL at higher lev-
els of the Architecture decomposition, namely the Network
and Architecture 1levels. The presence of at least one com-
puter in a Subsystem guarantees the "autonomy’ of the Sub-
system. In fact, whether the Subsystem will be a host of a
Local Area Network, or it will ‘stand alone’, thus
representing the simplest form of Architecture, it must

- 16 -

necessarily contain a computer in order to be able to
operate.

Another important constraint on the definition of a
Subsystem is that there be no isolated Units within the Sub~
system. This constraint can be expressed more formally by
viewing a Subsystem as an undirected graph whose nodes
represent the Units and whose arcs represents the point-~to-
point connections of the Subsystem, and imposing the condi-
tion of seriality on the graph, which says that any node of
the graph must be reachable from any other node.

In the real world, Subsystem connections are esta-
blished through external interfaces. The ASL reflects this
fact in a straightforward way: each Unit has a relation
whose value 1s the set of the Unit’s available external
interfaces. When the Unit must be point-to-point connected
to another Unit to form a Subsystem (or a part of it), the
set of available external interfaces of both Units is
checked; if a match is found, the point-to-point connection
is established.

The creation of a Subsystem thus requires, among oth-
ers, the following constraint checks:

(1) the check for seriality, which is a constraint on the
topology of the Subsystem;

(2) the check for compatibility, which is a constraint on
the feasibility of the point-to-point connections of the
Subsystem.

The first check is performed by a simple algorithm,
whose complexity is of the order of the square of the number
of Units that constitute the Subsystem. The second check is
done upon establishing each point-to-point connection of the
Subsystem.

Point-to-point connections are ASL objects themselves.
The creation of a point-to-point connection is always a side
effect of the creation of a Subsystem, and is transparent to
the user, who only specifies which Units are to be connected
to make the Subsystem up. Point-to-point connections may be
established between a computer and any kind of peripherals;
in addition, magnetic disks may be connected between them.
The compatibility of two Units is checked in a way that
depends on the nature of the Units. When one of the two
Units 1is a printer or a terminal, the compatibility is

- 17 -

checked by matching the available external interfaces. This
is due to the fact that this kind of connections is very
common and depends exclusively on the involved interfaces.
For the other kinds of connection, point-to-point (or PTP)
Compatibility Classes, have been defined. Their use is
identical to that of Expansion Compatibility Classes.

Other operations that can be performed on Subsystems
are: the addition (removal) of a Unit to (from) an existing
Subsystem; the addition (removal) of a connection to (from)
an existing Subsystem.

3.5. The Network level

Subsystems may communicate in a multipoint fashion via Com-
puter Networks. This aspect of Architecture Modelling is
considered in ASL at the Network level.

The application domain of ASL, i.e. Office Information
Systems, allows us to restrict to Local Networks, which typ-
ically provide interconnection of a variety of data communi-
cating devices within a small area. Furthermore, among the
three categories of Local Networks presented in [Stal84],
the ASL includes only Local Area Networks (LANs), which are
the most appropriate for the application domain being con-
sidered. To avoid any confusion between the LANs described
in the ASL Catalogue, representing hardware machinery, and
the LANs described at the Network level, representing aggre-
gates of Subsystems, we will reserve the term ’LAN’ for the
former, and call the latter Office Networks.

Office Networks can be characterized in terms of topol-
©gy, which can be a bus, ring, or tree topology. Accord-
ingly, ASL objects representing Office Networks may be
defined to be of one of these three kinds. What is common to
the different Office Networks definitions is the property
whose value gives the set of Subsystems that make the Office
Network up. The other parameters of the definition depend on
the topology of the Office Network being defined.

The creation of an Office Network object, requires the
use of a Catalogue object, representing the hardware support
(i.e. the LAN) on which the Office Network is based. 1In
addition, each Subsystem that is to be included in the
Office Network must have an "escape Unit’, that is a Unit
which directly connects to the LAN. A Unit can be connected

- 18 -

to a LAN if it fulfills the necessary hardware and software
requirements. Thus, the creation of an Office Network object
implies a compatibility check for each Subsystem that parti-
cipates in the Office Network. This check is performed in a
very simple way, just verifying that the network interface
of the escape Unit of each Subsystem "agrees’ with the LAN
that supports the Office Network. The same applies to the
network software.

Other operations provided by ASL for Office Networks,
beside the creation and removal operations, are the addition
(removal) of a Subsystem to (from) an Office Network.

3.6. The Architecture level

ASL objects representing Architectures are at the highest
level of the Architecture decomposition, i.e. the Architec-
ture level. Architectures may be of two kinds: simple
Architectures, which consist of just one Subsystem, and com-
plex Architectures, which consist of a (non empty) set of
interconnected Office Networks.

A simple Architecture can only be created and removed.
Any other operation on the Subsystem that constitutes the
Architecture must be performed before creating the Architec-
ture, via the operations provided at the Subsystem level.

Complex Architectures must be explicitly created, even
those consisting of one Office Network. The different Office
Networks that constitute a complex Architecture are con-
nected through Gates. A Gate is a Subsystem that has been
declared to belong to more than one Office Network. As such,
it is considered to link the Office Networks which it is a
member of. The concept of Gate is not explicit in the ASI,
as it is unnecessary, strictly speaking. Thus, any Subsystem
which belongs to at least two Office Networks is potentially
a Gate; it plays effectively the role of a Gate when all the
Office Networks where it belongs are declared member of one
Architecture.

After it has been created, an Architecture may be mani-
pulated by adding to or removing from it one Office Network.

- 19 -~

4. ASL Interface Operations

As already pointed out, the ASL System provides two main
facilities:

(1) a knowledge base of commercial hardware/software com-
ponents (Catalogue):;

(2) an environment tool for specifying Architectures.

An interface is associated to each of them: an Adminis-
trator Interface for Catalogue maintenance (CA Interface)
and an Office System Designer Interface (ASL Interface) to
query the Catalogue and incrementally define an Office
Architecture. 1In order to 1limit the complexity of the
design phase, the interface provides a more abstract presen-
tation of the knowledge base, ruling out the details that
can be automatically handled. The available operations of
the two interfaces will be briefly described in the next
Sections. Appendix B contains a more detailed description of
them.

4.1. Catalogue Administrator Interface Operations

The CA Interface provides operations to query the structure
and the contents of the Catalogue and to modify it according
to the hardware and software products availability.

The is—-a hierarchy is one of the organizational structure of
Catalogue contents. The following operation is provided to
query this structure.

is-a

is—a returns the is-a hierarchy of the Catalogue classes.
According to the organizational object-oriented para-

digm that has been used to organize the Catalogue knowledge

base, each component is an instance of a class and it is

described as the aggregation of other cbjects, its consti-

tuent parts. The following operations take these principles

into account.

get_component Class Condition

get returns the instances of Class that satisfy Condition.

- 20 -

An empty condition is always true. The current implementa-
tion allows only conditions with the equality and set-
membership predicates stated on the property values of
objects. A two-level nesting is supported (see the query
showed on figure 13.d).

display_class_definition Class
display component Component

display class definition returns the Class properties, their
domains and default wvalues, if any. display component
displays the Component properties and their values.

instance_of Component
part_of Component

The instance_of operation is provided to get the classes
which the given component is an instance of. The operation
part_of returns for each Catalogue object x that has Com-
ponent as value of some property or relation p, the pair <x,
p>.

The Catalogue Administrator is allowed to add and
remove components from the Catalogue in order to reflect the
availability of commercial products.

create_component Class CompName AttributeValueList
delete_ component Component

Create_ component creates a new Catalogue object whose name
is CompName. The AttributeValueList is a list of <Property,
Value> pairs that specify the value of each component pro-
perty. delete component deletes a component from the
Catalogue. The aggregational structuring principle forces
not to allow the deletion of an object that is part of an
existing component. So if a delete_ component is invoked on
a component that is part of another object, the operation
fails without any effect.

A "version’ of a component C is a component C’ that
differs from C at most for the value of any property dif-
ferent from "Vendor"®, "CompName", and "CompVersion®™. The
concept of version has been introduced in ASL to model the
cases where a property of an object may have several alter-
native values. In order to facilitate the handling of

- 21 =

components that are versions of an already existing com-
ponent, the following operations are provided.

Create_version Component CompName PropvalueList
delete_versions Component

get_ versions Component

Create_version creates a component whose property values are
equal to those of the input component, except for the pro-
perties in PropValuelist that take the new specified value.

delete_versions cancels all the objects that are versions of
the input object, i.e. that have the same values for the

properties "Vendor", "CompName", and "CompVersion™ as the
input object. The operation does not have any effects on
Component. Finally, get versions returns all the Catalogue

object that are versions of the given Component.

The compatibility classes are defined to declaratively
describe the compatibility among different Units. As
explained in Section 3.3, there are two kinds of compatibil-
ity classes which describe: (1) the compatibility among a
computer Unit and its possible expansions (hardware and
software), and (2) the compatibility between the expandable
Units in a PTP connection.

create_<expansion> compatibility CompName PropValuelList
create_<ptp-connection> compatibility CompName PropValuelist
delete_<expansion>_compatibility CompName
delete_<ptp—connection>_compatibility CompName

The above operations are provided, for each of possible com~
patibility specification (the complete list 4is given in
Appendix B), to create and delete compatibility descrip-
tions. PropValueList is a list of pairs <Property, Value>
that describes the new compatibility object. The display
and selection of compatibility specifications are accom—
plished by means of the display and get operations available
on all the Catalogue objects.

4.2. Architecture Designer Interface Operations

In this Section, the operations available to the Architec-
ture designer for specifying Architectures are presented. At
the Catalogue level, only queries are allowed by this inter-
face. At any of the four levels for structuring Architec-
tures, also operations for creating, removing and updating
ASL objects are provided.

4.2.1. Catalogue

A subset of the CA Interface operations are available also
at the Catalogue level of the ASL interface. These are the
operations that allow the Architecture designer to access
the Catalogue information but not to modify it. Thye are:

is-a

get_component Class Condition
display_class definition Class
display component Component
instance_of Component

part_of Component

get_versions Component

4.2.2. Unit level

The atomic Architecture components, computer and peripheral
Units, are manipulated at this level. A Unit is created
according to the Catalogue specifications. Operations are
provided to expand computer and disk Units. The application
of these operations fails if the proposed expansion is not
allowed in the current Unit configuration, that is the Unit
has no free expansion slots or none of the free ones is com-
patible with the chosen expansion. In such a way, the ASL
System works as a designer assistant.

Operations similar to those at the Catalogue level are
provided to query the objects of this level.

- 23 -

get_unit Class Condition
display unit Unit
instance_of Unit

part_of Unit

The Unit level provides alsc facilities to create and mani-
pulate the basic components of a Subsystem, that is computer
and peripheral Units.

create_unit UnitName Component
delete_unit Component

The creation of a Unit causes the creation of all the Units
that are part of it. For example, the creation of a new com-
puter Unit implies the creation of the following: (1) a set
of external and network interface Unit objects, each of
which models a physical external interface of the computer;
(2) a set of expansion slot Units; and (3) its built-in
peripheral Units, that is the display, the keyboard, the
pointing-device and the storage devices. All the computer
and peripheral parts are dependent from the computer they
belong to, that is it is not possible to manipulate them
directly. Any modification of them is a side effect of the
manipulation of their computer. However, it is allowed to
select and display them.

A delete operation is provided to cancel Units. As side
effect, all the Unit which are parts of the Unit being
deleted are also deleted. A computer or a peripheral Unit
cannot be deleted if is part of some existing Subsystem.

Initially, a Unit has all the functionalities of the
corresponding Catalogue component. In addition, all its
interface and expansion slot Units are free, i.e. they can
be used for ptp-connections and expansions, respectively.
The computer Unit functionalities can be increased by adding
hardware and software expansions. For such reason a set of
expansion operations have been provided, one for each possi-
ble expansion.

expand with main memory board ComputerUnit Amount

expand with_ coprocessor_board ComputerUnit Functionality

- 24 -

expand with external_ interface board ComputerUnit ExtInter-
faceType

expand_with network interface board ComputerUnit NetInter-—
faceType

expand_with fixed disk_board ComputerUnit FixedDisk
expand with_diskette_board ComputerUnit Diskette
expand_with_cartridge board ComputerUnit Cartridge
expand with software ComputerUnit SoftwareTool

The above family of operations is provided to expand

computer Units. A computer Unit allows hardware and software
expansions. Each software product can be used as expansion,

except operating systems. For each hardware expansions,
pParameters are required to allow the system to select
automatically the appropriate expansion board. For a

main_memory board expansion, for example, the final amount
of memory must be specified. The selection of the appropri-~
ate expansion board, if any, is automatically done by the
ASL implementation.

For each of the expansions above listed, a remove
operation i1s provided. For instance, the operation to
remove a main memory board is:

remove main memory board ComputerUnit Amount
The operations to remove the other expansions are similar,
each of them requires the same input parameters of the

corresponding expand. A complete list of them can be found
in Appendix B.

4.2.3. Subsystem level

Subsystems are the simplest form of architectural Units
aggregation and they are used to create higher level objects
such as Networks and office Architectures. They are modelled
as aggregates of serially interconnected Units, at least one
of which is a computer Unit. As a particular case, a single
computer Unit is a Subsystem.

The operations to get all the Subsystem objects that

- 25 -

satisfy a particular condition and to display a Subsystem
object are similar to those of the others levels.

get_subsystem Subsystem Condition
display subsystem PTPConnectedSubsystem

The language automatically treats each computer Unit as a
Subsystem. To create complex Subsystems, that is sets of
point-to-point interconnected Units, the following opera-
tions are available.

create_subsystem SubsName, Set of Units, PTPConnections
delete_subsystem Subsystem

In order to create a new Subsystem, the create subsystem
operation must first create the PTP connection objects that
are required to define the new Subsystem. As for the Units
that are parts of a computer or a peripheral Unit, the PTP
connection objects cannot be directly manipulated, they are
created and deleted only as side effect of operations on the
Subsystem they belong to.

A Subsystem must satisfy the following constraints: (1)
the set of component Units must contain at least one com-
puter Unit; (2) the Subsystem must be serially connected and
(3) there must be at most one connection between the same
pair of Units. If the specification of the Subsystem to be
created does not satisfy these conditions the
create subsystem fails with no effect. Create_ subsystem
also reguires that the Units involved in each PTP connec-—
tions are PTP-connectable, that is have free compatible
external interfaces. The Units involved in a point~to-point
connection are modified making used one of the free compati-
ble interfaces. If such interfaces are not available, the
operation fails. A further constraint requires that a Unit
cannot be part of more than one Subsystem. The reason for
this limitation follows from what has been written above. A
Unit free interface is marked "used" each time it partici-
pates in a connection, so if a Unit is shared among dif-
ferent Subsystems each Subsystems is effected by this
change. It might be, for example, that a connection cannot
be established because an interface has been used for a con-
nection in a different Subsystem.

delete subsystem deletes a Subsystem. The Units that belong
to the Subsystem are not deleted by this operation, but

- 26 -

their external interface Units that participated in the Sub-
system PTP-connections are made free.

As already point out, a Subsystem is modelled as a set of
expandable Units and a set of point~to-point connections
among them. Operations are provided to add or remove each
of these Subsystem components.

add_unit_to_subsystem Subsystem, Unit, PTPConnections
add_ptp_connection_to_subsystem Subsystem, PTPConnection
remove_unit_from subsystem Subsystem, Unit

remove ptp connection from subsystem Subsystem, PTPConnec-
tion

All the above operations modify a Subsystem through the
addition and removal of a Unit or a PTP connection. The
resulting Subsystem must obviously satisfy all the con-
strains listed above.

Sometimes it might be helpful to be able to check that
some conditions are satisfied in order to be sure not to
violate the Subsystem constrains. For such reason, the fol-
lowing predicates are provided.

in_subsystem Unit

ptp_connected subsystem Subsystem

in_subsystem is a predicate that returns true if a Unit is
a component of some existing PTP connected Subsystem.

ptp_connected subsystem returns true if the input Subsystem
is PTP connected, false otherwise.

4.2.4. Network level

A Network is modelled as a set of Subsystems interconnected
through a local area network. The Network level provides
operations to create, delete and manipulate bus, ring and
tree Office Networks. The get and display operations are
also provided at this level.

get_network Condition

- 27 -

display network Network

A Network is specified as the aggregation of a communication
device and of a set of Subsystems, each of which is con-
nected to the communication device by means of one of its
component Units. Operations are provided to create and
delete each of the three kinds of Networks.

create_bus_network NetName, LAN,
Set of (Subsystem, ConnectionUnit),
List of Subsystems

create_ring network NetName, LAN,
Set of (Subsystem, ConnectionUnit),
List of Subsystems

Create_tree_ network NetName, LAN,
Set of (Subsystem, ConnectionUnit),
List of Subsystems

delete_bus_ network BusNetwork
delete_ring network RingNetwork
delete_tree network TreeNetwork

Three network creation operations are provided to create
Networks with a "bus", "ring" or "tree" topology. The input
LAN parameter specifies the basic model of the used Network
communication device, while the list of Subsystems specifies
the order in which the Subsystems are placed along the com-
munication device. The pairs <Subsystem, ConnectionUnit>
describe for each Subsystem which is the Unit used to physi-
cally connect the Subsystem to the Network.

A Subsystem can be a Network host only 1f the given
connection Unit has a free network interface Unit that turns
out to be compatible with the chosen communication device.
The creation of a new Network has the side effect of making
used such selected interface Unit. The deletion of the Net-
work makes it available again.

As for the others levels, operations are provided to
add and remove the objects that are parts of the objects
that are defined at this level, that is operations are
available to add and remove Subsystems from Networks.

add_subsystem to_bus_network Bus_ Network,

28

(Subsysteml, ConnectionUnit),
Subsystem?2

remove subsystem from bus_network Bus Network, Subsystem

Similar operations are provided for the other two kinds of
Network. The add operation modifies the Network by adding
Subsysteml immediately next to Subsystem2. ConnectionUnit
is required in order to specify the connection point between
the Network and Subsysteml.

