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1. Introduction  

Magneto-Hydrodynamics (MHD) describes the plasma as a fluid coupled with the self-
consistent magnetic field. The regime of validity of the MHD description of a plasma system 
is generally restricted to the temporal and spatial scales much larger than the characteristic 
plasma temporal scales (such as those associated with the plasma frequency, the ion and 
electrons cyclotron frequencies and the collision frequency), or the typical spatial scales (as 
the ion and electron inertial scale, the ion and electron Larmor radii and the Debye length). 
On the large scale, the plasma can be successfully described in terms of a single magnetized 
fluid by means of generally differentiable and smooth functions: this description of plasma 
media has met a wide success. However, the last decade of the 20th Century has brought to 
scientists’ attention a wide amount of experimental and theoretical results suggesting 
substantial changes in classical magnetized plasma dynamics with respect to the MHD 
picture. In particular, two fundamental characteristics of the MHD as a dynamical theory 
have started to appear questionable: regularity and determinism. The MHD variables are, 
indeed, analytically smooth functions of space and time coordinates. Physicists refer to this 
as regularity. Moreover, once the initial conditions are assigned (together with some border 
conditions), the evolution of the MHD variables is unique: hence MHD is strictly 
deterministic. Instead, in in-field and laboratory studies, more and more examples have been 
brought to evidence, where irregularity and stochastic processes appear to play a role in 
magnetized plasma dynamics. This is particularly true when one approaches intermediate 
and small scales where the validity conditions for the MHD description, although still valid, 
are no longer valid in a strict sense, or when we are in the presence of topologically relevant 
structures, whose evolution cannot be described in terms of smooth functions.  From now 
on, the conditions of the MHD variables apparently violating smoothness and/or 
determinism will be referred to as irregular stochastic configurations (ISC). In the following we 
remind, in some detail, these experimental and theoretical results pointing towards the 
existence of ISCs, in the context of space plasmas and fusion plasmas. 

In the framework of space physics, it has been pointed out that both the global, large scale 
dynamics and some local processes related to plasma transport could be better explained in 
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terms of stochastic processes, low-dimensional chaos, fractal features, intermittent 
turbulence, complexity and criticality (see e.g. Chang, 1992; Klimas et al., 1996; Chang, 1999; 
Consolini, 2002; Uritsky et al., 2002; Zelenyi & Milovanov, 2004 and references therein). 

A certain confidence exists in stating that the rate of conversion of the magnetic energy into 
plasma kinetic one observed in events of magnetic reconnection is significantly 
underestimated by the traditional, smooth and deterministic, MHD (see for example Priest 
& Forbes, 2000 and also Biskamp, 2000). Lazarian et al. (2004) have found an improvement 
in the calculation of the magnetic reconnection rate by considering stochastic reconnection 
in a magnetized, partially ionized medium. This process is stochastic due to the field line 
probabilistic wandering through the turbulent fluid. In a different context, Consolini et al. 
(2005) showed that stochastic fluctuations play a crucial role in the current disruption of the 
geomagnetic tail, a magnetospheric process occurring at the onset of magnetic substorm in 
the Earth’s magnetotail (see, e.g., Kelley, 1989; Lui, 1996).  Consistently with the relevance of 
stochastic processes in space plasmas, tools derived from information theory have been 
recently applied to describe the near-Earth plasma phenomenology (Materassi et al., 2011; 
De Michelis et al., 2011). On the other hand, turbulence has been shown to play a relevant 
role in several different space plasma media as the solar wind (Bruno & Carbone, 2005) or 
the Earth’s magnetotail regions (see, e.g., Borovsky & Funsten, 2003), etc. 

In fusion plasmas, phenomena important as anomalous diffusion induced by stochastic 
magnetic fields (Rechester & Rosenbluth, 1978) have been suggested to be caused by the 
appearance of irregular modes similar to ISCs: those modes have been documented since a 
rather long time (Goodall, 1982). In tokamak machines ISCs observed are mesoscopic 
intermittent and filamentary structures: recently, studies have shown how such structures 
might be generated by reconnecting tearing modes triggered by a primary interchange 
instability (Zheng & Furukawa 2010). 

The appearance of ISCs should not be expected as an exceptional condition: indeed, time- 
and space-regular MHD relies on very precise hypotheses, not necessarily holding in real 

plasmas. As underlined before, it should be considered that MHD is a long time description 
with respect to the interaction times of particles. In order to expect a smooth deterministic 

evolution in time, “fast phenomena” should be ignored, and clearly this cannot be done 
when “fast phenomena” lead to big changes in the MHD variables themselves, on 

macroscopic scales, as it happens in the fast magnetic reconnection. 

Space regularity requires the scale at which matter appears as granular to shrink to zero, 

and this is possible under the hypothesis that such scale is much smaller than the typical 
scale where the MHD variables do vary. However, in turbulent regimes the scale at which the 

MHD fields vary are so small, that they compare with those scales at which plasma appears 
as granular. 

The phenomenology of plasma ISCs appears to indicate that the role of “fundamental 
entities” should be played by mesoscopic coherent structures, interacting and stochastically 
evolving. These stochastic coherent structures (SCS) have been observed in several space 
plasma regions: in solar wind (Bruno et al., 2001) as field-aligned flux tubes, in the Earth's 
cusp regions (Yordanova et al., 2005), in the geotail plasma sheet as current structures, 2D 
eddies and so on (see, for instance, Milovanov et al., 2001; Borovsky & Funsten, 2003; Vörös 
et al., 2004; Kretzschmar & Consolini, 2006). Recent observations of small-scale magnetic 
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field features in the magnetosheath transition region (as described in Retinò et al., 2007; 
Sundkvist et al., 2007) seem to suggest that the dynamics of such coherent structures can be 
the origin of a coherent dissipation mechanism, a sort of coarse-grained dissipation (Tetrault, 
1992a, b; Chang et al., 2003) due to interactions that result non-local in the k-space. 

