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Abstract—An in-depth discussion on the use of numerical
diffusive terms in SPH models has been performed. These terms
are generally added inside the continuity equation in order to
reduce the spurious numerical noise that affects the density and
pressure fields in weakly-compressible SPH schemes. Specific
focus has been given to the theoretical analysis of the diffusive
term structure and to the choice of the integration scheme
and Courant-Friedrick-Lewy number. The most widespread
formulations, that is, those by Ferrari et al. [1], Molteni &
Colagrossi [2] and Antuono et al. [3], have been studied in details,
highlighting the main benefits and drawbacks.

I. Introduction
In the SPH literature, two principal approaches are adopted

to model liquids: one is based on the smoothing of the Navier-
Stokes equations and on the solution of a Poisson equation for
the pressure field, the other relies on the assumption that the
fluid is weakly-compressible and barotropic.

From a numerical point of view, the main differences
between the weakly-compressible and incompressible ap-
proaches is that the former requires small time steps con-
strained by the speed of sound, while the later needs to solve
an algebraic system with a sparse matrix, allowing for larger
time steps but rather complex for an efficient parallelization.
Further, weakly-compressible schemes are generally more
suited for free-surface flows since the boundary condition
along the free surface is implicitly satisfied (see, for example,
Colagrossi et al. [4]) and this avoids an explicit detection of
the free surface during the flow evolution. The latter issue
can be critical in 3D simulations of violent flows since the
Poisson equation may strongly depend on the free surface
configuration and small errors in the free-surface detection
can lead to different flow dynamics.

Unfortunately, the weakly-compressibility schemes have
as a major drawback the generation of spurious numerical
oscillation in the pressure and density fields. Over the years,
different solutions have been proposed to remove/reduce the
spurious numerical noise that affect the pressure field in
SPH model. Among them, one is to use proper diffusive
terms. For example, Ferrari et al. [1] used a Rusanov flux
and built a numerical diffusive term to be added inside the
continuity equation. This helped reduce the numerical noise
inside the density field and, consequently, inside the pressure
field through the state equation (we recall that the fluid is
assumed to be barotropic). The use of a numerical diffusive

term inside the continuity equation has been also proposed by
Molteni & Colagrossi [2]. Their term gave good results but,
unfortunately, was inconsistent with the hydrostatic solution.
The authors avoided this issue by introducing a threshold
density so that the diffusive term only worked when the
pressure field exceeded the hydrostatic field. Unfortunately,
this strategy led to a drastic reduction of the diffusive term
action. To go round this issue, Antuono et al. [3] proposed a
correction to the diffusive term of Molteni & Colagrossi [2].
This proved to be compatible with the hydrostatic solution
and to properly smooth out the numerical spurious oscillations
from the pressure and density fields.

The aim of the present work is to shed light on the use of
numerical diffusive terms in SPH. Specifically, we focus on the
diffusive term of Ferrari et al. [1], Molteni & Colagrossi [2]
and Antuono et al. [3] and show their benefits and drawbacks.

II. SPH scheme with numerical diffusive terms

In this section we study the general structure of a SPH
scheme with a numerical diffusive term inside the continuity
equation. Specifically, we assume the fluid to be weakly-
compressible and barotropic. Under these hypotheses, the
density variations are small and it is possible to linearize the
state equation in the neighborhood of the reference density
value to get a linear dependence of the pressure on the
density field. Finally, the artificial viscous term by Monaghan
& Gingold [5] is added inside the momentum equation for
stability reasons. In any case, we underline that the theoretical
analysis on the role of the diffusive term is completely general
and can be applied to SPH schemes with different features.

Under the hypotheses above, the governing equations for
the SPH scheme at hand are:

Dρi

Dt
= − ρi

∑
j

(u j − ui) · ∇iWi j V j + δ h c0Di

Dui

Dt
= −

1
ρi

∑
j

(p j + pi)∇iWi j V j +

+ f i + α h c0
ρ0

ρi

∑
j

πi j ∇iWi j V j

Dri

Dt
= ui pi = c2

0 ( ρi − ρ0 )

(1)

where ρi, Vi, pi are respectively the density, the volume and
the pressure of the i−particle while ri and ui are its position
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and velocity. Here, Wi j is the kernel function and depends on
q = ‖r j − ri‖/h, ∇i denotes the differentiation with respect
to ri and f i is the body force at the position ri. Finally,
symbols ρ0 and c0 indicate the density along the free surface
(which is the reference value for the density field) and the
sound velocity (assumed to be constant). For computational
reason, it is common practice in the weakly-compressible SPH
solvers not to use the physical sound velocity but, conversely,
to impose c0 to be at least one order of magnitude greater
than the maximum flow velocity, that is, c0 ≥ 10 maxi ui. As
pointed by Monaghan [7], this assumption ensures the density
variation to keep below 1%.