The remove operation removes Subsystem from the Network. It
fails if Subsystem is the only Subsystem of the Network.

4.2.5. Architecture level

An Architecture is defined to be either a single Subsystem
or a not empty set of fully interconnected Networks that
share common Subsystems. The common Subsystems have been
referred as Ygates™.

The Architecture level makes available operations to
query, create, delete and modify the objects of this level.

get_architecture ComplexArchitecture

display_architecture ComplexArchitecture

The system automatically treats a Subsystem as a simple
Architecture. To create and delete complex Architecture the
following operations are available.

create_architecture ArchitectureName, set of Network
delete_architecture ComplexArchitecture

A create operation fails if one of the constituent Networks
already belongs to an office Architecture (a Network cannot

be shared among different Architectures).

Operations are also provided to modify the Architecture com-
ponents.

add_network_to_architecture Architecture, Network

remove_network from architecture ComplexArchitecture,

- 29 -

Network

The remove operation fails, without any effect, if the input
Network is the only one of the specified Network.

Finally, a predicate to check if an Architecture is complex
is provided.

complex architecture Architecture

complex architecture returns true if Architecture contains
at least one Network, nil if it is a single Subsystem.

- 30 -

5. An ASL Implementation

In this Section we will present the main features of the PSN
implementation of ASL, and describe how the operations
illustrated in the previous Section have been realized on
top of PSN. The reason why the description of the ASL opera-
tions has been separated from the description of their
implementation should be obvious. Any programming language,
other than PSN, might clearly be used for the implementa-
tion. However, as we have already argued, the expressive
power of a knowledge representation language seems extremely
appropriate to deal successfully with the domain under con-
sideration.

As a notation convention, we will enclose between dou-
ble quotes names of PSN entities, whether metaclass, class,
object or property names. The names that we will quote in
this Section may not be the real names used in the knowledge
base, and this is due to the fact that, in order to avoid
collisions, real names are sometimes awkward and counterin-
tuitive.

5.1. Meta Level Definitions

PSN allows the definition of metaclasses, i.e. classes hav-
ing classes as instances. Metaclasses have been defined in
ASL for two reasons. First, they can be used as ‘handles’
for set of «classes; +this turns out to be very useful in
dealing with higher order functions, as the enforcement of
constraints like ‘there must exist a compatibility class
such that ...’; furthermore, having a handle for all ASL
classes, permits the separation between the ASL conceptual
machinery and the rest of the PSN language. The second rea-
son 1s that metaclasses allow the definition of properties
of classes, that is properties that apply not to single
objects but to collections of objects as a whole (an example
of this are the properties defined for compatibility
classes, explained later).

The most general ASL metaclass is "ASLClass", having as
instances all ASL classes. In order to realize the ASL modu-
larization, "ASLClass" is specialized into "CatalogueClass"
and "ArchitecturalUnitClass", the former being the metaclass
of the classes constituting the ASL Catalogue, while the
latter has as instances the classes corresponding to the
four levels of Architecture abstraction (Unit, Subsystem,

- 31 -

Network, and Architecture). In turn, "CatalogueClass" has
two specializations: "CompatibilityClass", the metaclass of
all compatibility classes, and "CatalogueItemClass" the
metaclass of classes modelling Catalogue components. The
is—-a hierarchy at the metaclass level is shown in figure 1.

Compatibility classes represent the knowledge about the
compatibility between components, which is used in making
expansions to computers or in establishing point-to-point
connections between hardware devices. The procedures that
perform these tasks need to know which compatibility class
represents compatibility information about which classes of
components. This kind of information must be associted to
whole classes of compatibility, and, to this end, the meta-
class "CompatibilityClass" defines two properties. The value
of these properties gives, for each compatibility class, the
type of the devices whose compatibility is described by the
class instances.

5.2. The Catalogue Items Knowledge Base

The most general Catalogue item c¢lass is "Catalogue", an
instance of "CatalogueItemClass", which has as instances all
the Catalogue objects. "Catalogue" is specialized into "Com-
ponent™ and "AuxCatalogue", where the former is the most
general component class, while the latter has as instances
all the objects +that are necessary for the definition of
Catalogue objects but do not represent components 1in the
proper sense. An example of auxiliary objects are those
representing vendors of hardware and software products,
power requirements of components, or data models of database
management systems. These objects are not of particular
interest for the description of the ASL implementation,
therefore we will not enter into the details of class "Aux-—
Catalogue®™.

The class "Component" defines three properties, "Ven-
dor", "CompName", and "CompVersion", with the obvious mean-
ing. These properties are inherited by all classes describ-
ing components, as these classes are specializations of
"Component". The relation "Price" is defined to have "Com-
ponent" as domain, and numbers as range. "Component™ is spe-
cialized into "HardwareComponent" and "SoftwareComponent™,
thus reflecting a natural categorization of components.

ASLClass

| CatalogueClass §

ArchitecturalUnitClass ||

| CompatibilityClass CatalogueltemClass |

Figure 1

- 32 -

5.2.1. Software Components

Figure 2 shows the offspring of class "SoftwareComponent™ in
the class is-a hierarchy. The first subdivision of software
components 1is Dbetween operating systems (instances of
"OperatingSystem"), and generic software tools (instances of
"SoftwareTool"). In turn, the class "SoftwareTool"™ is spe-
cialized into "SystemSoftware™, the class describing basic
software packages, like programming languages compilers and
interpreters, editors, network software and so on; and
"OfficeSupportTool", whose instances are the packages that
support office activities. Such packages are categorized on
the basis of the processed information type, hence there
are, as specializations of "OfficeSupportTool", the classes
"VoiceProcessingTool", "ImageProcessingTool", and "DataPro-
cessingTool". Database management systems, word processors,
spreadsheets, calendar and scheduling packages are included
in the offspring of "DataProcessingTool", while the only
specialization of "ImageProcessingTool" is "GraphicTool".

This view of the world of software components must be
ascribed to the aim of Architecture Modelling within the
TODOS methodology, which focuses on the use of software
packages for implementing an office information system. In
this context, software packages with functionalities not
pertaining to office automation are clearly of no interest,
thus they have been excluded from the modelization.

5.2.2. Hardware Components

Hardware components have been subdivided into expandable
components and static components. Expandable components
include computers and peripherals, even though, for reasons
mentioned earlier, the ASL model only allows for expansions
to computers. Static components are those hardware devices
which play a somewhat secondary role in the definition of
Architectures; with the exception of LANs, they basically
represent parts of expandable components. Static components
are: local area networks, expansion slots, expansion boards,
interfaces, and CPUs. Each of these is represented by a
class, which is a direct specialization of class "Sta-
ticComponent"™, whereas classes "Computer" and "Peripheral™®
represent expandable components, and are specializations of
"ExpandableComponent". Both "StaticComponent"™ and "Expanda-
bleComponent"™ are "is-a" "HardwareComponent".

SoftwareComponentg

OperatingSystem

SoftwareTool §

SystemSoftware OfficeSupporiTool

ool

RRRLRRRARSRARTS

Figure 2

- 33 -~

5.2.2.1. Local Area Networks

Local area networks (LANs) are modelled by ASL as instances
of class "LocalAreaNet"; they are not to be confused with
Office Networks, which represent the Architectural Units
defined at the Network level, illustrated in Section 3.5.
As explained earlier, there are three kinds of LANs in the
ASL Catalogue, distinguished by topology: bus, tree and
ring. Each kind of network is represented by a class, which
is "is-a"™ "LocalAreaNet™.

The properties defined for LANs may be divided into two
sets. The first set consists of properties concerning the
Network’s attributes, both at the physical level (like the
primary medium, or the transmission rate), and at the logi-
cal level (like the access protocol, or the software running
the network). The second set of attributes represent topo-
logical constraints that must be satisfied when the Network
is used in an Architecture; examples of these properties are
the maximum and minimum distance between adjacent nodes, and
the number of addressable nodes.

5.2.2.2. Interfaces

Interface objects are instances of c¢lass "Interface"™, and
represent the adapters used for point-to-point connecting
hardware devices. For instance, the connection between a
computer and a disk 1s modelled in ASL (as it will be
described later) by creating an object that relates the
interfaces of the computer and of the disk being physically
employed in establishing the connection.

Interfaces may be of two kinds: external or network
interfaces. The former are instances of class "ExtInter—
face", and represent generic adapters for local connections.
The latter are instances of "NetInterface"™, and model
adapters for connecting a device to a local area network.
Both "ExtInterface" and "NetInterface" are specializations
of class "Interface™,

The only additional property defined for interfaces,
besides those inherited from "Component™, is one that gives
the type of the interface. This property ranges on the class
of interface types, which deserves some explanation. The
relation between interfaces and interface types is many to
one, in the sense that many interfaces may be of the same

- 34 -~

type, but the type of an interface may be only one. For
instance, a terminal server has many interfaces, all of the
same type, i.e. RS232. Interface types are instances of
class "InterfaceType", an auxiliary class, which is special-
ized by network and external interface types. The latter is
further divided into three categories: bus (like SCSTI
ports), parallel (like CENTRONIX), and serial (RS232, for
instance) interface types. A property common to all these
types is one which tells whether the interface type 1is
input, output or both. Parallel and Serial types have other
properties describing physical features of the interface,
like the minimum and maximum rate. The use of the proper-
ties of interface types in creating point-to-point connec-
tions is described later.

5.2.2.3. Expansion Slots

Expansion slots (instances of class "ExpansionSlot")
represent slots of hardware devices, i.e. locations avail-
able on devices for the installation of expansion boards.
Expansion slots may be of several kinds, depending on the
type of board that can be placed in the slot. Each kind is
modelled by a class which is a specialization of "Expan-
sionSlot". The ASL Catalogue includes the following kinds of
slots:

(1) network interface, the slots in which a network inter-
face board can be installed, in order to allow the
hardware device to be connected in a computer network;

(2) external interface, which is the kind of those slots
where an adapter (or external interface) can be
installed; adapters are wused for connecting hardware
devices Dbetween them in a point-to-point fashion (the
details on point-to-point connections are given in the
Section on Subsystems);

(3} coprocessor, the slots used for expanding a computer
with an additional coprocessor (expansions are explained
in detail in the Section on Units);

(4) storage, the kind of slots available for storage expan-
sions; these expansion slots are further categorized as
cartridge, fixed disk and diskette expansion slots;

(5) generic, the kind of expansion slots that can be of more

- 35 -

than one of the four kinds above; in fact, it is very
common that, among the expansion slots of a computer,
few of them are 'ad hoc’, i.e. dedicated to one kind of
expansion, whereas the most allow for several kinds of
expansion. An object representing a slot of the generic
kind is made instance of the class of generic expansion
slot; in addition, it is also an instance of the classes
representing the kinds of slots it allows.

The categorization of expansion slots classes is summarized
in figure 3.

5.2.2.4. Expansion Boards

Expansion Dboards are the hardware components that are
installed in the appropriate expansion slots to realize
expansions. For this reason, the organization of expansion
boards classes strictly reflects that of expansion slots.
Thus, we have class "ExpansionBoard"™ as the most general
expansion board class, which is specialized by network
interface, external interface, coprocessor, storage, and
main memory boards classes. Storage expansions boards are
further divided into cartridge, fixed disk, and diskette
boards.

The reason why there are main memory expansion boards
while there are no main memory expansion slots, is that the
internal configuration of the main menmory of a computer may
be very complex (see the internal main memory configuration
of the IBM PC RT, presented in Section 7.1.4, as an exam—
ple}. This 1s due to the fact that usually a computer has
several main memory slots and several main memory boards
that can be placed onto them. The representational problem
arises because not all possible configurations (i.e. assign-
ments of boards to slots) are allowed, but only a subset of
them. Despite the fact that such subset is usually not very
large, a complex conceptual machinery is necessary to
represent faithfully this situation, including the complex~-
ity added to the programs that have to handle main memory
expansions. Given the character of pre-competitive study of
ESPRIT, and the Workplan constraints on WP4 within the TODOS
Project, we have simplified the modelization of main memory
expansions, treating them in a special way. We will describe
in detail this treatment later in Section 5.4.2, here we
note that our treatment does not cause any loss of general-
ity or correctness to our model of office Architectures.

| ExpansionSlot g

GenericEspansionSlot CoprocessorEspansionSlot §

NeﬂnterfaceEspansionSlot

ExtinterfaceEspansionSlot |

StorageEspansionSiot

CartridgeExpansionSiot DisketteExpansionSiot N%

FixedDiskExpansionSlot

Figure 3

- 36 -

As components, expansion boards inherit the properties
defined by class "Component", described above. Relevant pro-
perties specifically defined for expansion boards are: for
network and external interface board, there is one property
whose value gives the set of interfaces carried by the
board. Storage boards have a property which describes the
storage device associated with the board. The quantity of
main memory resulting from the installation of an expansion
board is a property of main memory boards. Finally, copro-
cessor Dboards have two properties: one gives the CPU cabled
in the board, the other the functionality of that CPU, i.e.
the kind of computation specifically performed by the copro-
cessor (numerical, graphical, and so on).

5.2.2.5. Expandable Components

The class of expandable components includes the most impor-
tant Thardware components of the ASL Catalogue, that is com-—
puters and peripherals, instances of classes "Computer" and
"Peripheral", respectively. Computers, in particular, are
the ’‘kernel’ of ASL, as they can be considered the basic
ingredient of Architectures. A computer is modelled as an
object, which describes the basic configuration of the com-
puter, that 1is the minimal hardware and software equipment
that is sold atomically. The most relevant properties of a
computer object are:

- "CPU": the CPU object of the computer, which 1is expli-
citly modelled because it may be important in the perfor-
mance evaluation phase;

= "BuiltInCoprocessors": the set of built-in COprocessors;

- "MainMemory": a number that gives, in kilobytes, the
total main memory of the computer;

- "UserAvailableMainMemory": the quote of main memory which
is available to the user;

- "MaxMainMemory": the maximum amount of main memory that
the computer can support;

- "TotalRAStorage": the size, also this in kilobytes, of
the random access secondary storage of the computer; if
the computer has more than one built-in secondary storage
devices, the value of this property is clearly the sum of

- 37 -

the sizes of the storage of each device:

- "ExternalRAStoragePeripherals": the set of external ran-
dom access storage peripherals of the computer; it is
important to represent explicitly this kind of storage
devices Dbecause any of them can be autonomously point-
to-point connected to another device, thus determining an
implicit point-to-point connection of the computer;

- "InternalRAStoragePeripherals": the set of random access
storage peripherals which are internally installed on the
computer; these peripherals cannot be connected to other
devices, as they have no visible external interfaces;

- "InternalSAStoragePeripherals": the set of the computer’s
internal sequential access storage peripherals;

- "ExternalSAStoragePeripherals": the set of the computer’s
external sequential access storage peripherals;

- "ExpansionSlots™: the set of expansion slots available
for expanding the computer;

- "NetworkInterfaces"™: the set of the computer’s network
interfaces;

- "ExternalInterfaces": the set of the computer’s external
interfaces;

- "OperatingSystem": the object representing the operating
system running the computer:

- Y"Availablelanguages": the set of programming language
tools (i.e. compilers and interpreters) that are pPro-
vided with the basic configuration of the computer;

- P"AvailableEditors™: the set of editors, where each editor
is characterized in terms of the user interaction mode;

- "AvailableNetSoftware": the set of software packages that
enable the computer to participate in a local area net-
work;

- "AvailableOfficeSupportTools": the set of office support
tools.

Each computer commercially available is represented in
the Catalogue by one instance of "Computer". This creates

- 38 =~

some practical problems, due to the fact that usually there
is not one basic configuration of a computer, but rather a
set of alternative basic configurations that differ one
another for some options. For instance, as it is shown in
Section 7.1, the basic configuration of the IBM PC RT may
have one of five alternative displays, and, as internal
fixed disk, a 40 or a 70 Mbytes disk. All these possible
basic configurations must be represented in the Catalogue as
distinct objects, and this may be heavy for the Catalogue
Administrator. The concept of version, already presented in
Section 4.1, has been defined in ASL to help in these situa-
tions.

The class of all computers, "Computer", is specialized
according to the various kinds of computers that have been
considered meaningful for the modelization of office infor-
mation system Architectures. These are: main frames, mini-
computers, personal computers, integrated workstations, word
processors, and network servers.

Peripherals are instances of class "Peripheral". A
peripheral can neither be directly connected to a LAN, nor
it can Dbe expanded. Moreover, peripherals do not have
built-in processors, and no property concerning software is
defined for peripherals. Thus, of the above properties
defined for a computer, class "Peripheral" only has property
"ExternalInterfaces". External peripheral may have an inter-
nal sequential access peripheral, a fact that is represent-
ing by defining an appropriate property ("InternalSASPs™)
for class "ExternalStoragePeripheralT".

The class "Peripheral" is subdivided into storage and
input/output peripherals. Figure 4 presents the is-a offspr-
ing of class "StoragePeripheral", the most general storage
peripheral «class, which defines the "AccessType™ and "For-
mattedStorageCapacity" properties, with the expected mean-
ing. As figure 4 shows, storage peripherals are categorized
as internal and external peripherals. Internal storage peri-
pherals represent the storage devices that are internal to
computers. This is the case, for instance, of fixed disks of
personal computers or workstations. These peripherals differ
from external peripherals in that they do not have available
external interfaces for Dbeing connected to other devices.
External peripherals may as well be sequential or random
access, and make their external interfaces visible. Random
access storage peripherals, whether internal or external,
are categorized as diskette, optical disk, and magnetic disk
drivers. Instead, sequential access storage peripherals are

StoragePeripheral

InternalStoragePeripheral

ExternalStoragePeripheral g

InternalRAStoragePeripheral a

N

InternalSAStoragePeripheral = = o=

—

| ExternalSAStoragePeripheral g

l | ExternalSAStoragePeripheral 5

Figure 4

- 39 -

cassette, cartridge, and tape drivers.