A consistent theory of plasmas in ISC should be a consistent theory of SCSs, valid in a 
suitable “midland” of the “coupling constant space” (Chang et al., 1978). This “midland of 
SCSs” should be far from the particle scale (because each SCS involves a large amount of 
correlated particles), but also some steps under the fluid level (because matter should 
appear granular and fields irregular). 

Furthermore, this “midland” is not the usual kinetic-fluid transition as described e.g. in Bălescu 
(1997). In fact, the kinetic description is sensible under some weak coupling approximation allowing 
for a self-consistent Markovian single particle theory to exist, while if mesoscopic coherent 
structures appear, the correlation length and inter-particle interaction scale are so big that the 
single particle evolves only together with a large number of its fellows, excluding such weak 
coupling. Then, if SCSs exist, the kinetic level of the theory does not. 

Well far from trying to give a self-consistent theory of the SCS, here we just discuss some 

models and scenarios retaining some properties that such a theory should have. The 

approaches discussed here are exactly the application of the philosophy well described by 

Bălescu (1997) to dissipative processes in the MHD. Probably, a first principle analytical 

theory of turbulence is going to be out of reach for decades. However, something useful for 

applications can be developed in a more advanced framework than “traditional” statistical 

mechanics by introducing elements of chaos or stochasticity, non-Gaussian or non-

Markovian properties, in some “effective” and “sound” models. In this way, one admits a 

certain “degree of randomness” in the equations, so that the non-Gaussianity of the basic 

stochastic processes, the role of the non-Markovian equations of evolution, the role of fractal 

structures and the emergence of “strange transport” are all SCS theoretical features of which 

one tries to take into account. 

The schemes presented here are models with these properties, trying to interpolate between 

the macroscopic, smooth, deterministic physics of traditional MHD and the mesoscopic, 

irregular, stochastic physics of “that something else” which has not been formulated yet. 

Such phenomenological approach is indicated as sub-fluid. 

In this chapter three sub-fluid models are described, the metriplectic dissipative MHD, the 

stochastic field theory of resistive MHD and the fractal magnetic reconnection. 

In the first model, the metriplectic dissipative MHD (§ 2), we focus on the relationship 

between the fluid dynamical variables and the microscopic degrees of freedom of the 

plasma. The thermodynamic entropy of the plasma microscopic degrees of freedom turns 

out to play an essential role in the metriplectic formalism, a tool developed in the 1980s 

encompassing dissipation within an algebra of observables, and here adapted to MHD. It is 

considered that thermodynamics, i.e. statistics, naturally arises for the description of the 

microscopic degrees of freedom. Fluid degrees of freedom are endowed with energy, linear 

and angular momenta, while an entropy function, measuring how undetermined their 

“mechanical” microscopic configuration is, can be attributed to the microscopic degrees of 

freedom. 
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In the second model treated, the stochastic field theory (SFT) (§ 3), the dissipation 
coefficients appearing in the MHD equations of motion are considered as noise, consistently 
with the fact that, out of its equilibrium, a medium may be treated statistically. In this way, 
MHD turns into a set of Langevin field equations. These may be treated through the path 
integral formalism introduced by Phythian (1977), appearing particularly suitable for non 
equilibrium statistics. Once the resistive MHD theory is turned into a SFT, transition 
probabilities between arbitrary field configurations may be calculated via a stochastic action 
formalism, closely resembling what is usually done for quantum fields. This mimics very 
precisely the idea of an ISC. 

A sub-fluid model of fast magnetic reconnection (FMR) is dealt with in § 4. FMR clearly 

belongs to the class of phenomena in which classical fields apparently undergo quantum-

like transitions in considerably short times: when magnetic field lines reconnect, the field 

topology is changed and a big quantity of magnetic energy, associated to the original 

configuration, is turned into the kinetic energy of fast jets of particles. In order to mimic a 

reconnection rate high enough, a successful attempt may be done relaxing the assumption 

that all the local variables of the plasma and the magnetic field are smooth functions. In 

particular, in a standard 2-dimensional Sweet-Parker scenario (Parker, 1957, 1963; Sweet, 

1958), one assumes that the reconnection region, where finite resistivity exists, is a fractal 

domain of box-counting dimension smaller than 2. This allows for a reconnection rate that 

varies with the magnetic Reynolds number faster than the traditional one. 

2. The dissipation algebrized 

Dissipation is a crucial element of the physical mechanism leading to ISCs in plasmas, and 

dissipative terms already appear in the smooth deterministic MHD. Moreover, the presence 

of dissipation, together with non-linearity, is a fundamental mechanism in order for 

coherent structures to form (Courbage & Prigogine, 1983). 

Many fundamental phenomena giving rise to plasma ISCs in nature, such as turbulence, 

magnetic reconnection or dynamo (Biskamp, 1993), are often described by MHD models 

containing dissipative terms. For instance, this can account for the finite resistivity of the 

plasma and/or  the action of viscous forces. 

Where does dissipation come from? Ultimately, MHD is derived from the Klimontovich 

equations, describing the dynamics of charged particles interacting with electromagnetic 

fields (Klimontovich, 1967). This is a Hamiltonian, consequently non-dissipative, system. 

Nevertheless, dissipative terms appear in some versions of MHD equations as a heritage of 

averaging and approximations carried out along the derivation procedure and which have 

spoilt the original Hamiltonian structure of the Klimontovich system. The presence of 

dissipative terms reflects a transfer of energy from the deterministic macroscopic fluid 

quantities into the microscopic degrees of freedom of the system, to be treated statistically, 

which lie outside a macroscopic fluid description. Such transfer of energy, in turn, implies 

an increase of the entropy of the system. 

If  dissipative terms are omitted, on the other hand, one expects the resulting MHD system 
to be Hamiltonian, with a conserved energy (the constant value of the Hamiltonian of the 
system) and a conserved entropy. Indeed, the non-dissipative version of MHD, usually 
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referred to as ideal MHD, has been shown, long ago, to be a Hamiltonian system (Morrison 
& Greene, 1980). The elements constituting a Hamiltonian structure are the Poisson bracket, 
a bilinear operator with algebraic properties, and the Hamiltonian of the system, depending 
on the dynamical variables: in the case of the MHD, these will be defined in the following 
(see (7) and (9)). The Hamiltonian formulation of the ideal MHD, apart from facilitating the 
identification of conserved quantitites, or the stability analysis of the equilibria, renders it 
evident that the dynamics of the system takes place on symplectic leaves that foliate the phase 
space (Morrison, 1998). 