The direct specializations of "IOPeripheral", the most
general class of input/output peripherals, model the various
kinds of such peripherals that are represented in the ASL
Catalogue. These are: terminals (further divided into
printer and video terminals), printers, plotters, scanners,
displays, keyboards, and pointing devices.

5.3. Compatibility Classes

Compatibility classes can be considered members of the ASL
Catalogue, as they describe a basic property of hardware and
software components, namely the ability that components have
of combining between them to generate ’complex’ components.
For this reason, the metaclass of all compatibility classes
("CompatibilityClass™) is a specialization of "Catalo-
gueClass”. However, at the class level, compatibilities and
catalogue objects are kept separated, to avoid any interfer-
ence between products and their compatibility. This separa-
tion is realized by making the most general compatibility
class ("Compatibility") an instance of metaclass "Compati-
bilityClass™.

As already explained earlier, there are two kinds of
compatibilities: expansion compatibilities, describing which
expansion boards or software packages can be installed on
which computers, and point-to-point compatibilities, which
relate hardware devices that can be point-to-point con-
nected. Accordingly, class "Compatibility" is specialized
into "ExpansionCompatibility" and "PTPCompatibility", where
the former is the most general expansion compatibility
class, and the latter is the most general point-to-point
compatibility class.

5.3.1. Expansion Compatibility Classes

The is-a offspring of "ExpansionCompatibility"™ is illus-
trated in figure 5. Expansion compatibilities are first
categorized as hardware and software compatibilities, which
are instances of <c¢lasses "SoftwareExpansionCompatibility™
and "HardwareExpansionCompatibility", respectively.

An instance of "SoftwareExpansionCompatibility"

ExpansionCompatibility §

_— T~

! SoftwareExpansionCompatibility E HardwareExpansionCompatibility §

Computer&CartridgeBoard

Computer&MainMemoryBoard

| Computer&NetinterfaceBoard

|Computer&DisketteBoard E
lComputer&FixedDiskBoard ﬁ

Computer&CoprocessorBoard

Computer&ExtinterfaceBoard |

Figure 5

- 40 -

describes the fact that a certain software package
(represented by the value of property "TargetSoftware"™ of
the instance}) can be installed on a certain computer (the
value of "Machine"), provided that the computer has a set of
required software packages (the wvalue of "Required-
Software™) .

There is one hardware expansion compatibility class for
each hardware expansion that can be made to a computer. An
instance of any such classes represents the fact that a cer-
tain computer (given by the value of property "Computer™ of
the instance) can be expanded with a certain expansion board
("Board"), which can be placed in one of a set of the
computer’s expansion slots ("Slots"), provided that the
number of such boards already installed on the computer does
not exceed a prefixed number ("MaximumNumber™) .

A non-standard to-test procedure is attached to each
expansion compatibility class: instead of testing whether a
certain instance belongs to a certain compatibility c¢lass
(what the standard procedure would have done), the non-
standard to-test receives as input a computer and a board,
and returns ‘true’ if they happen to be compatible, and
"false’ if not. Such procedure searches the extension (that
is the set of instances) of the proper expansion compatibil-
ity class, to see whether there exists an instance that
asserts the compatibility of the computer and the board
being tested; it also checks the constraints implicitly
represented by the "Slots" and "MaximumNumber" properties.
This procedural attachment permits the representation of the
semantics of each compatibility class within a ’‘black box’
(i.e. the to-test procedure) whose service is accessible in
a standard way. Thus, even though this kind of knowledge is
represented procedurally, the application of abstract data
types principles guarantees the encapsulation of such
knowledge in its proper context.

5.3.2. Point-to-point Compatibility Classes

These classes are specializations of "PTPCompatibility™, and
are 1in a one-to-one correspondence with the pairs of point-
to-point connectable devices. For practical reasons, we have
restricted our attention to connections having either a com-
puter at one end, or between two magnetic disks; the
language can clearly be extended to treat all possible cases
by using the conceptual modellization being illustrated.

PTPCompatibility [

Computer&Scanner Computer&Plotter H

| Computer&Teminal| ‘ Computer&Display

Computer&Printer E \

Computer&TapeDriver

/ / | Computer&Computer B \

Computer&CartridgeDriver " Computer&CassetteDriverﬂ

Computer&OpticalDiskDriver I Computer&MagneticDiskDrivel

Computer&DisketteDriver

MagneticDiskDriver&MagneticDiskDriver ﬂ

Figure 6

- 41 -

Figure 6 shows the specializations of class "PTPCompatibil-
ity™.

An instance of a point-to-point compatibility class
represents the following fact: a certain device (given by
the value of property "Devicel" of the instance) can be
point-to-point connected to another device (value of "Dev-
ice2"), provided that the connection is established through
an interface of the first device which is of the proper type
("Interfacel") and an interface of the second device which
is of the proper type ("Interface2").

As for expansion compatibility classes, the semantics
of point-to-point compatibility classes is given by their
to-test procedure, which is non-standard. 1In general, the
to-test procedure of a point-to-point compatibility class
receives as input two hardware devices and searches the
class extension to see whether there exists an instance
asserting the compatibility of them. In doing so, the pro-
cedure tests also if the given devices have still available
the external interfaces of the type required for the connec-
tion. The to-test procedure of terminal/computer and
printer/computer compatibility classes has a different
behavior, due to the fact that enumerating all the compati-
bilities between such devices would be impractical, as their
number is very high. In fact for a printer or a terminal to
be compatible with a computer, it is sufficient that they
have a common interface (which is usually a serial RS232 for
a terminal and a parallel interface for a printer). Thus,
unlike the other compatibility classes, terminal/computer
and printer/computer compatibility classes have no
instances: the to-test procedure ascertains the compatibil-
ity between two devices of these kinds just by checking
whether the computer has available the external interface
that matches with that of the terminal or printer.

5.4. Architectural Units

The most general architectural wunit class is "Architec—
turalUnit®, an instance of metaclass "ArchitecturalUn-
itClass". Figure 7 shows the specializations of "“Architec-
turalUnit", which include the four classes that model the
four levels of Architectures, plus the class "Expansion"
(whose instances represent computer expansions), and class
"AuxArchitecturalUnit", which plays a role analogous to that
of "AuxCatalogue",

ArchitecturalUnit E

l Expansion IE

l Subsystem lg

I AuxArchitecturalUnit E

£
| OfficeNetwork §
l Architecture H

Figure 7

- 42 -

5.4.1. Units

Units are instances of class "Unit", which corresponds to
class "Component” of the Catalogue, as it represents materi-
alizations of instances of "Component". The correspondence
between Catalogue objects and the Units that represent them
in Architectures, is realized by making the is-a offspring
of class "Unit" (shown in figure 8) isomorphic to that of
"Component™. Thus, "SoftwarePackage" corresponds to
"SoftwareComponent", and has as instances objects that
represent software components when they are used in Archi-
tectures. Likewise, class "HardwareUnit" corresponds to
"HardwareComponent", and its specializations "StaticUnit"
and "ExpandableUnit" are one-to-one with classes "StaticCom~-
ponent™ and "ExpandableComponent®, respectively. As
expected, "ExpandableUnit" is specialized by classes "Compu-
terUnit" and "PeripheralUnit"™. An instance of any of these
classes 1is related to the corresponding Catalogue obiject
through the property "BasicModel', defined by "Unit"™ and
therefore inherited also by its specializations.

In the next two Sections we will describe the implemen-
tation of computer and peripheral Units, the details of the
other Unit classes being not particularly relevant.

5.4.1.1. Computer Units

Computer Units are instances of class "ComputerUnit", which
is further specialized in a way that mirrors the specializa-
tion of its corresponding Catalogue class, i.e. "ComputerT".
"ComputerUnit" does not add any structural property to
"BasicModel", but defines a number of assertional relation-
ships. These <can be divided into three groups. The first
group consists of the relationships describing the Units
that are part of the computer Unit:

- "InstalledDisplay", linking the computer Unit to its
display Unit (if any), which is an instance of class
"DisplayUnit";

- "InstalledCPU", the same for the computer Unit’s CPU;

- "InstalledKeyboard", the computer Unit’s keyboard, if
any;

- "InstalledPointingDevice", the computer Unit’s pointing

SoftwarePackage

HardwareUnit

e

SystemSoftwareUnit g ExpandableUnitE StaticUnit
OfficeSupportToolUnit E PenpheralUnlt ComputerUmt

l OperatmgSystemUmt Ig \

Figure 8

43

device, if any;

- "InstalledStoragePeripherals"™, the set of the peripheral
Units of the computer, of all three kinds (sequential
access, external random access, and internal random
access);

- "InstalledUserMainMemory", associates to the computer
Unit the quantity (in kilobytes) of main memory available
for the user;

- "InstalledMainMemory®, same as above, for the total main
memory of the Unit.

The second group of relationships includes those represent-
ing the hardware machinery that the computer Unit makes
available for being expanded or point-to-point connected to
other Units:

- "FreeExternalInterfaces", which associates to the com-~
puter Unit the set of external interface Units for con-
necting point-to-point the Unit to other computer or
peripheral Units; this relation is defined by "Expanda-
bleUnit" and inherited by both "ComputerUnit" and "Peri-
pheralUnit";

- "FreeNetworkInterfaces", relating computer Units to their
available network interfaces Unit;

- T"FreeExpansionSlots"™, links the computer Unit to the set
of expansion slot Units made available by the Unit for
hardware expansions.

Finally there is the third group of relationships asserting
the expansions that have been performed on the computer
Unit; these are:

- "SoftwareExpansion", representing the set of software
expansions made to the computer Unit; software, as well
as hardware expansion objects, are described in Section
5.4.2;

- "HardwareExpansions", same as above for hardware expan-
sions;

~ "AddedCoprocessors", whose values associated to the given
computer Unit represents the coprocessor board Units
installed on the Unit. This relationship is redundant, as

PeripheralUnit

...

¥
StoragePeripheralUnit

I lnternalStoragePeripheralUnitH

ExternalStoragePeripheralUnit

10PeripheralUnit §
| TerminalUnit 3

I KeyboardUnit Ié
| DisplayUnit I§ PointingDeviceUnita

PlotterUnit ;

ScannerUnit f

Figure 9

- 44 -

coprocessor expansions are already described as hardware
expansions; however, it has Dbeen included to make
directly accessible from the computer Unit the set of
CPUs it has.

When a computer Unit is created, the user only has to
specify which computer of the Catalogue the Unit being
created represents. It is the (non standard) to-put pro-
cedure associated to <class "ComputerUnit" that takes the
responsibility of providing the above relations with an ini-
tial wvalue. This means also that the Units representing
parts of the computer Unit (CPU, keyboard, pointing device,
etc.) are created by the "ComputerUnit" to-put procedure, as
a side effect of the creation of the computer Unit. Analo-
gously, before effectively doing the removal, the to-rem
procedure of "ComputerUnit" retracts the relations defined
on the computer Unit to be removed, proceeding also to the
part-of Units destruction.

5.4.1.2. Peripheral Units

The most general peripheral Unit class, "PeripheralUnit", is
specialized isomorphically to the Catalogue class "Peri-
pheral™ (as it is shown in figure 9). Like "ComputerUnit",
the only structural property of "PeripheralUnit" is "Basic-
Model™, whereas of the relations defined for "ComputerUnit™",
only "FreeExternalInterfaces"™ also applies to peripheral
Units, which cannot be expanded nor directly connected to a
local area network. The to-put and to-rem procedures
attached to class "PeripheralUnit" are analogous to those
defined for "ComputerUnit®.

5.4.2. Expansions

Expansion objects, instances of class "Expansion"™ (the most
general expansion class), represent the extension of the
capabilities of a computer Unit by means of expansion boards
or software packages. Thus expansions may be of two kinds,
hardware and software expansions, a fact that is realized in
ASL by defining classes "HardwareExpansion" and "SoftwareEx-
pansion” as direct specializations of "Expansion". The is-a
offspring of class "Expansion" is illustrated in figure 10.

Hardware expansions are of the following kinds: main

(oven]

l SoftwareExpansion Ié

HardwareExpansion E

DisketteExpansion | NetinterfaceExpansion |

FixedDiskExpansion| ExtinterfaceExpansion

CartridgeExpansionE MainMemoryExpansion CoprocessorExpansion

Figure 10

- 45 -

memory, coprocessor, external interface, network interface,
cartridge, fixed disk, and diskette expansions. All these
expansions are modelled by defining an expansion class for
each kind, and making it "is-a" ‘“HardwareExpansion". They
inherit from "HardwareExpansion" the properties "UsedExpan-
sionSlot" and "UsedExpansionBoard", specializing them by
properly refining the properties’ range.

The creation of a hardware expansion is carried out by
the to-put procedure associated to the corresponding class,
and, with the exception of main memory expansions, it works
as follows:

(1) the computer Unit to be expanded is checked to ascertain
whether it has a free expansion slot Unit of the
required kind;

(2) if yes, the appropriate expansion compatibility class is
searched, in order to find out whether there exists a
board satisfying the user request that can be installed
on the Unit in question;

(3) if such a board is found, the expansion is made by
accomplishing the following steps:

Step 1: a Unit representing the board is created;

Step 2: an instance of the appropriate expansion class
is <created; this instance has the board Unit as
value of the property "UsedExpansionBoard™, and
the slot Unit found in (1) above as value of the
property "UsedExpansionSlot"%;

Step 3: an instance of the relation "HardwareExpan-
sions™, having the expanded Unit as domain ele-
ment, and the expansion instance as range ele-
ment, is created, thus associating the expansion
to the expanded Unit;

Step 4: the pair <expanded Unit, used slot> is removed
from relation "FreeExpansionSlots"™, in order to
represent the fact that the slot Unit of the
expanded Unit that has been used for the expan-—
sion is no longer free;

Step 5: operations that are specific to the particular
expansion being made are performed; for
instance, in case of an external interface

- 46 -

expansion, the external interfaces carried by
the expansion board must be added to the set of
free external interfaces of the expanded Unit.

For the reasons that have been pointed out in Section
5.2.2.4, main memory expansions are not realized in this
way; in particular, as there are no main memory expansion
slots, point (1) above is performed by testing whether the
main memory installed on the computer Unit is equal to the
maximum allowed, a value that can be found in the ASL
Catalogue. This is the only difference between main memory
and the other kinds of expansions; as it can be seen, it
does not affect the generality of the modelization.

Software expansions are represented in an analogous
way. They are instances of class "SoftwareExpansion", which
has no specializations because the differences between the
software packages that can be installed by a software expan-
sion are less relevant than those between expansion boards.
For the same reason, the class "SoftwareCompatibility" has

no specializations. "SoftwareExpansion" defines two proper-
ties: "ComputerUnit", whose value gives the Unit which the
expansion refers to, and "AddedSoftwareTool", which

represents the software package employed in the expansion.
The to-put procedure that gives the semantics to class
"SoftwareExpansion" receives as input a computer Unit and a
software package, and behaves as follows:

(1) it checks whether the specified software is compatible
with the computer Unit, by testing class "SoftwareCompa-
tibility";

(2} if yes, it makes the expansion by creating an appropri-
ate instance of class "SoftwareExpansion™, and adding a
pair <expanded Unit, employed package> to relation
"SoftwareExpansion™.

Expansions, whether hardware or software, can also be
removed, a task that is performed by the to-rem procedure
associated to the involved expansion class. Besides removing
the expansion instance, these procedures properly manipulate
the involved relations defined for computer Units.

5.4.3. Subsystems

ASL Subsystems are instances of class "Subsystem", and may

be of two kinds: simple Subsystems, consisting of only one
computer Unit, or complex Subsystems, given by a computer
Unit point-to-point connected with other expandable Units
(i.e. computers or peripherals). This categorization of Sub-
systems is realized by making class "ComputerUnit" (and, by
transitivity, all its specializations) "is-a" "Subsystem",
and by defining a <c¢lass, called "PTPConnectedSubsystem",
which collects complex Subsystems and which is also a spe-
cialization of "Subsystem". Thus, the ASL interpreter
"knows’ that computer Units are Subsystems, and this avoids
to define twice simple Subsystems, once as Computer Units,
and then as Subsystems.

Complex Subsystems may be viewed as undirected graphs,
whose nodes are the Units that constitute the Subsystem, and
whose arcs are the point-to-point connections between such
Units. These graphs have a variable structure, due to the
fact that the Units and the connections between them may
change during the Subsystem lifetime. This situation is
modelled by defining no properties for class "PTPConnec-
tedSubsystem™, but making this class the domain of two rela-
tionships:

- "PTPConnections": each pair of which links a complex Sub-
system to one of its point-to-point connections, and

= "Units": each pair of which links a complex Subsystem to
one of its Units.

As explained in Section 3.4, point-to-point connections are
ASL objects, namely they are instances of class "PTPConnec—
tion", one of the auxiliary architectural unit classes. As
it would be too heavy for the ASL user to create separately
all the required point-to-point connections before creating
a Subsystem, it is the procedure that creates complex Sub-
systems that takes this responsibility. This procedure is
the to-put procedure associated to the class "PTPConnec-—
tedSubsystem"; it requires as input the list of Units that
are to Dbe included in the Subsystem, and a list of Unit
pairs, each pair representing a point-to~-point connection
that must be established between two Units of the Subsystem.
The procedure performs the following steps:

(1) it checks whether the input data are consistent:; this
involves a number of controls, ranging from the check on
the type of the data to that on the congruency between
the list of Units and the list of Unit pairs;

...48_.

(2) it checks whether the specified Subsystem topology is
correct, i.e. if the graph is serial (see Section 3.4);

(3) for each point-to-point connection to be established, it
checks whether the Units to be connected are compatible
and whether they have an available free external inter-
face Unit;

(4) it establishes the point-to-point connections by creat-
ing appropriate instances of the class "PTPConnection™;

(5} it creates the Subsystem.

Steps 3 requires a compatibility check for point-to-
point connections. As explained earlier, this check is per-
formed in a similar way to that on expansion compatibility.
When the compatibility between two Units must be checked,
the to-test procedure associated to class "PTPCompatibility"
is invoked, and the two Units to be checked are passed to
it. As already mentioned in Section 5.3.2, the to-test pro-
cedure for terminal and printer compatibilities are special;
all the other compatibility testing procedures work as
expected, that 1is by searching the extension of the
appropriate compatibility class. If these Units are not com-
patible, the to-test procedure returns nil; otherwise, it
returns the type of the interface that must be used for the
connection on each Unit. This information is used in step 4,
when the connections are in fact created. It may happen that
more than one free external interface of some Units may be
used for the connection, and the choice on which one to wuse
may later affect the possibility of establishing other con-
nections for the same Unit. An algorithm that finds the
optimal usage of external interfaces is used to resolve this
kind of conflict, thus ensuring the creation of the Subsys-
tem whenever possible. To assert a point-~to-point connection
between two Units, an instance of "PTPConnection" is created
with the following property values:

"Unitl": the first Unit connected (the order between
Units is unimportant);

- "UnitlInterface™: the external interface Unit of the
first Unit that is used for the connection;

= "Unit2": the second Unit connected;

— "UnitZ2Interface™: the external interface Unit of the
second Unit that is used for the connection.

- 49 -

The creation of the required point-to-point connections
is then a side effect of the creation of the Subsystem,
which is finally accomplished at step 5. All the objects
whose creation is a side effect of the creation of a Subsys-
tem, are automatically removed when the Subsystem is
removed.

5.4.4. Networks

The class of all ASL Networks is "OfficeNetwork", a special-
ization of "ArchitecturalUnit", which is in turn specialized
into "TreeNetwork", "RingNetwork", and "BusNetwork".

Only bus Networks have been implemented in the ASL
interpreter being described. The only property defined by
class "BusNetwork"™ is "CommunicationChannel', whose value
gives the ASL Catalogue LAN that is used for the Office Net-
work. Similarly to complex Subsystems, Office Networks have
no properties describing the Network structure, which is
time varying. Two relationships link an Office Network to
its constituents:

- "Host": each pair of which represent the relationship
between a Network and one of its Hosts;

- "NetTopology": each pair of which represent the relation-
ship Dbetween a Network and a pair of its Hosts; the set
of Hosts pairs related to a Network gives the topology of
the Network, by describing the couples of adjacent hosts.
This representation of topology can be also used for Ring
and Tree Networks, except that in this last case each
pair models a father-child relationship between Hosts.

A host of a Network is an instance of class "Host", an
auxiliary architectural class. The class "Host" defines the
following properties:

—~ "Subsystem": whose value gives the Subsystem that consti-
tutes the Host;

- "EscapeUnit": whose value gives the computer Unit of the
Host’s Subsystem which directly connects to the Network;

- "Escapelnterface": which gives the network interface Unit
that 1s wused for connecting the escape Unit to the Net-
work.

- 50 -

Thus a Host object is Jjust a Subsystem with additional
information describing how the Subsystem is connected to the
Network.

Office Networks communicate between each other by shar-
ing Subsystems. However, Hosts cannot be shared by different
Networks. This implies that if the Subsystem s must be
shared by Networks nl and n2, then two Hosts, say hl and h2,
must be created, along with the tuples <nl, hl> and <n2,
h2>, of relation "Host", which assert the membership of
Hosts to Networks; the sharing of s is then represented by
specifying the same value, that is s, for property "Subsys-
tem" of both Hosts hl and h2. This modelization realizes the
distinction between the concepts of local host and of member
of an Office Network, where the former is represented by an
ASL Subsystem, and the latter by an ASL Host.

The creation of an Office Network object is performed
by the to-put procedure associated to class "OfficeNetwork".
It requires, among others, a check on the compatibility
between each computer Unit (or escape Unit) that must be
connected to the LAN and the LAN itself. This check is car-—
ried out by using the values of properties "RequiredNetIn-
terface"” and "NetSoftware" of class "LocalAreaNet"™, which
give, respectively, the type of the network interface and
the set of software packages which are required by the LAN.
In particular, each escape Unit is checked to find out
whether it has a free network interface Unit of the required
type, and the appropriate software packages.,

[6)]

.4.5. Architectures

Objects representing Architectures are instances of class
"Architecture", the most general architectural class. The
categorization of Architectures into simple (i.e. one Sub-
system) and complex is realized by making class "Subsystem"
a specialization of "Architecture", and defining an apposite

class, called "ComplexArchitecture™® whose instances
represent complex Architectures, and which is "is-a" "Archi-
tecture”™. Thus, a simple Architecture is generated any time

a Subsystem is created, whereas complex Architecture must be
explicitly created.

The class "ComplexArchitecture" does not define any
property, as the structure of an Architecture is time vary-
ing. Instead, it is the domain of two relationships:

- 51 -

- "Networks"™, each pair <a, n> of which represents the fact
that the Office Network n belongs to (complex) Architec-
ture a; and

- "Gates", which works similarly for Gates.

A complex Architecture is then seen as a set of Office
Networks and a set of Gates, where Gates are instances of
class "Gateway", a specialization of "AuxArchitecturalUnit".
"Gateway" defines one property, "Gate", which ranges over
class "Subsystem", and whose value gives, for a certain
Gate, which Subsystem constitutes the Gate. A relation is
defined to have class "Gateway" as domain, and that is rela-
tion "Nets". A pair <g, n> belongs to "Nets" if and only if
the Subsystem s constituting the Gate g belongs to the
Office Network n, and s is used to connect n to other Office
Networks, where it must belong too. The concept of a Gate is
thus similar to the concept of a Host: a Gate is a Subsystem
with additional information about how the Subsystem is used
to make Office Networks communicate. This concept is neces-
sary because not necessarily a Subsystem which is shared by
two different Networks is supposed to connect them. It must
be explicitly declared as such, and an appropriate concept
is needed to this end.

The creation of a complex Architecture does not require
a substantial checking. The to-put procedure of class "Com-
plexArchitecture”, which is in charge of this creation,
receives as input a set of Networks, and controls that these
Networks form a consistent (initial) configuration of the
Architecture. This control is done by verifying that there
exist a set of Gates connecting these Networks in such a way
that there be no isolated Network. The so identified set of
Gates is related to the Architecture being defined through
the "Gates"™ relation, whereas the "Networks" relation is
used to link the Architecture to the Networks that consti-
tute it.

6. A Graphical Interface for ASL

It has already been explained that the ASL System provides
two Interfaces, the Catalogue Administrator and the Archi-
tecture Designer Interface. These interfaces only differ for
the operations that they make available, but their design
and implementation criteria are the same, so we will not
distinguish between them in this Section, where we will
illustrate the main features of a graphical Interface
developed for ASL. In particular, it will be described: (1)
the basic environment made available to the user at the
beginning of an ASL session; (2) the invocation AST opera-
tions; (3) the visualization of the result of these opera-
tions; (4) the controls that are enforced on the operations
at the interface level; (5) error handling; (6) the wuser
buffer. Each of these topics will be discussed in a separate
Section.

The Interface has been implemented as a C program that
runs under the Unix Operating System, and that uses the
graphical facilities provided by the SunView software
library. It has been developed on a SUN 5/52 Workstation,
with 4 Megabytes main memory and a 71 Megabytes hard disk.
The major technical problem that has been encountered at the
implementation level is the management of the communication
between the various processes that are active during an ASL
session. These processes are: the interface process, the ASL
interpreter process (a Lisp process), and the processes
associated to the windows currently opened, one for each
window. The communication problems have been solved by using
sockets, which are software tools that allow the exchange of
messages between processes.

6.1. The ASL Window

The ASL Window is the window that appears on the screen at
the beginning of an ASL Section, and it is shown in figure
11.

The ASL view of an Architecture as structured through
five levels of abstraction, is made transparent to the ASL
user by presenting him an ASL Window with five icons, which
are one-to-one with the Catalogue, Unit, Subsystem, Network,
and Architecture levels of ASL. As figure 11 shows, these
icons are displayed at the top of the window, and the user

2 Sub

system

o

Network

Archi
tecture

Q[0

OO

Figure 11

- 53 -

cannot move them around as normal Sunwindows icons. A menu
is associated with each icon, called the Icon Menu. This
menu presents the operations available at the ASL level
corresponding to the icon, and can be obtained by position-
ing the cursor on the icon and clicking the right button of
the mouse.

The space of the ASL Window is divided into three por-
tions. In the topmost portion, the level icons are displayed
at the beginning of a session. The other two portions are
two windows: the window in the central part of the screen,
called the Is—-a Window, is used to display the Catalogue
is-a hierarchy, which is very large and presumably very fre-
quently consulted; the window in the bottom part of the ASL
Window is a standard Text Subwindow, and is reserved for the
user needs, thus it is called the User Window.

6.2. Invocation of the ASL Operations

The operations available at each ASL level can be viewed as
hierarchically structured. For instance, the operations
"create_component™ and "create version" of the Catalogue
level, can be seen as specializations of a "create" opera-
tion, which is not a real ASL operation, but which can be
considered an abstraction of the two. This operation hierar-
chy is realized by having a menu hierarchy at each ASL
level. The root of the hierarchy is the Icon Menu associated
to the level. In an Icon Menu, the name of each specialized
operation is followed by an arrow: by following that arrow
with the mouse, a menu containing the names of the special-
ized operations is displayed. This second level menu may
contain in turn specialized operations, which are treated in
the same way as in the Icon Menu. Figure 12.a shows the Icon
Menu of the Catalogue level, and figure 12.Db presents the
second level menu corresponding to the "create" operation.
This concept of a menu hierarchy is borrowed from the
Sunwindow system, where it is known as "walking menus’.

A window, called the Operation Window, is associated to
each ASL operation. The Operation Window appears after its
operation has been invoked via an appropriate menu selec-
tion. The name of the operation and the ASL level it belongs
appear in the upper frame of the Operation Window. The Win-
dow 1s divided into two portions, whose wusage will be
explained later. It can be resized and moved around the
screen.

Z Sub

ISA HIERARCHY
DELETE

GET

NARVARY

CREATE

r

Network

Archi
tecture

Figure 12.a

z Sub

N

ISA HIERARCHY
DELETE

=
GET >

CREATE

R R o RERRnRRRRAREaRa0ans

o

Network

Ar@

tecture

Figure 12.b

In almost all cases, the selection of an operation
starts a dialogue between the user and the system, having as
final aim the specification of an ASL operation. This
dialogue takes place in the Operation Window, which there-
fore may have different forms depending on the current state
of this dialogue. The wuser can talk to the system by
selecting one of the buttons that appear in the window. Upon
this selection, the content of the window is interpreted by
the interface as input data for the execution of the action
corresponding to the selected button. The execution of an
action may result in a call to the ASL interpreter, in which
case the dialogue has reached its last step and an ASL
operation has been fired; or it may result in the display of
a different form of the Operation Window, which means that
further information are required to the user by the system.

As an example, let us consider the invokation of a
"get component™ operation at the Catalogue level. Figure 13
shows the various steps of this invocation. In figure 13.a
the selection from the second level menu is showed, whereas
figure 13.b shows the initial form of the Operation Window.
At this stage of the dialogue, the user is asked for the
name of the class to be queried (that must be inserted after
"ClassName"); after having typed this name the user can
select one of the two buttons. Selecting "WITH CONDITION"
(figure 13.c) he will get from the system the list of the
properties of the specified class. He can successively £ill
the space left after each property with a predicate to be
satisfied by the result of the query. This having done (fig-
ure 13.d), he can select the "EXEC" button, to finally fire
the ASL operation that corresponds to the query. The result
of the query, i.e. the list of qualifying objects, will be
returned by the system in the Operation Window (figure
13.e}.

The Operation Window does not automatically disappear
after the execution of an operation. The user may remove the
window by using the operations provided by Sunwindow. On the
other hand, if he wishes to execute again the operation, he
may go back to the desired state of the dialogue by using
the "CLEAR" and "RESET" functions provided (where appropri-
ate) by the interface to this end. In general, the "CLEAR"
button restores the initial form of the Operation Window. In
the T"get component™ operation example, by <clicking the
"CLEAR" button after the display of the result, the user
will get the Operation Window shown in figure 13.b. "RESET",
instead, causes the last values specified by the user to be
reset, so that new values can be given. For instance, after

rro

Network

Archi
tecture

ISA HIERARCHY
DELETE

GET

CREATE

...

00 R R D O ERRR 00000000000

Figure 13.a

ClassName:

(eec) (witH conpiTioN)

P e———

o

Figure 13.b

ClassName: IntegratedWorkstation

Figure 13.c

ClassName: IntegratedWorkstation

(eec) (meser) (CLEAR)
&

Vendor.....cccvvvereeeeeeeecnnn,

CompName.......oovemveveeane.

MainMemory

MechanicalDimension

Display....ccccceevveeerececrenne.

KeyBoard.....ccooovevevvuernne.. (KeyBoard). Vendor............ (Vendor)............. EQ SUN

ScreenType...(ScreenType).
© ColorScreen..(Boolean).......... EQTRUE
bl Price.....u......... (Pnumber).........
o

<

Figure 13.d

ClassName: IntegratedWorkstation

(5e0) (D

Vendor.....ccooeeeeccie (Vendorn).....coueeeueeeeeeeee
CompName.......cccoeuveveunne.. (CompName).......ccoeveveeveeueeennn.
MainMemory..........ccoeee....... (Pnumber).......ooveveeeeeeeeeees
MechanicalDimension..... (MechanicalDimension).........
Display....ccccovveeeeeeceeean, (Display)...ccoceeeeeeeeeeceeeeeeeenn.
KeyBoard (KeyBoard).........couveeeeeeceennn

GET: IntegratedWorkstation

SUN3/52
SUN3/75

Figure 13.e

- 55 -~

the creation of an object has been executed, the Operation
Window still contains the pairs <property, value> specified
for the object just created. By "RESET"-ing at this point,
the values will be removed, so that the user can insert new
values to create a new object.

6.3. Visualization of Results

ASL operations may in general have three kinds of results
(excluding errors, which will be treated in Section 6.5):

(1) a "yes’ result, which typically comes from a creation or
remove operation. This result is displayed by opening,
in the middle of the screen, a small window containing
the message that the operation has been successfully
completed. This window can be removed by clicking any
mouse button;

(2) a set of objects; this is the result of a query (with or
without conditions) on an ASL class. The set of the
returned objects is listed in the Operation Window from
which the query has been issued (see figure 13.e);

(3) an object display. If the object is a token, its list of
<property, value> pairs will be shown in a tabular form.
If it is a class, the class definition will be given in
tabula form, where each row of the table contains a pair
<property, type>. In both cases the result will be
returned to the user in the window where the operation
has been specified. For Subsystem, Network, and Archi-
tecture objects, the result of the display may be given
in graphical form. Figure 14 presents both the textual
and the graphical display of a Subsystem consisting of
four interconnected Units. 1In the topmost part of the
Operation Window shown in figure 14, there are the but-
tons that can be used for talking to the system during
the specification of the operation. The "EXEC" button
serves to obtain the result after the name of the object
to Dbe displayed has been inserted after the "Subsystem~
Name" string. The other two buttons can be used for
choosing the display form. In the shown example, the
"template" button has been used to get the textual
display given in the middle window; then, the operation
has been re-executed with the "graphic™ button selected
to get the graphical display shown in the bottom window.

(SUBSYSTBRY e il e

SubsystemName: S2

Format choice: graphic ® template O

DISPLAY: 82

PTPConnections...(PTPConnection)....UNIT1 UNIT2
UNIT3 UNIT2
UNIT4 UNIT2

o

UNIT3 e

S

UNIT4

UNIT

Figure 14

- 56 -

A special treatement has been reserved to the display
of the Catalogue is-a hierarchy. The lattice representing
the is-a hierarchy is roughly eight times bigger than the
whole screen. This makes it very inefficient to compute the
lattice (or a part of it) each time the "is-a" operation is
invoked. Moreover, if the is-a hierarchy were computed on
the spot’, a very sophisticated algorithm would have to be
used in order to calculate the optimal display of the lat-
tice on the screen, and this would be probably much more
time consuming +than the hierarchy calculation. For these
reasons, the display of the is-a hierarchy is pre-computed
and stored in a file which is loaded in the Is-a Window when
the "is-a" operation is invoked. Of course, the Catalogue
is-a hierarchy cannot be changed even by the Catalogue
Administrator. The size of the Is-a Window can be rearranged
by the wuser. To allow the user the inspection of the lat-
tice, the Is-a Window has a horizontal and a vertical scroll
bar.

£.4. Controls Enforced by the ASL Interface

The interaction between the user and the system during the
specification of an operation presents a double advantage.
The first advantage is that the system guides the specifica-
tion of an operation, so that the user does not have to know
in advance the parameters to be specified, their order, and
their type. For instance, when issuing a query on a certain
class, the system first asks the user the name of the class,
then it gives the user the list of the properties on which a
predicate can be given (as shown in figure 13). But there is
another major advantage deriving from using this technique,
and that is the automatic enforcement of certain constraints
on the user operations. If the user interacted directly with
the ASL interpreter, there would be nothing that guarantees
that the operation be specified in the correct form. It
would be the responsibility of the ASL interpreter to check
the operation form, performing a wusually high number of
checks, which are tedious to code, and which make the execu-
tion of the operation inefficient because they are time con-
suming. The presence of a graphical interface between the
user and the system, makes it possible to enforce many con-
straints when specifying the operation, as the interface may
prevent the user from making certain mistakes. As an example
of this, let us consider again the "get_component™ opera-
tion. When the user is given the list of properties (as in
figure 13.d), the only thing that he can do is to write

something in the space left at the right end of each row.
Thus, the ASL interpreter is guaranteed that the query
predicate only involves the properties of the queried class,
and does not have to check for this. The same applies in the
creation of an object, with the system providing the user
with the list of properties to be filled in, and the user
cannot change the portion of the window where these proper-
ties are displayed.