The inclusion of dissipative terms invalidates the Hamiltonian representation: this dissipative 
breakdown matches the fact that, once dissipation is included, the system becomes “less 
deterministic” in a certain sense, because there is an interaction with microscopic degrees of 
freedom that are described in a statistical manner (friction forces are a statistically effective 
treatment of microscopic stochastic collisions). 

Some dissipative systems possess however an algebraic structure called metriplectic, which 

still permits to formulate the dynamics in terms of a bracket and of an observable, extending 

the concept of Hamiltonian. Metriplectic structures in general occur in systems which 

conserve the energy and increase the entropy. These are the so called complete systems. They are 

obtained adding friction forces to an originally Hamiltonian system, and then including, in 

the algebra of observables, the energy and entropy of the microscopic degrees of freedom. 

The metriplectic formulation permits to reformulate the dynamics of dissipative systems in 

a geometrical framework, in which information, such as the existence of asymptotically 

stable equilibria, may be easily retrieved without even trying to solve the equations. 

In order to define what a metriplectic structure is, and apply this concept to the case of 

MHD, it is convenient to start recalling that,  very frequently, one deals with the analysis of 

physical models of the form 

     , 1,..., ,i i i
t H Dz F z F z i N     (1) 

where z is the set of  the N dynamical variables of the system (N can be infinite; it is actually 

a continuous real index for field theories or the MHD) evolving under the action of a vector 

field FH(z) + FD(z). Such vector field is the sum of a non-trivial Hamiltonian component FH(z) 

and a component FD(z) accounting for the dissipative terms. If FD(z) = 0, the resulting system 

is Hamiltonian and consequently can be written as 

    ,  ,i i i
t Hz F z z H z       (2) 

where H(z) is the Hamiltonian of the system, and [*,*] is the Poisson bracket, an antisymmetric 
bilinear operator, satisfying the Leibniz property and the Jacobi identity (Goldstein, 1980). 
These properties render the Poisson algebra of group-theoretical nature. An immediate 
consequence of the antisymmetry of the bracket is that ∂tH = [H,H] = 0, so that H is 
necessarily a constant of motion. 

It is important to point out that, in many circumstances, the Poisson bracket is not of the 
canonical type. In particular, for Hamiltonian systems describing the motion of continuous 
media in terms of Eulerian variables, as in the case of ideal MHD, the Poisson bracket is 
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noncanonical and no pairs of conjugate variables can be identified. For such brackets, 
particular invariants, denoted as Casimir invariants, exist. These are quantities C(z) such 
that [C,F] = 0 for every F(z). Consequently ∂tC = [C,H] = 0 in particular, which shows that 
Casimir functions are indeed conserved quantities. 

Energy conservation and entropy increase in metriplectic systems are “algebrized” via a 
generalized bracket and a generalized energy functional. More precisely, a metriplectic 
system is a system of the form 

        ,  , ,  ,i i i i
tz z F z z F z z F z       (3) 

where the metriplectic bracket {*,*} = [*,*] + (*,*) is obtained from a Poisson bracket [*,*] and 

a metric bracket (*,*). The latter is a bilinear, symmetric and semidefinite (positive or 

negative) operation, satisfying also the Leibniz property (strictly speaking, a symmetric 

semi-definite bracket (*,*) should be referred to as semi-metric). The metric bracket is also 

required to be such that (f,H) = 0, for every function f(z), with H being the Hamiltonian of 

the system: this means that dissipation does not alter the total energy, since this already 

includes a part accounting for the energy dissipated. 

The function F in (3) is denoted as free energy, and is given by 

 ,F H C   (4) 

where C is a Casimir of the Poisson bracket, and λ is a constant.  

In the cases of interest here, this C is chosen as the entropy of the microscopic degrees of 

freedom of the plasma, involved in the dissipation. 

Let us assume the metric bracket be semi-definite negative (the case in which it is positive is 

completely analogous). The resulting metriplectic system possesses the following important  

properties: 

- ∂tH = 0, so that the Hamiltonian of the system is still conserved (possibly other 
quantities such as total linear or angular momenta can also be conserved); 

- ∂tC = ┣(C,C), so that, due to the semi definiteness of the symmetric bracket one has 
either ∂tC  ≥ 0 or ∂tC  ≤ 0 at all times, depending on whether ┣ is negative or positive. 
This candidates C to be an equivalent time coordinate wherever it is strictly monotonic 
with t (Courbage & Prigogine, 1983); 

- isolated minima of F are stable equilibrium points. 

Metriplectic structures have been identified for different systems as, for instance, Navier-

Stokes  (Morrison, 1984), free rigid body, Vlasov-Poisson (Morrison, 1986) and, in a looser 

sense, for Boussinesq fluids (Bihlo, 2008) and constrained mechanical systems (Nguyen & 

Turski, 2009). An algebraic structure for dissipative systems based on an extension of the 

Dirac bracket has been proposed by Nguyen and Turski (2001). They have also been used 

for identifying asymptotic vortex states (Flierl and Morrison, 2011). 

Also the visco-resistive plasma falls into the category of complete systems. Indeed, the 

following version of the visco-resistive MHD equations 
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can be shown to possess a metriplectic formulation. In (5) we adopted a notation with SO(3)-

indices, which turns out to be practical in this context. We specify that  

2

3
m n

ik ni mk nk mi ik mn ik mn V                     

is the stress tensor, with ┟ and ν indicate the viscosity coefficients, ┢ is the thermal 

conductivity, T the plasma temperature and s the entropy density per unit mass. In the limit 

┢ = ┞ = ν = σik = 0, one recovers the ideal MHD system treated by Morrison and Greene 

(1980), reading: 
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t j
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  (6) 

Morrison and Greene (1980) showed that the system (6) can indeed be cast in the form (2). 