It would be too long to enumerate, operation by opera-
tion, the controls that are automatically enforced by the
interface. We stress here only the effectiveness of a graph-
ical interface in alleviating the language interpreter task
concerning the operation consistency checking.

6.5. Error Handling

There can be two kinds of errors that can occur in the ASL
system. The first kind consists of the errors detected by
the ASL interface. These errors result in a message which
is displayed to the user in an ‘ad hoc’ window that appears
in the middle of the screen. The rest of the screen is left
unchanged so that the user can issue the correct operation
just editing the incorrect specification. The window con-
taining the error message may be removed by clicking any
mouse button. Examples of this kind of errors are the miss-
ing of a parameter needed for executing an invoked operation
{(as shown in figure 15), or the request of executing an
operation before the termination of the current execution.

The second kind of errors are those detected by the ASL
interpreter, which passes to the interface an error message
to be displayed to the user. In this case, the message may
be shown to the user either in an "ad hoe’ window, or in the
window associated to the operation that caused the error. An
error of this kind is presented in figure 16, as the crea-
tion of a Subsystem with a Unit not having a free external
interface Unit to establish a point-to-point connection.

6.6. The User Window

The User Window occupies the bottom part of the ASL Window,
and its ‘raison d‘etre’ is to provide the user of the ASL
system with a private workspace. The User Window is a

_CREATE (Catalogle)

ObjectName:

) (cear) (Reser) (BEC)

CompNa Please, insert the Object Name acintosh |l

CompVe Type any button for undisplay this message. lac I/l

Externalinterfaces................ (set Externalnterfaces)..E1008
UserAvailableMainMemory...(Pnumber).........ccceceveevevenn... 300
MaxMainMemory..........ccuu....... (Pnumber)....ccooeenvevcvcnne. 4000

Figure 15

CREATE « ’(Subsystem

SubsName: S1

Connection: CC1CC2
Connection: CC2 CC3

. f ==
Sl unit: cct
Unit: CC2 error: CC1 has no free external interface
Unit: CC3 compatible with those of CC2

Figure 16

_58...

standard Text Subwindow, i.e. a window for text editing that
can be saved in a file, resized, and moved around the
screen. Text can be selected by any other window and
inserted in the User Window via the Sunwindow Selection Ser-
vice, which relies on the mouse and a small set of func-
tional keys of the SUN keyboard. Once the text has been put
in the User Window, it can be processed via the normal edit-
ing facilities.

- 50 -~

7. A Sample Insertion into the ASL Catalogue

In this Section we will show the insertion in the Catalogue
of an object representing a personal computer, namely the
IBM RT Personal Computer, Model 20. The source of the infor-
mation that will be inserted is the IBM RT PC Hardware
Maintenance and Service Manual [IBM].

A Catalogue insertion is a maintenance operation, which
can be performed only by the Catalogue Administrator (CA).
The ASL System provides the CA with a friendly graphical
interface for operating on the Catalogue. For obvious typo-
graphical reasons, we can not illustrate the example through
the CA graphical interface operations; therefore, we will
directly use ASL operations, as they have been described in
Section 4. The syntax of the operations that we will be
presenting is close to that accepted by the ASL interpreter,
except for few simplifications that have been made in order
to improve the readability of this document. Briefly: the
word "Create" introduces the creation of an object; the name
of the class where the object being created belongs then
follows, followed by the name of the object. Next, the word
"with" introduces the (possibly empty) set of the object’s
properties. Each property consists of a name (the property
name) and of an object name (the property value). The value
of a multivalued property is denoted by a sequence of ele-
ments separated by blanks and enclosed in braces.

To make the exposition clearer, we begin by showing the
operation that creates the object representing the computer;
then we will describe the creation of the objects constitut-
ing the computer. Of course, this order must be reversed
when talking to the ASL interpreter, as an object must first
be defined to be used as property value of another object.

The object representing the IBM RT PC, named "PClY,
will be an instance of class "PersonalComputer" and describe
the basic configuration of the computer. It 1is created by
the following operation, (where only non-nil property values
have been included, and sets are represented by listing
their elements between braces):

Create PersonalComputer PCl with:
Vendor: IBM;
CompName: IBMRTPC;
CompVersion: Model20;
CPU: Intel386;
MainMemory: 1000;
UserAvailableMainMemory: 1000;
MaxMainMemory: 8000;
Display: Disp2;
Keyboard: Keyb2;
PointingDevice: PointingD2;
TotalRAStorage: 41200;
InternalRAStoragePeripherals: {DisketteDl, MDisk2};
ExternalInterfaces: {EI24, EI25, EI26, EI27, EI28};
NetworkInterfaces: {ANI2};

ExpansionSlots: {CPUES1l, CPUES2, DisketteESl, FixedDiskES1,

FixedDiskES2, GenericES1l, GenericES2, GenericES3,
GenericES4, GenericES5, GenericES6, GenericES7};
OperatingSystem: UNIXSV;
AvailablelLanguages: {CLangl, Fortranl};
AvailableEditors: {Edl, Emacsl};
AvailableOfficeSupportTools: {Ingresl};
SystemUnitDimensions: MeD6;
Environment: Envi4;
PowerRequirements: PoR1:
end PersonalComputer PC1.

The first three properties are self-explanatory, and give
general information on the computer model. The next proper-
ties (from "CPU" to "ExpansionSlots") describe the hardware
characteristics of the computer. They are followed by pro-
perties (from "OperatingSystem" to "AvailableOfficeSupport-—
Tools"™) on the software packages that come with the basic
configuration. The last three properties concern external
parameters of the computer, namely the dimension of the sys-
tem unit, environmental data and power requirements. Such
properties will not be detailed, as not particularly
interesting. In the next Section, we will concentrate on
the hardware properties of the computer object; we will
explain the value of such properties, and, when appropriate,
show the creation of the objects that appear as values of
those properties. We will do the same for software proper-
ties 1in Section 7.2. In the last Section, we will show the
creation of some of the hardware and software components
that are compatible with the IBM RT PC.

7.1. Hardware Definitions

The basic hardware configuration of the computer consists of
the floor-standing system unit, a table top display, and a
keybecard. 1In the ASL Catalogue, keyboards and displays are
represented by instances of classes "Keyboard™ and
"Display", respectively. The association between a computer
object and the appropriate display and keyboard objects is
established by means of properties "Display" and "“Keyboard"
of <c¢lass "PersonalComputer®. The other hardware properties
of "Computer" concern information about the system unit. In
the next two Sections the definition of the IBM PC RT key-
board and display objects will be shown. In the remaining
Sections we will describe the definition of the system unit,
which has been subdivided into the following parts: proces-
sor, main memory, secondary storage, external interfaces,
and expansion slots.

7.1.1. Display Definition

There are several displays that can be alternatively
employed with the IBM RT PC being modelled. Among them, we
choose as basic display the IBM 5151, which is alsc used on
the IBM AT Personal Computer. The operation:

Create Display Disp2 with:
Vendor: IBM;
CompName: IBM5151;
ColorScreen: false;
GraphicScreen: false;
ExternalInterfaces: {EI21}:
end Display Disp2.

creates an instance of "Display", named "Disp2", whose pro-
perties represents (from the top down): the vendor of the
display, its name, the facts that display "Disp2" has nei-
ther a color nor a graphic screen, and the set of the
display’s external interfaces. Object "EI21" is an external
interface, created by the operation:

Create ExtInterface EIZ21 with:
InterfaceType: DADPTZout;
end ExtInterface EIZ21.

where the type of "EI21" is a display adapter type, inserted
in the Catalogue by the operation:

Create ParallelInterfaceType DADPT2out with:
InterfaceName: DADPTZ;
Input/Output: O;

end ParallelInterfaceType DADPT2out.

The display connects to the system unit. This connection 1is
not treated as a point-to-point connection, because it is
not explicitly established by the wuser, but the same
machinery used for point-to-point connection is employed for
making it. In fact, when a Unit having "PCl" as basic model
is created, the external interface Units that serve for the
connection between the display and the computer are not
included in the set of ¥FreeExternallnterfaces" of both
Units, thus ’‘simulating’ the creation of a point-to-point
connection. In order to know which external interfaces must
be used for this connection, the "ComputergDisplay"™ compati-
bility class is queried. In our case, the following compati-
bility instance will give us the information needed:

Create Computer&Display CDSComp5 with:
Devicel: PCl;
Device2: Disp2;
Interfacel: DADPT2in;
Interface2: DADPT2out:;
end Computer&Display CDSComp5.

It asserts that a computer Unit whose basic model is ¥pCl®
can be connected to a display Unit whose basic model is
"Disp2¥, provided that an interface Unit whose basic model’s
type 1is "DADPT2in" is wused for the computer Unit, and an
interface Unit whose basic model’s type is Y“DADPT2out"™ is
used for the display Unit. The interface type "DADPT2in" is
created in the same way than "DADPT2out", with the differ-
ence that it has "I" (input) as value of the property
"Input/Output":

Create ParallelInterfaceType DADPT2in with:
InterfaceName: DADPT2;
Input/Output: I;

end ParallelInterfaceType DADPT2in.

An interface of this type is then included in the set of
external interfaces of "PCl", as showed in Section 7.1.6.

The other display objects that can replace "Disp2"™ in
the computer Dbeing described are defined in an analogous
way, and used to define versions of the object representing
the computer.

- £33 -

7.1.2. ZKeyboard and Mouse Definition

There is only one keyboard that can be used with the IBM RT
PC. This keyboard has 102 keys, and connects directly to
the system unit. This connection, like the system wunit-
display connection, 1is not explicitly described in the
Catalogue.

The operation:

Create Keyboard Keyb2 with:
Vendor: IBM;
CompName: IBMKBD;
NumbKeyboardKeys: 102;
Externallnterfaces: {EI22}:
end Keyboard Keyb2.

creates the keyboard object associated to "PCLl" by property
"Keyboard". Analogously to the display, "EI22" is an exter-
nal interface defined as:

Create ExtInterface EI22 with:
InterfaceType: KADPTZ2out:
end ExtInterface EI22.

and whose type is given by:

Create ParallelInterfaceType KADPT2cut with:
InterfaceName: KADPT2;
Input/Output: O;

end ParallelInterfaceType KADPT2out.

The connection between "PC1l"™ and "Keyb2" Units is esta-
blished as explained before, except that a computer-keyboard
compatibility class does not exist, as this kind of connec-
tion is not included in the point-to-point connections
allowed by ASL. So, the information on which interfaces must
be used 1is obtained by matching the names of the interface
types available on "PC1l" and "Keyb2". This implies that at
least one of the interfaces of "PCl"™ must be of a type whose
name is "KADPT2", and this is in fact the case of adapter
type "KADPT2in":

Create ParallelInterfaceType KADPT2in with
InterfaceName: KADPT2;
Input/Output: I;

end ParallelInterfaceType KADPT2in.

A Mouse is also available in the Dbasic configuration.
The corresponding Catalogue object is defined as follows:

Create PointingDevice PointingD2 with:
Vendor: IBM;
PointingDevType: Mouse;
NumbPointingDeviceKeys: 2;
ExternalInterfaces: {EI23};

end PointingDevice PointingD2.

The property "PointingDevType" describes the kind of the
pointing device Dbeing defined; the ASL Catalogue ’knows’
about three kinds of pointing devices: Mouse, Puck, and
Tablet. The following adapter objects enable the connection
between "PC1l" and "PointingD2" Units, in the same way as for
keyboards.

Create ExtInterface EI23 with:
InterfaceType: MADPT2out;
end ExtInterface EIZ2Z3.

Create ParallelInterfaceType MADPT2out with:
InterfaceName: MADPTZ;
Input/Output: O;

end ParallelInterfaceType MADPT2out.

Create ParallelInterfaceType MADPT2in with:
InterfaceName: MADPTZ;
Input/Output: I;

end ParallellInterfaceType MADPT2out.

7.1.3. Processor

In the basic IBM RT PC configuration, there is one processor
board (in slot A), containing the 32-bit processor, the sys-
tem memory controller, and the ROM modules. This board will
be represented in the ASL Catalogue as an instance of class
"CPU", defined in the following way:

Create CPU Intel386.

No properties are defined for a CPU object; although it
might be useful to know some performance parameters of a
CPU, these parameters are usually not provided by vendors,
and very hard to derive by simulation. The property "CPU"
links a computer object to the appropriate CPU object.

The property "BuiltInCoprocessors", also defined for
computers, 1s wused to assoclate a computer with its set of
built-in coprocessors. As there is no built-in coprocessor
in the Dbasic configuration of the IBM RT PC, object "PCL®”
has the empty set (represented by the constant %"nil") as
value of property "BuiltInCoprocessors®.

The IBM RT PC has two processor expansion slots that
can be used to augment the processing capabilities of the
computer. In the first one (slot 8), another processor board
(identical to the built-in processor board) may be
installed, whereas a floating-point board may be placed in
slot B. These two expansion slots are defined by the follow-
ing operations:

Create CoprocessorExpansionSlot CPUESL.
Create CoprocessorExpansionSlot CPUESZ2.

and linked to our computer through the "ExpansionSlots" pro-
perty.

The floating-point processor board that can be
installed on the IBM RT PC is created by the following
operation:

Create CoprocessorBoard CPBl with:
Model: IBMRTCoprocCcessor;
Functionality: Numerical

end CoprocessorBoard CPB1.

Also the standard processor board must be declared as an
instance of class "CoprocessorBoard" in order to be used as
an expansion board:

Create CoprocessorBoard CPBZ2 with:
Model: Intel386;
Functionality: Standard

end CoprocessorBoard CPB2.

In the definition of "CPB1l", the "Model" property has as
value a newly created instance of "CPU" ("IBMRTCoproces-—
sor™), whereas the same property is valued "Intel386" in the
definition of "CPB2" to signify that the standard IBM RT CP
can also be used for an expansion. Now, to assert that
"CPB1l" and "CPB2" are expansion boards of "PCl", the follow-
ing two instances of the computer-coprocessor compatibility
class must be created:

- 66 -

Create Computer&CoprocessorBoard CCPCompl with:
Computer: PC1;
Board: CPRBR1;
Slots: {CPUES1l}

end Computer&CoprocessorBoard CCPCompl.

Create Computer&CoprocessorBoard CCPComp2 with:
Computer: PC1l;
Board: CPB2Z;
Slots: {CPUES2}

end Computer&CoprocessorBoard CCPCompZ.

The first two properties of these objects serve to relate
PCl® with an appropriate coprocessor expansion board,
whereas the third property tells which slot of "PCl"™ must be
used when performing the expansion. "Slots®™ is a multivalued
property because, as it will be shown later, an expansion
board may Dbe alternatively installed in a set of expansion
slots. Such set is then given as "Slots" property value.

7.1.4. Memory

The IBM RT PC System Unit has two slots (C and D) for main
memory boards. There are three different kinds of board that
can be placed in these slots; the boards differ from each
other in the number of megabytes; they can be 1, 2, or 4
megabytes boards. Only nine different combinations of boards
are possible, as shown by the following table:

Total Bytes of Option Option
System Memory in Slot C in Slot D
1 MByte 1 MByte -

2 MBytes 1 MByte 1 MByte
2 MBytes 2 MBytes -

3 MBytes 2 MBytes 1 MByte
4 MBytes 2 MBytes 2 MBytes
4 MBytes 4 MBytes -

5 MBytes 4 MBytes 1 MBytes
6 MBytes 4 MBytes 2 MBytes
8 MBytes 4 MBytes 4 MBytes

This situation is modelled in the Catalogue by assigning to
the object representing the computer a main memory of 1
megabyte, which is the minimal option. The main memory of a
computer object is represented via the property

"MainMemory"™, whose value gives (in kilobytes) the quantity
of main memory installed in the basic configuration of the
computer. Thus "PCLl"™ has a value of 1000 for the property
"MainMemory"™. The property "MaxMainMemory" represents the
maximum main memory that can be supported by a computer. We
have given a value of 8000 to this property in the object
representing our computer. The last property concerning the
main memory of a computer is the property "UserAvaila-
bleMainMemory", whose value give the main memory effectively
available to the users. When the computer object is created,
this property gets the same value as the "MainMemory® pro-
perty. The installation of additional software packages may
lower this value.

The remaining main memory options are described by
defining six memory expansion boards associated to the com-
puter object. Each board represents one of the six possible
values of total megabytes of system memory, i.e. 2, 3, 4, 5,
6, and 8 total megabytes. By this modelization, the one-to-
one correspondence between real world and model objects is
lost, as the expansion board objects do not represent real
expansion boards. However, since the ultimate goal of ASL is
to describe architectures in order to measure their perfor-
mance, we are only interested in knowing the total main
memory of a computer, regardless the internal configuration
that realizes such memory. The operation:

Create MainMemoryBoard MMEBL with:
Vendor: IBM;
CompName: RTPC2MBMemoryExpansionOption;
Dimension: 2000;

end MainMemoryBoard MMEBL.

creates the expansion board which, when installed as expan-
sion to a computer, brings the total main memory of the com-
puter to 2 megabytes. The definitions of the other five main
memory expansion boards are similar and are not given.

To express the fact that this expansion board is usable
within "PCl", we must create an appropriate instance of the
compatibility class "Computer&MainMemoryBoard", as follows:

Create Computer&MainMemoryBoard CMMCompl with:
Computer: PC1l;
Board: MMEBI1;

end Computer&MainMemoryBoard.

The compatibility between "PC1" and the other main memory

boards is established in an analogous way.

7.1.5. Secondary Storage

Secondary storage devices are divided in the ASL Catalogue
into four main classes: internal and external random-access,
and internal and external sequential-access devices. The IBM
RT PC system unit has neither external secondary storage
devices, nor built-in internal sequential-access devices,
whereas it has five drive positions (drive position A to E)
for internal random~access secondary storage devices; in
particular, drive positions C, D, and E are for fixed-disk
drives, whereas positions A and B are for diskette drives.

Fixed-Disk Drives

In the basic configuration, the system unit always has a
fixed-disk drives installed in position C. Drive positions D
and E are optional drive positions. There are two fixed-disk
drives that <can be installed, in any combination, in the
drive positions: the Type R40 and the Type R70. Their
corresponding Catalogue objects are defined by means of the
following operations:

Create MagneticDiskDriver MDisk2 with:
Vendor: IBM;
CompName: R40;
FormattedStorageCapability: 40000;
AccessType: ReadWrite:;

end MagneticDiskDriver MDisk2.

Create MagneticDiskDriver MDisk3 with:
Vendor: IBM;
CompName: R70;
FormattedStorageCapability: 70000;
AccessType: ReadWrite;

end MagneticDiskDriver MDisk3.

The value of property "FormattedStorageCapability" gives the
disk storage capacity in kilobytes. The smallest between the
two disks ("MDisk2") is declared to be in the basic confi-
guration, by having inserted it into the property "BuiltIn-
RAStoragePeripherals" value of "PC1". "MDisk3"™ is instead
used to define versions of "PClY. Drive positions D and E
are defined as fixed disk expansion slots, by creating the

- 60 -

following instances of class "FixedDiskExpansionSlot™:
Create FixedDiskExpansionSlot FixedDiskES1.
Create FixedDiskExpansionSlot FixedDiskES2.

To enable the use of "MDisk2" and "MDisk3™ also as expansion
boards of type fixed-disk, two instances of class "Fixed-
DiskBoard” must be created:

Create FixedDiskBoard FixedDiskBl with:
AllowedFixedDiskDriver: MDisk2;
end FixedDiskBoard FixedDiskBl.

Create FixedDiskBoard FixedDiskB2 with:
AllowedFixedDiskDriver: MDisk3
end FixedDiskBoard FixedDiskB2.

Each board corresponds to one fixed-disk, the correspondence
being established through the property
"AllowedFixedDiskDriver®of the Dboard object. The links
between these expansion boards and the computer to which
they apply are typically compatibility assertions, esta-
blished by the following instances of the computer-disk com~
patibility class:

Create Computer&FixedDiskBoard CFDCompl with:
Computer: PCl;
Board: FixedDiskB1l;
Slots: {FixedDiskES1l}

end Computer&FixedDiskBoard CFDCompl.

Create Computer&FixedDiskBoard CFDComp2 with:
Computer PC1l;
Board FixedDiskB2;
Slots: {FixedDiskES2}

end Computer&FixedDiskBoard CFDComp2.

The expansion of the fixed-disk storage works as described,
with the expansion slots "FixedDiskES1"™ and "FixedDiskES2™
signaling that the fixed-disk of "PCl" may be expanded, and
the compatibility dinstances "CDDCompl" and "CDDComp2" tel-
ling which fixed-disks may be used for the expansion.

Diskette Drives

Drive position A of the IBM RT PC system unit always has a

- 70 -

IBM AT High Capacity Diskette Drive installed. Drive posi-
tion B can have either the IBM AT High Capacity Diskette
Drive or the IBM AT Dual-Sided Diskette Drive installed.
These two drives are modelled in the ASL Catalogue by the
objects "DisketteDl"” and "DisketteD2%, defined as follows:

Create DisketteDriver DisketteDl with:
Vendor: IBM;
CompName: IBMATHighCapacityDisketteDrive;
FormattedStorageCapability: 1200;
AccessType: ReadWrite;

end DisketteDriver DisketteDl.

Create DisketteDriver DisketteD2 with:
Vendor: IBM;
CompName: IBMATDualSidedDisketteDrive;
FormattedStorageCapability: 360;
AccessType: ReadWrite;

end DisketteDriver DisketteD2.

The first obiject is included in the basic configuration of
YPC1™ Dby dinserting it into the set which is the value of

property "BuiltInRAStoragePeripherals" of ¥PCl". Property
"BuiltInRAStorage™ summarizes the total amount (in kilo-
bytes) of secondary storage available in "PCl". The possi-

bility of using both diskette drives as expansion boards for
YPC1"™ is then modelled in the same way fixed-disk expansions
have been modelled. First, the diskette expansion slot
(representing drive position B) is created:

Create DisketteExpansionSlot DisketteESl.

Then, the drives are declared to be expansion boards by
creating the appropriate diskette expansion board instances:

Create DisketteBoard DisketteBl with:
AllowedDisketteDriver: DisketteDl;
end DisketteBoard DisketteBl.

Create DisketteRBoard DisketteB2 with:
AllowedDisketteDriver: DisketteD2:
end DisketteRBoard DisketteB2.

Finally, the compatibility of the expansion boards and the
computer object is asserted:

- 71 -

Create Computer&DisketteBoard CDCompl with:
Computer: PC1l;
Board: DisketteBl;
Slots: {DisketteESl};

end Computeré&DisketteBoard CDCompl.

Create Computer&DisketteBoard CDComp2 with:
Computer: PCl;
Board: DisketteB2;
Slots: {DisketteESl}:

end Computeré&DisketteBoard CDComp2.

7.1.6. External Interfaces

The external interfaces of the basic configuration of a com-
puter are the built-in ports that can be used to connect the
computer with external devices. In the Dbasic configuration
of the IBM RT PC, there are two built-in serial ports, both
of type RS232, and the display, keyboard and mouse adapters,
which are wused to connect the computer system unit to the
display, keyboard and mouse, respectively. This situation is
modelled in the ASL Catalogue by defining the interface
types representing these adapters; the display, keyboard and
mouse adapter types have already been showed, they are
objects "DADPTZin", "KADPT2in", and "MADPT2in", respec-
tively; it remains to show the creation of the RS232
adapter:

Create SeriallInterfaceType RS232 with:
Syn/Asyn: A;
Half/FullDuplex: HF;
Input/Output: IO;
MinimumRate: 50;
MaximumRate: 19200;
end SeriallInterfaceType RS232.

The objects representing the interfaces of our computer may
now be created:

Create ExtInterface EI24 with:
InterfaceType: RS232
end ExtInterface EIZ4.

Create ExtInterface EI25 with:
InterfaceType: RS232;
end ExtInterface EIZ25.

Create ExtInterface EIZ26 with:
InterfaceType: DADPT2in;
end ExtInterface EI26.

Create ExtInterface EI27 with:
InterfaceType: KADPT2in;
end ExtInterface EI27.

Create ExtInterface EIZ28 with:
InterfaceType: MADPT2in;
end ExtInterface EIZ8.

and inserted into the set which is the wvalue of property
"ExternalInterfaces" of object "“PC1l".

7.1.7. Expansion Slots

The IBM RT PC system unit has 7 generic expansion slots (or
multi-use expansions slots, explained in Section 5.2.2.3),
internally numbered from 2 to 8. Among them, slot 6 can only
be used for the IBM PC Enhanced Graphics Adapter, by which
the computer can be connected to the IBM 5154 Enhanced Color
Display; slot 2, instead, may be alternatively used for 13
different adapters. The following operation creates all
"PCl" generic expansion slot objects:

- 73 -

Create GenericExpansionSlot GenericESL.
Create GenericExpansionSlot GenericES2.
Create GenericExpansionSlot GenericES3.
Create GenerilcExpansionSlot GenericES4.
Create GenericExpansionSlot GenericESS5.
Create GenericExpansionSlot GenericES6.
Create GenericExpansionSlot GenericES7T.

OCbiject "GenericES1" is intended to represent the generic
slot 2 of the computer. Among the different adapters that
can be installed in slot 2, there are serial ports, network
ports and a graphics processor adapters. This means that the
object "GenericES1Y" represents a slot that can Dbe, among
other things, an external, an interface, or a coprocessor
expansion slot. This fact is represented by including object
"GenericES1¥ also in classes "ExtInterfaceExpansionSlot,
“"NetInterfaceExpansionSlot, and "“CoprocessorExpansionSlot,
as follows:

Create ExtInterfaceExpansionSlot GenericESl.
Create NetInterfaceExpansionSlot GenericES1.
Create CoprocessorExpansionSlot GenericES].

The other generic expansion slots are made instances of the
appropriate classes in the same way. To show how a generic
slot may be used in making an expansion to a computer, let
us consider the following external interface expansion
board, which, when installed in a computer, adds four RS8422
serial ports to the computer:

Create ExtInterfaceBoard ExtIntBl with:
AllowedExtInterface: {EI34, EI35, EI36, EI37};
end ExtInterfaceBoard ExtIntBl.

where each object in the set given as value of property
"AllowedExtInterface® i1s an external interface of type
RS422. The compatibility instance that links this interface
board to our computer is given by:

- 74 -

Create Computer&ExtInterfaceBoard CEICompl with:
Computer: PCl;
Board: ExtIntBl;
Slots: {GenericESl, GenerickS3, GenericES4, GenericES6,
GenericES7};
MaximumNumber: 4;
end Computer&ExtInterfaceBoard CEICompl.

where the multivalued property "Slots™ tells in which slots
of "PCl" the board "ExtIntBl¥ may be installed, whereas pro-
perty "MaximumNumber" gives the maximum number of boards
"ExtIntBl™ that can be placed in the computer. Of course,
the number of slots in the "Slots"™ property wvalue must be
greater than or equal to the "MaximumNumber"™ value.

7.2. Software Definitions

The value of property "OperatingSystem”™ of a computer object
gives the object representing the operating system running
on the computer. For "PCl", we have the operating system
defined as follows:

Create OperatingSystem UNIXSV with:
Vendor: AT&T;
CompName: Unix;
CompVersion: SystemV;
VirtualMemory: true;
FileSystemType: Hierarchical:;
RequiredMainMemory: 512;

end OperatingSystem UNIXSV.

Analogously, the set value of property "Availablelanguages"
describes which are the programming language tools that come
with the basic configuration of the computer. The C compiler

for "PCLl"™ is represented in the ASL Catalogue by the object
created as follows:

Create ProgramminglanguageTool CLangl with:
Vendor: AT&T;
Language: C;
ToolType: Compiler;

end ProgrammingLanguageTocol CLangl.

The object "Fortranl", representing the FORTRAN compiler is
defined in a similar way, as well as objects "Ed1" and
"Emacsl", representing the one-line standard editor and

- 75 -

Emacs, respectively. From the software viewpoint, the most
interesting property of a computer object is "AvailableOQOffi-
ceSupportTools", whose value describes the software packages
supporting office activities that are part of the basic con-
figuration of the computer. The only free tool provided with
"PC1l"™, i1s the Ingres centralized database management system,
defined by:

Create CentralizedDBMS Ingresl with:
Vendor: AT&T;
CompName: Ingres;
DataModel: Relational;
NumberOfRecordsPerFile: 1000;
RecordSize: 1024;
FieldSize: 1024;
RegquiredMainMemory: 512;

end CentralizedDBMS Ingresl.

The "AvaillableOfficeSupportTools" property is the one that
most likely will be extended in developing the Architecture
that supports the Office Information System being designed.
Such extension is modelled as an expansion, namely a
software expansion, with apposite compatibility classes
describing the available options.

Other properties concerning software are "AvailableTer-
minalEmulators™ and "AvailableNetSoftware"; both of them
have a "nil"™ value to signify that the Dbasic "PC1l" confi-
guration does not provide any terminal emulator or network
software package.

7.3. Compatible Components

When inserting a new object in the ASL Catalogue, also the
components which are point-to-point compatible with the
object must be inserted, if not already in the Catalogue.
If, on the other hand, the newly created component happens
to be compatible with an already existing component, then
only the compatibility between the two must be asserted. In
this Section we show the insertion in the Catalogue of two
components that are compatible with the IBM RT PC.

- 76 -

7.3.1. Displays

There are four displays that are point-to-point compatible
with the IBM RT PC. We describe the creation of only one of
them, namely the IBM 6154 Advanced Color Graphics Display.
The insertion of the corresponding object is performed by
the following operation:

Create Display Disp5 with:
Vendor: IBM;
CompName: IBM6154;
ColorScreen: true;
GraphicScreen: true;
ExternallInterfaces: {EI31l};:
end Display Disp5.

where the external interface object "EI31" is created by:

Create ExtInterface EI31 with:
InterfaceType: DADPTSout;
end ExtInterface EI31.

the type of "EI31l" being a display adapter type previously
defined. The point-to-point compatibility between the
display and the computer is represented by the following
object:

Create Computer&Display CDSComp3 with:
Devicel: PC1;
Device2: Disp5;
Interfacel: DADPTS5in;
Interface2: DADPTbSout;
end Computeré&Display CDSComp3.

which asserts that computer "PCl" can be point-to-point con-
nected to display "Disp5" through an external interface of
type "DADPT5in", whereas an external interface of type
"DADPTS50ut" must be wused for the display. An interface of
this type may not be (and in fact it is not) built-in "PC1l",
thus the knowledge base must be told that an external inter-
face of type "DADPTS5in" may be installed on "PCl"™ wvia an
appropriate expansion operation. This is done by performing
the following external interface expansion board creation:

Create ExtInterfaceBoard ExtIntB4 with:
AllowedExtInterface: {EI40};
end ExtInterfaceBoard ExtIntB2.

- 77 -

where "EI40" is given by:

Create ExtInterfaceT EI40 with:
InterfaceType: DADPT5in;
end ExtInterfaceT EI40.

and adapter "DADPT5in" is created in the way shown before
for other adapters. The board "ExtIntB4" is linked to "PCL1"
via the compatibility instance given by:

Create Computer&ExtInterfaceBoard CEIComp4 with:
Computer: PC1l;
Board: ExtIntB4;
Slots: {GenericESl, GenericES3 ,GenericES4,
GenericES6, GenericES7};
MaximumNumber: 1;
end Computeré&ExtInterfaceBoard CEIComp4.

As already explained, "CEIComp4" represents the fact that at
most one V"ExtIntB2" can be installed on "PCl"™, through one
of the five generic slots that appear in the value of pro-
perty "Slots".

7.3.2. Tape Drives

The IBM RT PC may have at most one cassette drive connected,
the IBM 6157 Streaming Tape Drive, defined in the ASL
Catalogue as follows:

Create CassetteDriver CassetteDl with:
Vendor: IBM;
CompName: IBM6157;
AccessType: ReadWrite;
ExternalInterfaces: {EI33};

end CassetteDriver CassetteDl.

where the external interface object "EI33" is created by:
Create ExtInterface EI33 with:

InterfaceType: TADPTlout;
end ExtInterface EI33.

the type of "EI33" being a display adapter type, given by:

Create ParallelInterfaceType TADPTlout with:
InterfaceName: TADPT1;

- 78 -

Input/Output: O;
end ParallelInterfaceType TADPTlout.

Analogously to the previcus case, the point-to-point

compa-

tibility between "PCl" and "CassetteDl" is declared by the

object:

Create Computeré&CassetteDriver CCDCompl with:
Devicel: PC1l;
Device2: CassetteDl;
Interfacel: TADPTlin;
Interface2: TADPTlout:;
end Computer&CassetteDriver CCDCompl.

An adapter of the appropriate type is seen as an
interface board by creating the obiject:

Create ExtInterfaceBoard ExtIntB6 with:
AllowedExtInterface: {EI42}:
end ExtInterfaceBoard ExtIntB6.

which is related to "PCl¥® by:

Create Computer&ExtInterfaceBoard CEIComp6 with:
Computer: PC1l;
Board: ExtIntRB6;
Slots: {GenericESl, GenericES3 ,GenericES4,
GenericES6, GenericES7};
MaximumNumber: 1;
end Computer&ExtInterfaceBoard CEIComp6.

external

- 79 -

REFERENCES

[Barb87]

[Cast88]

[Bass87]

[McDe80]

[LeveT79]

Barbic, F., Fugini, M.G., Maiocchi, R., Pernici,
B., Rhames, J.R., and Rolland, C., 'C-TODOS: An
Automatic Tool for Office System Conceptual
Design’, Politecnico di Milano, Electronics Dept.,
Rep. n. 87-15, 1987.

Castelli, D., Meghini, C., and Musto, D., rfArchi-
tecture Specification Language: Design and Imple-
mentation’, TODOS Technical Report n. T4.2, in
preparation.

Bassanini, G., Di Stefano, F., and Lunghi, G.,
"TODOS Analysis Model Overview’, TODOS Technical
Report n. Tl.2.2.1, July 1987.

McDermott, J., ‘Rl: A Rule-Based Configurer of Com-
puter Systems’, Technical Report n. CMU-CS$-80-119,
Carnegie~Mellon University, Dept. of Computer Sci-
ence, 1980.

Levesque, H. and Mylopoulos, J., ‘A Procedural
Semantics for Semantic Networks’, in "Associative
Networks’, N. Findler (ed.), Academic Press, 1979.

[IBM] IBM RT PC Hardware Maintenance and Service Manual

[Pern86]

[Sowa84]

[StalB84]

[Wood75]

Pernici, B. and Vogel, W., "An Integrated Approach
to OIS Development’, ESPRIT Technical Week 86,
Bruxelles, September 1986.

Sowa, J. F., 'Conceptual Structures’, Addison-
Wesley, 1984.

Stalling, W., ‘Local Networks’, ACM Computing Sur-
veys, 16 (1), March 1984.

Woods, W., 'What’s in a Link: Foundations for
Semantic Networks’, in ’'Representation and Under-
standing’, D.G. Bobrow and A.M. Collins (eds.), New
York, Academic Press, 1975.

- 80 -

Appendix A: The ASL Is-a Hierarchy

As a notational convention, the ASL is-a hierarchy is illus-
trated by representing specialization by indentation, so
that the more general classes are the less indented. We have
divided the is—a hierarchy as follows: the hierarchy of ASL
metaclasses, that of the Catalogue classes, that of the Com-
patibility <classes, and finally that of Architectural Units
classes.