This is accomplished first, by identifying the dynamical variables zi with the fields 

(B(x,t),V(x,t),ρ(x,t),s(x,t)) (here, the space coordinate x labels the dynamical variables and 

plays the role of a continuous 3-index). The Hamiltonian for ideal MHD is then 

  2 2
3, , , ,  .

2 2

V B
H s d x U s

            B V  (7) 

The three addenda in the integrand correspond to the kinetic, magnetic and internal 

energy of the system, respectively. U(ρ,s) is related to the plasma pressure and the 

temperature as: 

 
2 , .

U U
p T

s
 

     (8) 

The Poisson bracket giving rise to the frictionless (6) through the Hamiltonian (7) is given 

by: 
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 (9) 

This bracket possesses Casimir invariants (e.g. Morrison, 1982, Holm et al., 1985), such as the 
magnetic helicity; particularly relevant in our context, the total entropy is defined as: 

 3 .S sd x   (10) 

S is conserved along the motion of the non-dissipative system (6).  

Some observation should be made here about the role of the plasma entropy as a Casimir. 
Casimir are invariants that a theory shows because of the singularity of its Poisson bracket, 
which is not full-rank. Typically this can happen when a Hamiltonian system is obtained by 
reducing some larger parent one, which possesses some symmetry (see, e.g., Marsden & 
Ratiu, 1999, Thiffeault & Morrison, 2000). In the case of ideal MHD, the reduction which 
leads to the Poisson bracket (9), is the map leading from the Lagrangian to the Eulerian 
representation of the fluid (Morrison, 2009a).  When the system of microscopic parcels is 
approximated as a continuum, its (Lagrangian or Eulerian) fluid variables (as the velocity 
V(x,t)) pertain to the centre-of-mass of the fluid parcels of size d3x within which they may be 
approximated as constants. However, fluids are equipped with some thermodynamic 
variable, as the entropy s per unit mass here, which represent statistically the degrees of 
freedom relative-to-the-centre-of-mass of the parcels in d3x. In the Lagrangian description, 
the  value of the entropy per unit mass is attributed to each parcel at the initial time, and 
remains constant, for each parcel, during the motion. In the Eulerian description, the total 
entropy appears as a Casimir, after the reduction, and the symmetry involved in this case is 
the relabelling symmetry, which is related to the freedom in choosing the label of each 
parcel at the initial time. In this respect, it is worth recalling that this reduction process 
implies a loss of information (e.g. Morrison, 1986) in the sense that, through the Eulerian 
description, one can observe properties of the fluid at a given point in space, but cannot 
identify which parcel is passing at a given point at a given time. 

In a sense, this observation renders the metriplectic a sub-fluid description, because those 
microscopic degrees of freedom interact with the continuum variables through the role of S 
in (10) in the metric part of the evolution. 

If the dissipative terms are re-introduced into Eq. (6) and one goes back to Eq. (5), a complete 

system is obtained, in the sense that H in (7) doesn’t change along the motion (5), while 

entropy S in (10) is increased (Morrison, 2009b). 

Let us illustrate the metriplectic formulation for the system (5). The non-dissipative part of 

the dynamics is algebrized through the Hamiltonian (7) and the Poisson bracket (9). As far 

as the construction of the free energy F in (4) is concerned, the entropy S is taken as the 

Casimir C, whereas the metric bracket reads: 
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This metric bracket can be decomposed into two parts. A “fluid” part, corresponding to its 

first two terms,  which was shown to produce the viscous terms of the Navier-Stokes 

equations (Morrison, 1984), and a “magnetic” part, which accounts for the resistive terms. 

The proof that the above metric bracket satisfies the properties required by the metriplectic 

formulation has been given in Materassi & Tassi (2011). The SO(3)-tensors needed are 

defined as: 

2
,

3

 .

ikmn ni mk nk mi ik mn ik mn

h
ikmn ikh mn

        
 
       

 
 

The bracket (11) together with the free energy functional 

  2 2
3, , , ,  

2 2

V B
F s d x U s s

              B V  (12) 

produces the dissipative terms of the system (5). 

Thanks to the metriplectic formulation, it appears evident that the dynamics of the complete 

visco-resistive MHD takes place on surfaces of constant energy but, unlike Hamiltonian 

systems, it crosses different surfaces of constant Casimirs. Choosing C = S, it becomes 

evident that the fact that the dynamics does not take place at a surface of constant Casimir 

reflects of course the presence of dissipation in the system, and in particular the increase in 

entropy. 

Free extremal points of F in (12) (i.e., configurations at which one has F = 0 regardless other 

conditions) correspond to equilibria of the system (5) (even if other equilibria are possible). 

These can be found by setting to zero the first variation of F and solving the resulting 

equation in terms of the field variables. These equilibrium solutions are given by 

  
0, 0, ,

constant

eq eq eq

eq eq eq

T

p Ts U




   
  

V B

 (13) 

(since it has been obtained as extremal of the free energy functional, this solution is also an 
equilibrium for ideal MHD). The equilibrium (13) is rather peculiar because it corresponds 
to a situation in which all the kinetic and magnetic energy have been dissipated and 
converted into heat. It ascribes a physical meaning to the constant ┣, that corresponds to the 
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opposite of the homogeneous temperature the plasma reaches at the equilibrium. Other 
equilibria with non trivial magnetic or velocity fields can in principle be obtained by 
considering Casimir constants other than the entropy, and a different metric bracket, or 

simply by constraining the condition F = 0 onto some manifold of constant value for 
suitable physical quantities. Moreover, the boundary conditions for the system to work in 
this way must be such that all the fields behave “suitably” at the space infinity. All the 
results are obtained for a visco-resistive isolated plasma: indeed, all the algebraic relationships 
invoked hold if V, B, ρ and s show suitable boundary conditions, rendering visco-resistive 
MHD a “complete system”.  

Such metriplectic formulation conserves, in addition to the energy H, also the total linear 
momentum P, the total angular momentum L and the generator of Galileo’s boosts G, which 
are defined by: 

   3 3 3, , .d x d x t d x        P V L x V G x V  

About these quantities P, L and G, it should be stressed that, besides modifying the scheme 
with other quantities conserved in the ideal limit, more interesting equilibria than (13) may 
be identified by conditioning the extremization of F to the initial finite values of the Galilean 
transformation generators. 

3. Sub-fluid physics as noise: A stochastic field theory for the MHD 

The metriplectic theory of the MHD discussed in § 2 clarifies how the dissipative part of 

the dynamics must be attributed to the presence of statistically treated degrees of freedom, 

through their entropy. On the one hand, the metriplectic MHD gives a role to the statistics 

of the medium properties; on the other hand, local equilibrium and space-time-

smoothness of field variables are still assumed. In the sub-fluid model presented in this 

paragraph, the statistical nature of the microscopic degrees of freedom is cast into a form 

going beyond the local equilibrium condition. In particular, strong reference to plasma 

ISCs is made. 

Plasma ISC dynamics resembles more closely a quantum transition than a classical 

evolution: the idea presented here is that localized occurrence of big fluctuations in the 

medium probably initiate and determine those quantum-like transitions of the variables B 

and V. If the fluctuations of the medium are treated as probabilistic stirring forces, or noises, a 

totally new scenario appears.  

The formalism turning those considerations into a mathematical theory was introduced in 

Materassi & Consolini (2008); then, an application of it to the visco-resistive reduced MHD 

in 2 dimensions was obtained in Materassi (2009). 

Let’s consider the resistive incompressible MHD equations: 

 

  ,j j ijki i i h
t j j j kh

i
jj jkii i

t j k

B B V V B J

J p
V V V B

 
 

            
 (14) 
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(the choice of incompressible plasma is done for reasons to be clarified later). ┞ is the 
resistivity tensor and p is the plasma pressure. The dynamical variables are the fields V and 
B.  The viscosity ν is assumed to be zero. The form of ┞ and p, and of the mathematical 
relationships among them (necessary to close the system (14)), depend on the micro-
dynamics of the medium. Usually, constitutive hypotheses provide the information on the 
microscopic nature of the medium (Kelley, 1989). When the (at least local) thermodynamic 
equilibrium is assumed, the constitutive hypotheses read something like: 

    ,...  , , 0,T p T     (15) 

being T the local temperature field. Then, some heat equation is invoked for T, requiring 

other constitutive hypotheses about the specific heat of the plasma. 

The aforementioned procedure will only give ┞ and p regular quasi-everywhere. Instead, in 

the sub-fluid approach presented here, irregularities of ┞ and p are explicitly considered by 

stating that these local quantities are stochastic fields, and by assigning their probability 

density functions (PDF). The probabilistic nature of the terms ┞ and p will be naturally 

transferred to B and V through a suitable SFT. The following vector quantities are defined 

   , , :
ii

ijki h i i
j kh

pJ
J   

          (16) 

these Ξ, Δ, and Θ are considered as stochastic stirring forces, and their probability density 

functional is assigned as some Q[Ξ,Δ,Θ]. The resistive MHD equations are then re-written as 

the following Langevin field equations: 

 

  iid

,

,

, , , ,  .

j ji i i i
t j j

j jkii i i
t j j k

B B V V B

V V V B

Q


                  Ξ Δ Θ Ξ Δ Θ

 (17) 

This scheme, clearly, is not self-consistent because the PDF of the noise terms must be 

assigned a priori, as the outcome of a microscopic dynamics not included in this treatment 

and not predictable by it. Plasma microscopic physics will enter through some PDF Pdyn[┞,p]: 

as far as Pdyn[┞,p] keeps trace of the plasma complex dynamics, this represents a (rather 

general) way to provide constitutive hypotheses. Then, the positions (16) are used to 

construct mathematically the passage: 

   iid iid

dyn, , , , , ,  .p P p Q         Ξ Δ Θ Ξ Δ Θ  

A closed form for Q[Ξ,Δ,Θ] should be obtained consistently with any microscopic 

dynamical theory of the ISC plasma, from the very traditional equilibrium statistical 

mechanics to the fractional kinetics reviewed in Zaslavsky (2002). 

Due to the presence of the stochastic terms Ξ, Δ, and Θ two important things happen: first of 
all, from each set of initial conditions, many possible evolutions of B and V develop according to 
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(17), each corresponding to a particular realization of Ξ, Δ, and Θ (Haken, 1983); then B and V 
can be arbitrarily irregular, because they inherit stochasticity from noises; they will possibly 
show sudden changes in time or non-differentiable behaviours in space, as it happens in ISCs. 
The description of such a system may be given in terms of path integrals (Feynman & Hibbs, 
1965). The positions (16) and their consequence (17) are chosen because they reproduce exactly 
the Langevin equations treated in Phythian (1977), on which this model is based. 

The construction introduced in the just mentioned work is the definition of a path integral 

scheme out of a suitable set of Langevin equations. One starts with a dynamical variable ┰, 

with any number of components, undergoing a certain equation with noises. Then, another 

variable ┯ is defined, referred to as stochastic momentum conjugated to ┰. In this way, it is 

possible to define a kernel 

    
0

,

0 0[ , ; , ) , ,

t

t

i L d

A t t N t t e
       (18) 

so that any statistical outcome of the history of the system between t0 and t is calculated as: 

 0[ , ; , )  .F d d A t t F              

In the kernel in (18) the quantity L(┰,┯) is referred to as stochastic Lagrangian of the system. In 

Phythian (1977) the key result is a closed “recipe” to build up L(┰,┯) out of the Langevin 

equation of motion. 