A.1l. Metaclasses Is-a Hierarchy

ASLClass
CatalogueClass
CompatibilityClass
CatalogueltemClass
ArchitecturalUnitClass

A.2. Catalogue Is-a Hierarchy

Catalogue
Component
SoftwareComponent
SoftwareTool
OfficeSupportTool
VoiceProcessingTool
ImageProcessingTool
GraphicTool
DataProcessingTool
Calendar
Scheduling
SpreadSheet
WordProcessingTool
DBMS
DistributedDBMS
CentralizedDBMS
SystemSoftware
NetSystemSoftware
ElectronicMail
Editor
ProgrammingLanguageTool
OperatingSystem

- 81 -

HardwareComponent
ExpandableComponent
Computer
NetworkServer
WordProcessor
IntegratedWorkstation
PersonalComputer
MiniComputer
MainFrame
Peripheral
StoragePeripheral
ExternalStoragePeripheral
ExternalRAStoragePeripheral
ExternalDisketteDriver
ExternalOpticalDiskDriver
ExternalMagneticDiskDriver
ExternalSAStoragePeripheral
CartridgeDrivex
CassetteDriver
TapeDriver
InternalStoragePeripheral
InternalSAStoragePeripheral
InternalCassetteDriver
InternalTapeDriver
InternalCartridgeDriver
InternalRAStoragePeripheral
InternalDisketteDriver
InternalOpticalDiskDriver
InternalMagneticDiskDriver
IOPeripheral
Terminal
VideoTerminal
PrinterTerminal
Printer
Plotter
Scanner
Display
Keyboard
PointingDevice
StaticComponent
LocalAreaNet
TreelocalAreaNet
RingLocalAreaNet
BusLocalAreaNet
ExpansionBoard
NetInterfaceBoard
ExtInterfaceBoard
StorageBoard

- 82 -

CartridgeBoard
DisketteBoard
FixedDiskBoard
MainMemoryBoard
CoprocessorBoard
CPU
ExpansionSlot
GenericExpansionSlot
NetInterfaceExpansionSlot
ExtInterfaceExpansionSlot
CoprocessorExpansionSlot
StorageExpansionSlot
CartridgeExpansionSlot
FixedDiskExpansionSlot
DisketteExpansionSlot
Interface
NetInterface
ExtInterface
AuxCatalogue
AccessType
PrinterType
Font
DataForm
ScreenDimension
ScreenType
PointingDeviceType
TransmissionTechnique
LanProtocol
RingLanProtocol
BusTreelanProtocol
TransmissionMedium
CoprocessorFunctionality
PowerRequirements
MechanicalDimension
Environment
ExtInterfaceRate
InputOutput
HalfDuplexFullDuplex
SynchAsynch
InterfaceType
NetInterfaceType
ExtInterfaceType
BusInterfaceType
ParallelInterfaceType
SerialInterfaceType
RepresentationForm
InteractionMode
DataModel

- 83 -

GraphicalObject
CursorPositioner
Language
ToolType
FileSystem
Pnumber

Vendor

Boolean

Compatibility Is-a Hierarchy

Compatibility
ExpansionCompatibility

SoftwareExpansionCompatibility

HardwareExpansionCompatibility
Computer&CartridgeBoard
Computer&NetInterfaceBoard
Computeré&DisketteBoard
Computer&FixedDiskBoard
Computer&ExtInterfaceBoard
Computer&CoprocessorBoard
Computer&MainMemoryBoard

PTPCompatibility

MagneticDiskDriver&MagneticDiskDriver
Computer&Terminal
Computer&Scanner
Computer&Printer
Computer&Plotter
Computer&Display
Computer&MagneticDiskDriver
Computer&OpticalDiskDriver
Computer&DisketteDriver
Computer&TapeDriver
Computer&CassetteDriver
Computer&CartridgeDriver
Computer&Computer

A.4. Architectural Units Is-a Hierarchy

ArchitecturalUnit
Architecture
ComplexArchitecture
Subsystem
PTPConnectedSubsystem
ComputerUnit
MainFrameUnit
MiniComputerUnit
PersonalComputerUnit
IntegratedWorkstationUnit
WordProcessorUnit
NetworkServerUnit
OfficeNetwork
TreeNetwork
RingNetwork
BusNetwork
Subsystem
PTPConnectedSubsystem
ComputerUnit
MainFrameUnit
MiniComputerUnit
PersonalComputerUnit
IntegratedWorkstationUnit
WordProcessorUnit
NetworkServerUnit

Unit
SoftwarePackage
SoftwareToolUnit
SystemSoftwareUnit
ProgramminglanguageToolUnit
EditorUnit

ElectronicMailUnit
NetSystemSoftwareUnit
OfficeSupportToolUnit
DataProcessingToolUnit
DBMSUnit
CentralizedDBMSUnit
DistributedDBMSUnit
WordProcessingToolUnit
SpreadSheetUnit
SchedulingUnit
CalendarUnit
ImageProcessingToolUnit
GraphicToolUnit
VoiceProcessingToolUnit
OperatingSystemUnit

- 85 -

HardwareUnit
ExpandableUnit
PeripheralUnit
StoragePeripheralUnit
ExternalStoragePeripheralUnit
ExternalSASPUnit
CartridgeUnit
CassetteUnit
TapeUnit
ExternalRASPUnit
ExternalDisketteUnit
ExternalOpticalDiskUnit
ExternalMagneticDiskUnit
InternalStoragePeripheralUnit
InternalSASPUnit
InternalCartridgeUnit
InternalCassetteUnit
InternalTapeUnit
InternalRASPUnit
InternalDisketteUnit
InternalOpticalDiskUnit
InternalMagneticDiskUnit
IOPeripheralUnit
TerminalUnit
PrinterTerminalUnit
VideoTerminalUnit
PrinterUnit
PlotterUnit
ScannerUnit
DisplayUnit
KeyboardUnit
PointingDeviceUnit
ComputerUnit
MainFrameUnit
MiniComputerUnit
PersonalComputerUnit
IntegratedWorkstationUnit
WordProcessorUnit
NetworkServerUnit
StaticUnit
ExpansionSlotUnit
StorageExpansionSlotUnit
DisketteExpansionSlotUnit
FixedDiskExpansionSlotUnit
CartridgeExpansionSlotUnit
CoprocessorExpansionSlotUnit
ExtInterfaceExpansionSlotUnit
NetInterfaceExpansionSlotUnit

GenericExpansionSlotUnit
CPUUnit
ExpansionBoardUnit
ExtInterfaceBoardUnit
NetInterfaceBoardUnit
StorageBoardUnit
DisketteBoardUnit
CartridgeBoardUnit
FixedDiskBoardUnit
MainMemoryBoardUnit
CoprocessorBoardUnit
LocalAreaNetUnit
BusLANUnit
RingLANUnit
TreeLANUnit
InterfaceUnit
NetInterfaceUnit
ExtInterfaceUnit
Expansion
SoftwareExpansion
HardwareExpansion
DisketteExpansion
FixedDiskExpansion
CartridgeExpansion
NetInterfaceExpansion
ExtInterfaceExpansion
CoprocessorExpansion
MainMemoryExpansion
AuxArchitecturalUnit
Gateway
SubsystemPair
Host
PTPConnection

Appendix B: The ASL Interface Operations

This Appendix lists the interface operations, following the
same order of Section 4. For each operation, inputs,
returned value, and the conditions that cause it to fail,
are given. In addition, a brief description of the operation
behavior is presented. Not all this functions have been
implemented in the ASL prototype. However, we present the
complete list in order to give an full account of the ASL
language.

This Section is structured as follows: in the first
Section we will describe the operations available in the
Catalogue Administrator Interface; in the second Section the
operations of the ASL Interface are presented, collected by
level.

The following notational conventions are used:

{ 11} stands for the list 1

a | b | ¢ stands for the alternatives a,b,c

B.1l. Catalogue Administrator Interface Operations

is-a

Input nil
Return nil
Failures nil

Description The is-a hierarchy is displayed.

get component

Input C: CatalogueClass,
CD: Condition
Return List of C objects
Failures C is not a class of the Catalogue.

An intermediate condition selection does not
result in a single value.

Description It selects the objects of the class C that
satisfy the condition

- 88 -

display class definition

Input
Return
Faillures

Description

C: CatalogueClass

nil

C is not a Catalogue Class.

A list of the properties of class C. For each

property, the name, type, and default value,
if any, is displayed.

display component

Input
Return
Failures

Description

instance of
Input

Return
Failures

Description
part_of
Input

Return
Failures

Description

O: Catalogue

nil

O does not belong to anyone of the Catalogue
classes.

The list of the values of the slots and
relations of O is displayed.

0: Catalogue

List of Catalogue classes

0 does not belong to anycne of the Catalogue
classes.

The list of the Catalogue classes of which O
is an instance, i1s returned.

0: Catalogue

List of <DomainComponent,
O does not belong to anyone of the Catalogue
classes.

A list of <DomainComponent Slot|Relation> pairs

for each Slot or Relation having O either as
range value or as member of the range value
(for relations or set-valued properties), is
returned.

Slot|Relation> pairs.

- 89 -

create_ component

Input C: CataloguelItemClass,
N: atom
L: List of {Slot|Relation Value}
Return The newly created object N.
Failures N is the name of an already existing object.

C is not a class of the Catalogue.
Value does not belong to the Slot|Relation
range class.

Description A new instance is added to the class C of the
Catalogue.

delete_ component

Input 0: Catalogue

Return nil

Failures 0 is part of some existing Knowledge Base
obiject.

Description The input object is removed from the Catalogue.

create_version

Input O: Catalogue,

N: atom

L: List of {Slot|Relation Value},
Return Catalogue object
Failures O is not an object of the Catalogue.

N is the name of an already existing object.
Description An object is added to the Catalogue.

The new object differs from O in the value of

the properties in L.

delete_versions

Input O: Catalogue,
Return nil
Failures O is not an object of the Catalogue.

Some of the configurations to be deleted are
part of existing obijects.

Description All the versicns of O are removed from the
Catalogue.

get versions
Input
Return
Failures

Description

O: Catalogue
List of Catalogue objects
O is not an object of the Catalogue

All the versions of object O are returned.

create main memory_ board compatibility

Input

Return
Failures

Description

0l: Computer,

02: MainMemoryBocard,

N: atom

Computer&MainMemoryBoard obiject

N is the name of an already existing object.

A new object is created that describes the
compatibility between the computer 01 and
the main memory board 02.

create_ coprocessor_ board compatibility

Input

Return
Failures

Description

0l: Computer,

02: CoprocessorBoard,

03: {CoprocessorkxpansionSlot},

X: number,

N: atom

Computer&CoprocessorBoard obiject

N is the name of an already existing object.

A new object is created that describes the
compatibility between the computer 01 and

the coprocessor board 02.

03 is the list of Ol slots that are compatible
with the 02 board. X is the maximum number of 02
boards allowed for the computer O1.

- 91 -

create_external interface beoard compatibility

Input

Return
Failures

Description

0l: Computer,

02: ExtInterfaceBoard,

03: {ExtInterfaceExpansionSlot},

X: number,

N: atom

Computer&ExtInterfaceBoard object

N is the name of an already existing object.

A new object is created that describes the
compatibility Dbetween the computer 01 and the
external interface board 02.

03 is the list of 0l slots that are compatible
with the 02 beoard. X is the maximum number of
02 boards allowed for the computer O1.

create fixed disk board compatibility

Input

Return
Failures
Description

0l: Computer,

02: FixedDiskBoard,

03: {FixedDiskExpansionSlot},

X: number,

N: atom

ComputerFixedDiskBoard object

N is the name of an already existing object

A new object is created that describes the
compatibility between the computer 01 and

the fixed disk board 02.

03 is the list of Ol slots that are compatible
with the 02 board. X is the maximum number of
02 boards allowed for the computer Ol.

- 92 -

create_diskette board compatibility

Input

Return
Failures

Description

0l: Computer,

02: DisketteBoard,

03: {DisketteExpansionSlot},

X: number,

N: atom

Computer&DisketteBoard object

N is the name of an already existing object.

A new object 1s created that describes the
compatibility between the computer 01 and

the diskette expansion board 02.

03 is the list of 01 slots that are compatible
with the 02 board. X is the maximum number of
02 boards allowed for the computer O1.

create net interface board compatibility

Input

Return
Failures

Description

0l: Computer,

02: NetInterfaceBoard,

03: {NetInterfaceExpansionSlot},

X: number,

N: atom

Computer&NetInterfaceBoard object

N is the name of an already existing object.

A new object is created that describes the
compatibility between the computer 01 and

the network interface board 02.

03 is the list of Ol slots that are compatible
with the 02 board. X is the maximum number of
02 boards allowed for the computer Ol.

- g3 -

create cartridge_board compatibility

Input

Return
Failures

Description

O0l: Computer,

02: CartridgeBoard,

03: {CartridgeExpansionSlot},

X: number,

N: atom

Computer&CartridgeBoard obiject

N is the name of an already existing object.

A new object is created that describes the
compatibility between the computer 01 and

the cartridge board 02.

03 is the list of 01 slots that are compatible
with the 02 board. X is the maximum number of
02 boards allowed for the computer Ol.

create software compatibility

Input

Return
Failures

Description

0l: Computer,

02: SoftwareTool,

03: {SoftwareTool},

N: atom

SoftwareCompatibility object

N is the name of an already existing object.

A new object is created that describes the
compatibility between the software tool 02
and the computer OI.

03 is the software required to run 02 on Ol.

create computer computer compatibility

Input

Return
Failures

Description

0l: Computer,

02: Computer,

03: InterfaceType,

04: InterfaceType,

N: atom

Computer&Computer object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created between 0Ol and 02.

create_computer cartridge driver compatibility

Input

Return
Faillures

Description

0l1l: Computer,

02: CartridgeDriver,

03: InterfaceType,

04: InterfaceType,

N: atom

Computer&CartridgeDriver object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for 01 and 02 respectively.

create computer cassette driver compatibility

Input

Return
Failures

Description

0l: Computer,

02: CassetteDriver,

03: InterfaceType,

04: InterfaceTlype,

N: atom

Computer&CassetteDriver object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for Ol and 02 respectively.

create computer tape driver compatibility

Input

Return
Failures

Description

01: Computer,

02: TapeDriver,

03: IntexrfaceType,

04: InterfaceType,

N: atom

Computer&TapeDriver object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for Ol and 02 respectively.

create computer diskette driver compatibility

Input

Return
Failures

Description

0l: Computer,

02: DisketteDriver,

03: InterfaceType,

04: InterfaceType ,

N: atom

Computeré&DisketteDriver object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for Ol and 02 respectively.

create_computer optical disk driver compatibility

Input

Return
Failures

Description

Q0l: Computer,

02: OpticalDiskDriver,

03: InterfaceType,

04: InterfaceType,

N: atom

Computer&OpticalDiskDriver object

N is the name of an already existing obiject.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for 0Ol and 02 respectively.

create_computer magnetic_disk_driver compatibility

Input

Return
Failures

Description

0l: Computer,

02: MagneticDiskDriver,

03: InterfaceTlype,

04: InterfaceType ,

N: atom

Computeré&MagneticDiskDriver object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for Ol and 02 respectively.

create computer display compatibility

Input

Return
Failures

Description

0l: Computer,

02: Display,

03: InterfaceType,

Q04: InterfaceType,

N: atom

Computer&Display object

N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for 01 and 02 respectively.

create computer plotter compatibility

Input

Return
Failures

Description

0l: Computer,

02: PlotterDisplay,

03: InterfaceType,

04: InterfaceType,

N: atom

Computer&Plotter object

N is the name of an already existing obiject.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for 01 and 02 respectively.

create_ computer scanner compatibility

Input

Return
Failures

Description

0l: Computer,

02: Scanner,

03: InterfaceType,

04: InterfaceType,

N: atom

Computeré&Scanner object

N is the name of an already existing object.

A new Point-to-Point compatibility
description is created.

03 and 04 are the required types of external
interfaces for 0Ol and 02 respectively.

create magnetic disk_driver magnetic_disk driver compatibility

Input

Return
Failures

Description

0l: MagneticDiskDriver,

02: MagneticDiskDriver,

03: InterfaceType,

04: InterfaceType,

N: atom
MagneticDiskDriver&MagneticDiskDriver object
N is the name of an already existing object.

A new Point-to-Point compatibility description
is created.

03 and 04 are the required types of external
interfaces for 01 and 02 respectively.

delete_main memory board compatibility

Input
Return
Failures

Description

0: Computer&MainMemoryBoard
nil
O is not a compatibility object

The compatibility object O is deleted from the
Catalogue.

delete_coprocessor board compatibility

Input
Return
Failures

Description

O: Computer&CoprocessorBoard
nil
O is not a compatibility object

The compatibility object O is deleted from the
Catalogue.

delete_external interface_ board compatibility

Input
Return
Failures

Description

O: Computer&ExtInterfaceBoard
nil
O is not a compatibility object

The compatibility object O is deleted from the
Catalogue.

- 08 -

delete fixed disk board compatibility

Input O: ComputerFixedDiskBoard
Return nil
Faillures 0O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete diskette board compatibility

Input O: Computeré&DisketteBoard
Return nil
Failures O is not a compatibility obiject

Description The compatibility object O is deleted from the
Catalogue.

delete net_interface board compatibility

Input O: Computer&NetInterfaceBoard
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete cartridge board compatibility

Input O: Computer&CartridgeBoard
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete software compatibility

Input O: SoftwareCompatibility
Return nil
Failures O is not a compatibility obiject

Description The compatibility object O is deleted from the
Catalogue.

- 99 -

delete_computer_ computer compatibility

Input O: Computer&Computer
Return nil
Failures O is not a compatibility obiject

Description The compatibility object O is deleted from the
Catalogue.

delete computer cartridge driver compatibility

Input O: Computer&CartridgeDrive
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete_computer cassette_ driver compatibility

Input 0O: Computer&CassetteDriver
Return nil
Failures O is not a compatibility obiject

Description The compatibility object O is deleted from th
Catalogue.

delete computer_ tape driver compatibility

Input 0: Computer&TapeDriver
Return nil
Failures O is not a compatibility obiject

Description The compatibility object O is deleted from the
Catalogue.

delete computer diskette driver compatibility

Input O: Computer&DisketteDriver
Return nil
Failures O is not a compatibility obiject

Description The compatibility object O is deleted from the
Catalogue.