The same procedure may be applied to the system governed by the Langevin equations (17); 

these may be turned into a SFT by identifying the dynamical variables ┰ of the system as B 

and V, and introducing as many stochastic momenta ┯ as the components of ┰ (Materassi & 

Consolini, 2008): 

, .    B V Ω Π  

The variables Ω and Π are two vector quantities representing the stochastic momenta of B and 

V respectively. A stochastic kernel A[Ω,Π,B,V;t0,t) is constructed by involving a noise factor 

  3
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0[ , , , ; , )
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 (19) 

all the statistical dynamics of the resistive MHD interpreted as a SFT is then encoded in the 

kernel 
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 (20) 
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The quantity L0(Ω,Π,B,V) is interpreted as the part of the Lagrangian of the SFT not 
containing noise terms. L0 shows only space- and time-local terms, always: as it is stressed in 
Chang (1999), the integration of the noise term C[Ω,Π,B,V;t0,t) brings terms in L that are 
non-local in space and in time, due to the self- and mutual correlations of noises. Those 
terms will be collected in a noise-Lagrangian LC, so that all in all one has: 
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The form of Q[Ξ,Δ,Θ], hence of C[Ω,Π,B,V;t0,t), may render the SFT long-range correlated 

and with a finite memory: these conditions of the ISC plasmas described by such a SFT is 
what encourages people to work through the techniques of dynamical renormalization group 

(Chang et al., 1978). Possibly, the stochastic momenta may be eliminated, so that one obtains 
a kernel W involving only physical fields 

 0 0[ , ; , ) [ , , , ; , ) .W t t d d A t t        B V Ω Π Ω Π B V  (21) 

Once W[B,V;t0,t) has been obtained, the calculation of processes in which the magnetized 
plasma changes arbitrarily, from an initial configuration (B(t0),V(t0)) = (Bi,Vi) to a final one 

(B(t),V(t)) = (Bf,Vf), may be done, for any time interval (t0,t): the rate of such transitions 
should be calculated as 

       i i f f 0 i 0 i

f f

, , 0 ,
,

[ , ; , ) .t t
t t

P d d W t t   
        B V B V B B V V

B B V V

B V B V  (22) 

As a further development of Materassi & Consolini (2008), a complete representation à la 

Feynman of such processes is to be derived from the SFT, with a suitable perturbative theory 

of graphs. 

In order to arrive to a closed expression for a stochastic action at least in one example case, 

hereafter a toy model is reported, in which Ξ, Δ and Θ are assumed to be Gaussian processes 

without any memory, and δ-correlated in space. This hypothesis is surely over-simplifying for a 

plasma in ISC, since there are experimental results stating the presence of non-Gaussian 
distributions (Yordanova et al., 2005), and also of memory effects (Consolini et al., 2005). 

Nevertheless, the Gaussian example is of some use in illustrating the SFT at hand, because a 
Gaussian shape for Q[Ξ,Δ,Θ] allows for the full integration of C[Ω,Π,B,V;t0,t), and the explicit 

calculation of W[B,V;t0,t) from A[Ω,Π,B,V;t0,t) in (21). The probability density functional 
Q[Ξ,Δ,Θ] is obtained via a continuous product out of distributions of the local values of the 

fields Ξ, Δ and Θ of Gaussian nature; for instance, the PDF of the local variable Ξ(x,t) reads: 

            20

3
, , ,

3

,
, .

a t t ta t
q t e    x Ξ x Ξ xx

Ξ x  (23) 

The quantity aΞ(x,t) indicates how peaked the distribution qΞ(Ξ(x,t)) is, i.e. how deterministic 
are the terms in (16) describing the medium: the larger aΞ(x,t) is, the less stochastic is the 
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plasma. Formally equal distributions qΔ(Δ(x,t)) and qΘ(Θ(x,t)) describe the local occurrence 
of the values of Δ and Θ. From (23), the expression of the noise kernel C[Ω,Π,B,V;t0,t) 
defined in (19) can be calculated explicitly (Materassi & Consolini, 2008), and the noise 
Lagrangian LC(Ω,Π,B,V) determined in a closed form: 
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This noise Lagrangian is space-local and does not contain any memory term, because the 
PDF Q[Ξ,Δ,Θ] was constructed as the continuous products of infinite terms, each of which 
representing the independent probability qΞ(Ξ(x,t))qΔ(Δ(x,t))qΘ(Θ(x,t)). The total Lagrangian 
is the sum of the noise term LC(Ω,Π,B,V) and of the “deterministic” addendum L0(Ω,Π,B,V) 
presented in (20). The sum L0 + LC gives rise to a perfectly local theory. The total Lagrangian 
L0 + LC gives a kernel A[Ω,Π,B,V;t0,t) that is the continuous product of the exponentiation of 
quadratic terms in Ω and Π, so that the calculation (21) is an infinite-dimensional Gaussian 
path integral, which is again feasible. This means that, under the hypothesis (23) on Ξ, and 
similar assumptions on the two other noises Δ and Θ, the calculation of the stochastic 
evolution kernel can be done in terms of pure “physical fields” B and V, obtaining 
W[B,V;t0,t). If the calculation is performed to the end, the expression of W[B,V;t0,t) reads: 
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 (25) 

The functions ┞0 and p0 are defined as the ensemble expectation value of the homonymous 

stochastic variables. The expression (25) is ready to be used in (22) to calculate the transition 

probabilities between arbitrary field configurations. The quantity N’ in (25), whatever it 

looks like, will not enter the calculations of processes like (22), since it doesn’t depend on V 

and B, and will be cancelled out. Last but not least, consider that the functions defining 

noise statistics, i.e. aΞ, aΔ, aΘ, ┞0 and p0, do enter the Lagrangian as “coupling constants”. 

Intrinsic limitations of the proposed scheme can be recognized. 

First of all, no discussion has been even initiated yet about the convergence of all the 

quantities defined. 
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There is an apparent “necessity” of making the choice (16) in order to follow the scheme 
traced in Phythian (1977). It could be useful to extend the reasoning presented here to other 
forms of the Langevin equations so to avoid the positions (16) and work directly with ┞ and 
p as stirring forces in (14). 

It is also to mention that the problem of defining a good functional measure is still to be 
examined, by studying the consistency condition of a Fokker-Planck equation for the SFT, 
starting for example with the Lagrangian density (25), obtained under drastically 
simplifying hypotheses. 

A comment is deserved by the choice of the incompressible plasma hypothesis. The MHD as a 
dynamical system is given by (5): in the absence of incompressibility, the mass density ρ is a 
distinct variable on its own, with a proper independent dynamics. In the stochastic theory à 
la Phythian each dynamical variable should satisfy a Langevin equation, in which noise is in 
principle involved. Now, altering the equation for ρ with noise could invalidate the mass 
conservation, which is a big fact one would like to avoid. Hence, the “sacred principle” of 
non-relativistic mass conservation ∂tρ + ∂·(ρV) = 0 is saved excluding ρ from dynamics, 
rendering it a pure parameter of the theory, via incompressibility. The compressible case 
could be studied considering the local mass conservation a constrain to be imposed to the 
path integrals as it happens in quantum gauge field theories (Hennaux & Teitelboim, 1992). 

Last but not least, the fourth equation in (5) has not been considered at all in this scheme: in 
Phythian’s scheme plasma thermodynamics must be discussed in some deeper way before 
enlarging the configuration space of stochastic fields to the entropy s. 

4. Fractal model of fast reconnection 

Among the many interesting fast and irreversible processes occurring in plasmas, magnetic 

reconnection is surely one of the most important (see e.g. Biskamp, 2000; Birn and Priest, 

2007). The name “magnetic reconnection”, originally introduced by Dungey (1953), refers to 

a process in which a particle acceleration is observed consequently to a change of the 

magnetic field line topology (connectivity). Being associated to a change in the magnetic field 

line topology, the magnetic reconnection process involves the occurrence of magnetic field 

line diffusion, disconnection and reconnection and it is also accompanied by plasma heating 

and particle acceleration, sometimes termed as dissipation (actually, in this case dissipation 

means transfer of energy from the magnetic field to the particle energy, both bulk motion 

energy, the term ρV2/2 in the integrand in (7), and thermal energy, the term U(ρ,s) in the 

same expression of H; in the context of metriplectic dynamics, dissipation is simply the 

transfer of energy into the addendum U(ρ,s)). 

The traditional approach to magnetic reconnection is based on resistive MHD theory. In this 

framework one of the most famous and first scenarios of magnetic reconnection, able to 

make some quantitative predictions, was proposed by Parker (1957) and Sweet (1958). The 

Sweet-Parker model provides a simple 2-dimensional description of steady magnetic 

reconnection in a non-compressible plasmas (see Figure 1). In this model there are two 

relevant scales: the global scale L of the magnetic field and the thickness Δ of the current 

sheet (or of the diffusion region). The main result of such a model may be resumed in the 

very-well known expression for the Alfvèn Mach number MA, 
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 1/2
0/ ,A m m AM R R LV    (26) 

where Rm is the Lundquist number (often referred as magnetic Reynolds number), VA is the 

Alfvén velocity and  is the resistivity.  

 

Fig. 1. A schematic view of 2-dimensional geometry for the Sweet-Parker reconnection 
scenario 

Indeed, being a measure of the electric field normalized by the global electric field, i.e. 

 / /A A AM V V E V B  , (27) 

the Alfvén Mach number MA, reported in Eq. (26), provides an estimate of the reconnection 
rate, which is generally expressed in terms of the electric field at the reconnection site. 

The typical Lundquist number Rm in astrophysical and space plasmas is Rm >> 106, implying 
reconnection rates MA << 10-4. These reconnection rates are too slow to explain the explosive 
nature of several space processes associated with the occurrence of reconnection, so that the 
Sweet-Parker model is considered not suitable to explain reconnection in space plasmas. 

In the course of the time, to overcome such a limitation of the Sweet-Parker model several 
other models have been proposed. Among these models one of the most successful is the 
Petscheck model (Petscheck, 1964), where the diffusion region (associated with the current 
sheet) is greatly reduced in length and the energy conversion is associated with the presence 
of two pairs of standing slow-modes. As a result, the reconnection rate in terms of Alfvénic 
Mach number is 

 
8ln

A
m

M
R

  (28) 

which is for most of the space and laboratory plasma situations of the order of MA ≈ 10-1 to 10-2.  
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Although several other models have been proposed (see e.g.: Birn and Priest, 2007), some 
recent MHD simulation have shown that, when the Hall effect is included, it is possible to 
obtain fast magnetic reconnection rates, which are independent on the current sheet or 
reconnection region size. For instance, Huba & Rudakov (2004) obtained  a reconnection rate 
MA ≤ 0.1 in the case of Hall magnetic reconnection.  

All the above approaches to magnetic reconnection move from the assumption that plasma 
media can be viewed as noncollisional fluid. This assumption is clearly valid when the 

inherent local fluctuations x of any local field X are negligible with respect to the large scale 
means, 

 

1
22

110 ,
x

X

   (29) 

being x = X – <X>. Conversely, recent observations evidenced that space plasmas are 
characterized by an intrinsic stochastic character, and that in many situations turbulence is 
present. This is for instance the case of interplanetary space plasmas, such as the solar wind, 
and the Earth’s magnetotail current sheet, characterized by stochastic and turbulent 
fluctuations of the same order of magnitude of the average fields. 

Several attempts have been done to include the stochastic and turbulent nature of the plasma 
media and to discuss its effects on the magnetic reconnection process (see e.g. Yankov, 1997; 
Lazarian & Vishniac, 1999). The common point of such models is the idea that as a 
consequence of the inherent stochasticity and/or turbulent nature of plasma media, the 
current sheet and the diffusion region topology cannot be associated with a simple 
continuous regular medium. Conversely, the current sheet could be imagined like a 
filamentary, complex and not space-filling region. 