- 100 -

delete_ computer optical disk driver compatibility

Input O: Computers&OpticalbDiskDriver
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete_ computer magnetic_disk driver compatibility

Input O: Computer&MagneticDiskDriver
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete computer display compatibility

Input O: Computer&Display
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete_computer plotter compatibility

Input O: Computer&Plotter
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

delete computer scanner compatibility

Input O: Computer&Scanner
Return nil
Failures O is not a compatibility object

Description The compatibility object O is deleted from the
Catalogue.

- 101 -

delete magnetic_disk driver magnetic_disk driver compatibility

Input O: MagneticDiskDriver&MagneticDiskDriver
Return nil
Failures O is not a compatibility object

Description The compatibility obJject O is deleted from the
Catalogue.

B.2. The ASL Interface Operations

In this Section, the operations on architectural Units will
be detailed, group by level of abstraction.

B.2.1. Catalogue Level Operations

The operations of this level are the subset of the Catalogue
Administrator Interface operations consisting of the opera-
tions that do not modify the ASL Catalogue. In particular,
these functions are: is-a, get_ component,
display class definition, display_ component, instance of,
part_of, get_versions. Their description is not repeated.

B.2.2. Unit Level Operations

get_unit
Input C: UnitClass,
CD: Condition
Return List of C objects that satisfy the condition.
Failures None

Description Selects the objects of the class C that satisfy
the given condition.

display unit
Input
Return
Failures

Description

instance_of
Input

Return
Failures

Description

part of
Input
Return
Failures

Description

create unit
Input

Return
Failures

Description

- 102 -~

O: Unit
nil
O is not an existing Unit.

The list of the object slot and relation values
is displayed.

O: Unit

List of Unit level classes

O does not belong to anyone of the Unit Level
classes.

The list of Unit level classes of which O is
an instance is returned.

O: Unit
List of <DomainUnit, Slot|Relation> pairs.
O does not belong to anyone of the Unit classes.

A list of <DomainUnit, Slot|Relation> pairs for
each Slot or Relation having O either as range
value or as member of the range value (for
relations or set-valued properties), is
returned.

N: atom,

O: Component

Unit object.

N is the name of an already existing object.

A Unit object and its component Unit objects are
created.

delete_unit
Input

Return
Failures

Description

- 103 -

O: Unit

nil

O i1s not an existing Unit.

O is a component of some PTP connected
Subsystem.

0 and its component Units are deleted.

expand with main_memory board

Input

Return
Failures

Description

0: ComputerUnit,

X: number,

ComputerUnit object.

O has no free expansion slot.

O has no compatible memory boards.

The resulting installed main memory exceeds
the maximum main memory of O basic model.

O is modified by adding a new memory expansion
board which brings the total main memory of O
to X.

expand_with_ coprocessor_board

Input

Return
Faillures

Description

01: ComputerUnit,

02: CoprocessorFunctionality.
ComputerUnit obiject.

01 has no free expansion slot.

01 has no compatible coprocessor boards.

0l is modified by adding a coprocessor
expansion board Unit having the functionality
02.

expand with external interface board

Input

Return
Failures

Description

0l: ComputerUnit,

02: ExtInterfaceType.

ComputerUnit object.

01 has no free expansion slot.

02 is not compatible with any free expansion
slot of Ol.

0l is modified by adding the external interface
board Unit whose basic model is 02.

- 104 -

expand with network interface board

Input 0l: ComputerUnit,
02: NetInterfaceType.

Return ComputerUnit object.

Failures 01 has no free expansion slot.
02 is not compatible with any free expansion
slot of OI.

Description O©C1 is modified by adding the network interface
board Unit whose basic model is 02.

expand with fixed disk board

Input 0l: ComputerUnit,
02: FixedDisk.

Return ComputerUnit object.

Failures 01 has no free expansion slot.
02 is not compatible with any free expansion
slot of O1l1.

Description Ol is modified by adding the fixed disk board
Unit whose basic model is 02.

expand _with_diskette board

Input 0l: ComputerUnit,
02: Diskette.

Return ComputerUnit object.

Failures 01 has no free expansion slot.
02 is not compatible with any free expansion
slot of Ol.

Description Ol is modified by adding the diskette board
Unit whose basic model is 02.

expand with cartridge board

Input 0l: ComputerUnit,
02: Cartridge.

Return ComputerUnit obiject.

Failures 0l has no free expansion slot.
02 is not compatible with any free expansion
slot of Ol.

Description Ol is modified by adding the cartridge board
Unit whose basic model is 02.

- 105 -

expand with software

Input 0l: ComputerUnit,
02: SoftwarePackage.
Return ComputerUnit object.
Failures 01 has not enough memory to run 02.

01 has not the required software to run 02.

Description The software package 02 is added to the set of
software expansions of Ol1.

remove main memory board

Input O: ComputerUnit,
X: number.
Return ComputerUnit obiject.
Failures O memory expansion is less than X.

Description The memory expansion board Unit of O is
replaced with a new expansion board Unit
which brings to X the total main memory of O.
If such dimension is 0 (or less) no expansion
board Unit is created. The old expansion Unit
is deleted.

remove_coprocessor_board

Input 0l: ComputerUnit,
02: CoprocessorFunctionality.
Return ComputerUnit obiject.
Failures 01 does not have any coprocessor expansion

board Unit with the functionality 02.

Description A coprocessor expansion board Unit with the
functionality 02 is removed from the set added
coprocessor boards and hardware expansion of Ol.
The old expansion board Unit is deleted.

- 106 -

remove external interface board

Input

Return
Failures

Description

0l: ComputerUnit,

02: ExtInterfaceType

ComputerUnit object.

02 is not an external interface board of Ol.
There is an external interface of 02 that is
not free.

The set of external interfaces of 02 is removed
from the set of free external interfaces of Ol.
02 is removed from the set of hardware
expansions of Ol1.

remove network interface board

Input

Return
Fallures

Description

0l: ComputerUnit,

02: NetInterfaceType.

ComputerUnit obiject.

02 is not a network interface board of 01.
There is a network interface of 02 that is
not free.

The set of network interfaces of 02 is removed
from the set of free network interfaces of Ol.
02 1is removed from the set of hardware
expansions of Q1.

remove_ fixed disk board

Input

Return
Failures

Description

0l: ComputerUnit,

02: FixedDisk.

ComputerUnit obiject.

02 is not an expansion board of O1.

02 is removed from the set of hardware
expansions of O1l.

remove_ diskette board

Input

Return
Faillures

Description

0l: ComputerUnit,

02: Diskette.

ComputerUnit obiject.

02 is not an expansion board of O1.

02 is removed from the set of hardware
expansions of 01.

- 107 -

remove_cartridge board

Input

Return
Failures

Description

01: ComputerUnit,

02: Cartridge.

ComputerUnit object.

02 is not an expansion board of Ol.

02 is removed from the set of hardware
expansions of Ol.

remove_software_expansion

Input

Return
Failures

Description

01l: ComputerUnit,

02: SoftwarePackage.

ComputerUnit object.

02 is not a software expansion of Ol.

The software package 02 is removed from the set
of software expansion of O1.

B.2.3. Subsystem Level Operations

get_subsystem
Input

Return
Failures

Description

C: SubsystemClass,

CD: Condition

List of C objects that satisfy the condition.
none

Selects the Subsystem objects that satisfy
the condition.

display_ subsystem

Input
Return
Faillures

Description

O: PTPConnectedSubsystem
nil
O is not an existing PTP connected Subsystem.

The list of the Units and of the PTP connections
(Unit pairs) of O is displayed.

- 108 -

create_ subsystem

Input

Return
Failures

Description

N: atom,
S1: {ExpandableUnit},
S2: {{0l: ExpandableUnit,

02: ExpandableUnit}}
PTPConnectedSubsystem object.
$1 is empty.
S2 is empty.
N is the name of an already existing Subsystem.
An element of S1 already belongs to another
Subsystem.
There is a Unit in S1 that has been specified
more than once.
There is a pair in S2 that has been specified
more than once, either in the same or in
reverse order.
An element of some pair of S2 is not in S1.
S1 does not contain any computer.
The graph representing the resulting Subsystem
is not serially connected.

A PTP connected Subsystem object is created
having the elements of S1 as component Units
and the pairs in S2 as specification of the
PTP links.

delete subsystem

Input
Return
Failures

Description

O: Subsystem
nil
O is part of some existing Network.

O is deleted.

~ 109 -

add_unit to subsystem

Input

Return
Failures

Description

0l: PTPConnectedSubsystem,
02: ExpandableUnit,
S1: {{03: ExpandableUnit,

04: ExpandableUnit}}.
PTPConnectedSubsystem object.
02 already belongs to some Subsystem.
An element of some pair of S1 is neither an
element of Ol or is equal to 02.
The graph representing the resulting Subsystem
is not serially connected.
There is more than one link between some pair
of the resulting Subsystem components.

The expandable Unit 02 is added to the
Subsystem 01 by establishing the links
described in S1.

add ptp connection to subsystem

Input

Return
Failures

Description

0l: PTPConnectedSubsystem,
Pl: {02: ExpandableUnit,

03: ExpandableUnit}.
PTPConnectedSubsystem object.
Either 02 or 03 are not elements of Ol1.
There is more than one link between some pair
of the resulting Subsystem components.

01 is medified by adding the new PTP connection
given by P1.

remove_unit_ from subsystem

Input

Return
Failures

Description

0l: PTPConnectedSubsystem,

02: ExpandableUnit.

PTPConnectedSubsystem object.

02 is not a Unit of Ol1.

02 is the only Unit of O1.

The resulting Subsystem would not be serially
connected.

The expandable Unit 02 and the links that
refer it are removed from the set of component
Units of O1.

- 110 -

remove ptp connection from subsystem

Input 0l: PTPConnectedSubsystem,
P1l: {0Ol: ExpandableUnit,
02: ExpandableUnit}.
Return PTPConnectedSubsystem object
Failures The specified link does not belong to 01.
The graph representing the resulting
Subsystem is not serially connected.

Description The PTP connection object given by Pl is
removed from the set of PTP connections of
Subsystem Ol.

in_subsystem

Input 0: ExpandableUnit
Return Subsystem object
Failures none

Description It returns the Subsystem where O belongs.

ptp_connected subsystem

Input O: Subsystem
Return Boolean value
Failures none

Description It returns true if O is an instance of class
PTPConnectedSubsystem, nil otherwise.

B.2.4. Network Level Operations

get_network

Input C: NetworkClass,

CD: Condition
Return List of C objects that satisfy the condition.
Failures none

Description Selects the Networksthat satisfy the condition.

- 111 -

display network

Input
Return
Failures

Description

0: Network
nil
0O is not an existing Network.

The Network communication device and the list
of the component Subsystems are displayed.

create bus network

Input

Return
Failures

Description

N: atom,
0l: LocalAreaNetwork object,
S1l: {{02: Subsystem,
03: ComputerUnit}},
32: {04: Subsystem}
BusNetwork object
03 is not a component Unit of 02.
04 does not appear as 02 element in S1.
03 does not have any free net interface
compatible with Ol.

A bus Network is created whose communication
device is Ol and whose component Subsystems are
the 02 elements of S1. 03 is the computer Unit
through which the Subsystem 02 is physically
connected to the Network. For such reason 03

is modified making used one of its free net
interface.

The Subsystems are placed along the
communication device according the order
specified in S2.

- 112 -

create ring network

Input

Return
Failures

Description

N: atom,
0l: LocalAreaNetwork obiject,
S1: {{02: Subsystem,
03: ComputerUnit}}
S2: {04: Subsystem}
RingNetwork object
03 1is not a component Unit of 02.
04 does not appear as 02 element in S1.
03 does not have any free net interface
compatible with Ol.

A ring Network is created whose communication
device is 01 and whose component Subsystems
are the 02 elements in S1. 03 is the Unit
through which the Subsystem 02 is physically
connected to the Network. For such reason 03
is modified making used one of its free net
interface.

create tree network

Input

Return
Failures

Description

N: atom,
0l: LocalAreaNetwork object,
S1l: {{02: Subsystem,
03: ComputerUnit}}
S2: {04: Subsystem},
TreeNetwork object
03 is not a component Unit of 02.
04 do not appear as 02 element in S1.
03 does not have any free net interface
compatible with OL.

A tree Network is created whose communication
device is 01 and whose component Subsystems
are the 02 elements of S1. 03 is the Unit
through which the Subsystem 02 is physically
connected to the Network For such reason 03
is modified making used one of its free net
interface.

The elements in S2 describe the Network
topology, each pair describing the relationship
father—-child between two Subsystems. The order
among the pairs correspond to the order among
the children in the same family.

- 113 -

add subsystem to_bus network

Input

Return
Failures

Description

0l: BusNetwork,
Pl: {02: Subsystem,
03: ComputerUnit},
04: Subsystem.
BusNetwork object
03 is not a component Unit of 04.
04 is not a Ol component Subsystem.
03 does not have any free net interface
compatible with Ol.

The Subsystem 02 is connected to the Network Ol
through the 02 Unit 03. The new Subsystem is
located as immediate successor of the Subsystem
O4. 03 is modified making used one of its free
network interface Units.

add_subsystem to_ring network

Input

Return
Failures

Description

0l: RingNetwork,
Pl: {02: Subsystem,
03: ComputerUnit},
04: Subsystem.
RingNetwork object
03 is not a component Unit of 04.
04 does not appear as 02 element in S1.
03 does not have any free net interface
compatible with O1.

The Subsystem 02 is connected to the Network
0l through the 02 Unit 03. The new Subsystem
is located as immediate successor of the
Subsystem 04.

03 is modified making used one of its free
net interface.

- 114 -

add_subsystem to_tree network

Input

Return
Failures

Description

0l: TreeNetwork,
Pl: {02: Subsystem,
03: ComputerUnit},
04: Subsystem,
05: Subsystem.
TreeNetwork object
03 is not a component Unit of 04.
04 is not a Ol component Subsystem.
03 does not have any free net interface
compatible with 0O1.

The Subsystem 02 is connected to the Network 01
through the 02 Unit 03. The new Subsystem is
located in the family of the Subsystem 04. 05
is the child of 04 that immediate precedes 02.
03 is modified making used one of its free net
interface.

remove subsystem from bus_ network

Input

Return
Failures

Description

0l: BusNetwork obiject,

02: Subsystem.

BusNetwork object

02 is not a component Subsystem of the Network
ol.

02 is the only Subsystem component of the
Network O1.

The Subsystem 02 is removed from Network O1.
The computer Unit through which 02 is connected
to 01 is modified making free the Network
interface that connects 01 and 02.

- 115 -

remove_subsystem from ring network

Input

Return
Failures

Description

0l: RingNetwork obiject,

02: Subsystem.

RingNetwork object

02 is not a component Subsystem of the Network
01.

02 is the only Subsystem component of the
Network Ol.

The Subsystem 02 is removed from the Network Ol1.
The computer Unit through which 02 is connected
to 01 is modified making free the Network
interface that connects Ol and 02.

remove_ subsystem from tree network

Input

Return
Failures

Description

0l: TreeNetwork obiject,

02: Subsystem.

TreeNetwork object

02 is not a component Subsystem of the Network
01.

02 is the only Subsystem component of the
Network Ol1.

The family of 02 must be empty.

The Subsystem 02 is removed from Network O1.
The computer Unit through which 02 is connected
to Ol is modified making free the Network
interface that connects 01 and 02.

delete ring network

Input
Return
Failures

Description

0l: RingNetwork
nil
0l is part of some existing Architecture.

The ring Network 01 is deleted.

The computer Units through which the 01
component Subsystems are connected to the
Network are modified making free the Network
interface that connects the Subsystem to the
Network.

- 116 -

delete bus network

Input 0l: BusNetwork
Return nil
Failures 01 is part of some existing Architecture.

Description The bus Network 0l is deleted.
The computer Units through which the 01
component Subsystems are connected to the
Network are modified making free the Network
interface that connects the Subsystem to the
Network.

delete tree network

Input 0l: TreeNetwork
Return nil
Failures 01l is part of some existing Architecture.

Description The tree Network Ol is deleted.
The computer Units through which the 01
component Subsystems are connected to the
Network are modified making free the Network
interface that connects the Subsystem to the
Network,

B.2.5. Architecture Level Operations

get_architecture

Input C: ArchitectureClass,
CD: Condition

Return List of complex Architectures that satisfy the
specified condition.

Failures none

Description Selects the objects of the class C that satisfy
the condition.

- 117 -

display architecture

Input
Return
Failures

Description

O: ComplexArchitecture

nil

O is not an existing Architecture.

The set of Networks that belong to the

Architecture and a description of their
gates are displayed.

create_ architecture

Input

Return
Failures

Description

N: atom,

S1l: {Network}

ComplexArchitecture object

The resulting Architecture must be serially
connected.

Some of the the Networks in S1 are already
part of some existing Architecture.

A new Architecture is created. The gates
between two component Networks are those
Subsystems that are shared by the Networks.

delete_architecture

Input
Return
Failures

Description

O: ComplexArchitecture.
nil
none

The Architecture object O is deleted.

add _network to architecture

Input

Return
Failures

Description

0l: ComplexArchitecture,

02: Network object

Architecture obiject

02 already belongs to an Architecture.

None of the 02 Subsystems belongs to any of
01 Networks (no gate between 01 and 02).

02 is added to the 01 component Networks.

- 118 -

remove network from architecture

Input 0l: ComplexArchitecture,
02: Network

Return Architecture object

Failures 02 does not belong to Ol.
The resulting Architecture would not be fully
connected.

02 i1s the only Network of the Architecture Ol.

Description 02 is removed from the set of Networks of the
Architecture Ol.

complex architecture

Input 0: Object
Return Boolean value
Failures none

Description It return true if O is a complex Architecture,
nil otherwise.