 

Fig. 2. A schematic view of 2-dimensional geometry for the fractal reconnection model, of 
size L and Δ, with reconnection area Arec and reconnection active area Ωrec. 
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In 2007 Materassi & Consolini proposed a revised version of the historical Sweet-Parker 

model, in which the diffusion/current sheet region, where the magnetic reconnection takes 

place, is imagined like a fractal object in the plane. The very basic assumption of such a 

fractal reconnection model is that the reconnection active sites form a not space-filling domain 

rec contained in the diffusion region of measure Arec, and that such a non-space-filling 

domain is characterized by a Hausdorff dimension DH < E, being E the embedding 

dimension (here E = 2). Figure 2 shows a schematic view of the 2-dimensional geometry of 

the diffusion region.  

Due to the fractal nature of the diffusion region, the constraint of flux conservation can be 

written as 

 [ ] [ ],
out in

eff eff
S S  V V   (30) 

where Sin (Sout) is the entrance (exit) surface for the plasma passing through the fractal 

domain rec. Here, the flux over the entrance and exit surfaces is given by the following 

expression,

 ˆ[ ] ,
S

S

eff
S d  V V n  (31) 

where 
S

d is a proper elemental measure for the fractal domain S. Thus, the evaluation of 

such fluxes requires an integration over a fractal domain, which can be performed using the 

definitions by Tarasov (2005, 2006) involving irregular integrals. 

According to the results shown in Tarasov (2006), if f is a regular function defined in Rn to be 

integrated over a fractal domain  characterized by a Harsdorff dimension D < n, then the 

integration can be performed by introducing a proper weight function D, i.e. 

 ,DA
fd f dA 

    (32) 

where A is the regular set of dimension n embedding the considered fractal set  
When the above integration technique is applied to the condition of flux conservation (30), 

one gets for the fractal reconnection rate 
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A DD

out

D
M k

D L

          (33) 

where k is a positive constant such that Vout = kVA, and L are the thickness (typically of the 

order of the ion-inertial length) and the length of the diffusion region, respectively,  = Dout - 

Din is the difference of the Hausdorff dimensions of the projection of the fractal domain in 

the direction of the entrance (Din) and exit (Dout) directions, and finally ℓ0 is a reference 

microscopic length scale. Such a reference length scale has to be much smaller than the typical 

scales at which the medium displays fractal features (Tarasov, 2005). 
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Moving from the above result and assuming k = 1 and Din =Dout = D, Eq. (33) for the fractal 
reconnection rate can be reduced to a more simple expression in terms of the Lundquist 
number Rm: 

 
 1

D
DFRM

A mM R  . (34) 

We note that this expression reduces to the standard Sweet-Parker solution of the 

reconnection rate in the limit 1D   and that the fractal reconnection rate is always higher 

than the one predicted by the Sweet-Parker model. Furthermore, although in the limit 

mR   the reconnection rate predicted by the Petschek-like model results the more 

efficient, there exists always a certain range of the Lundquist number Rm, depending on the 
fractal dimension D, for which the fractal reconnection model is more efficient than the 
Petschek-like model. The crucial point of a correct estimation and applicability of the above 
expression stands in the correct evaluation of Din and Dout, which depends on the topology 
of the current sheet. 

In passing we note that when the above scenario is applied using typical length scales 
estimated by in-situ observations of magnetic reconnection in space plasmas, one gets the 
reconnection rates typically observed and in agreement with the estimated Hall 
reconnection rate MA ≈ 0.09 (Huba & Rudakov, 2004) assuming a diffusion region shaped as 
a filamentary structure mainly aligned to the inflow region (direction i in Figure 2). 

The fractal reconnection model described here is not based on first principles, because the 
non-space filling, self-similar nature of the reconnection region is simply assumed. 

The important work necessary for further development will be to give a dynamical sense to 
the quantities Din and Dout, that here might appear just as convenient fitting parameters. 
Studies have been made to regard irregular filamentary structures in plasmas as descending 
from calculable fluid-model processes (Zheng & Furukawa, 2010). 

The feeling is however that it would be very interesting to deduce the fractal nature of the 
reconnection region from kinetic or microscopic-statistical theories, rather than extracting it 
from extreme behaviours of the plasma as a fluid. 

5. Conclusion 

Dissipation consists of the irreversible transfer of energy from the proper MHD variables to 
the particle degrees of freedom of the plasma, considered as “microscopic” (and usually 
treated via Thermodynamics). Depending on the spatial and temporal scales on which 
dissipation takes place, it may activate some “sub-fluid level” of the theory, which 
interpolates between the continuous system, representing the traditional MHD, and the 
discrete one, describing the plasma through the motion of its particles. This “sub-fluid” level 
should probably consist of mesoscopic coherent structures existing because of dissipative 
process, and evolving through a stochastic (strongly noisy) dynamics. Consequently, the 
self-consistent theory describing this intermediate level of plasma description is expected to 
be a theory of SCSs. 

In this Chapter, three models to approach this “SCS Theory” have been exposed: 
metriplectic algebrization of MHD, stochastic field theory and fractal magnetic reconnection. 
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Each of the three models tries to mimic one aspect of the complete theory of SCSs. The 
metriplectic MHD presents the non-Hamiltonian algebrization; the SFT for the resistive 
MHD is characterized by the presence of noise yielding a path integral approach; the fractal 
model of reconnection admits the irregular nature of MHD fields, involving the fractional 
calculus. 

A large amount of work must still be done to imagine how those three approaches could be 
combined in a unique framework, the invoked “SCS Theory”, reducing to the three models 
in different limits: this further research is for sure out of the subject of the work here, in 
which a flavour had to be given about some characteristics that this “SCS Theory” should 
have. 

As a final remark, we underline that the self-consistent “SCS Theory” should present a sort 
of scale-covariance, because all the phenomena concerning plasma ISCs do involve multi-
scale dynamics. The technique of Renormalization Group will then be naturally applied to 
such a thory (see e.g. Chang et al., 1992 and references therein). A first direct application of 
such technique, using the exact full dynamic differential renormalization group for critical 
dynamics can be found in Chang et al. (1978). The use of Renormalization Group techniques 
to predict physical quantities to be compared with real spacecraft data is already well 
established (see e.g. Chang, 1999; Chang et al., 2004), and the results are very encouraging, 
confirming our idea that any “SCS Theory” has to be based on scale-covariance.  
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