In this scheme, the diffusive term is briefly indicated by Di

and has the dimension of the Laplacian of ρ. The coefficient δ
is dimensionless and is used to control the order of magnitude
of the dispersive term. For what concerns the artificial viscous
term, the same role is played by the dimensionless parameter
α. The argument of the summation is:

πi j =
(u j − ui) · r ji

‖r ji‖
2 (2)

where r ji = r j − ri.
For the analysis which follows, it is useful to study the

convergence of the pressure gradient operator in (1). Using the
results of Colagrossi et al. [4] on the smoothed SPH operators,
we can rewrite it as follows:∑

j

(p j + pi)∇iWi j V j =
∑

j

(p j − pi)∇iWi j V j

+ 2 p1

∑
j

∇iWi j V j = Γi ∇pi + 2 pi ∇Γi + O(h) , (3)

where Γi =
∑

j Wi j V j and ∇Γi =
∑

j ∇iWi j V j. As widely
discussed in Colagrossi et al. [4], Γi ' 1 and ∇Γi ' 0 inside
the fluid domain. On the contrary, near the free surface Γi

is no more constant and ∇Γi points inward the fluid domain
and diverges like 1/h. In this case, the convergence of the
differential operator is ensured by assigning p = 0 along the
free surface. Because of (3), the overall contribution to the
momentum equation is:

Dui

Dt
= −

Γi

ρi
∇pi −

2 pi

ρi
∇Γi + . . . (4)

The last term in the right-hand side of (4) plays a relevant role
when the diffusive term is added into the continuity equation.
This is analyzed in the following section.

A. Diffusive terms

In the SPH literature, different diffusive terms have been
defined. Generally, they can be reduced to the following
structure:

Di = 2
∑

j

ψ ji
r ji · ∇iWi j

‖r ji‖
2 V j (5)

where ψ ji changes according to the specific formulation at
hand and has the physical dimension of the density. In order
to be a diffusive term, the expression in (5) has to approximate

even derivatives of the density/pressure field. Further, For
consistency with the global equation of the mass conservation,
the diffusive term must satisfy:∑

i

Di Vi = 0 ⇔ ψ ji = −ψi j . (6)

The simplest approach to artificial diffusion in SPH is that
of Molteni & Colagrossi [2] who added the Laplacian of the
density field inside the continuity equation. This is equivalent
to choose:

ψMol
ji = ρ j − ρi (7)

As shown in Antuono et al. [3], the use of (7) leads to:

DMol
i = 2∇ρi · ∇Γi + Γi ∇

2ρi + O(h) . (8)

The second term in the right-hand side of (8) contains second-
order derivatives and, therefore, represents a diffusive term.
Conversely, the first term on the right-hand side is a nonlinear
first-order differential operator and is negligible inside the fluid
domain since ∇Γi ' 0. On the contrary, ∇Γi is different from
zero near the free surface and points inwards the fluid region.
Since ρ = 0 out of the fluid, the density gradient points in
the same direction and, therefore, ∇ρi · ∇Γi gives a positive
contribution into the continuity equation. This leads to an
increase of the density which corresponds (through the state
equation) to an increase of the pressure field along the free
surface. Finally, this implies that the term (−pi∇Γi) in (4) is no
more zero and acts as a force directed outside the fluid body.
Because of this phenomenon, particles start moving upward
and cannot stand the hydrostatic solution.

A correction to the formula of Molteni & Colagrossi [2]
has been proposed by Antuono et al. [3]. This formula is
convergent all over the fluid domain, preserves exactly the
conservation of mass and satisfies the hydrostatic solution. It
reads:

ψAn
ji =

{ (
ρ j − ρi

)
−

1
2

(
〈∇ρ〉Lj + 〈∇ρ〉Li

)
· r ji

}
(9)

Symbol 〈∇ρ〉Li indicates the renormalized density gradient [8].
Another interesting approach to diffusion has been derived

by Ferrari et al. [1] basing on a Rusanof flux. Assuming that
the sound velocity is constant, their diffusive term reduces to:

ψFe
ji =

(ρ j − ρi)
2 h

‖r ji‖ . (10)

Remarkably, the SPH scheme defined by Ferrari et al. [1] does
not need any tuning of δ (which is set equal to 1) nor any
artificial viscosity to stabilize the scheme. Notwithstanding
this, such a term still leads to a positive contribution inside
the continuity equation which makes impossible the attainment
of the hydrostatic solution. This is proved in the following
sections along with an accurate analysis of the diffusive term
proposed by Ferrari et al. [1] and by Antuono et al [3].
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III. Convergence of the diffusive operators

Here we deal with the convergence of the diffusive terms
described in Section II-A. To simplify the discussion, we make
an analysis at the continuous level substituting the summations
over the fluid particles with integrals over the kernel domain
Ω. In this context, we denote by r and r′ two points in the
fluid domain. All the quantities evaluated at r′ are indicated
through the superscript “prime” (i.e., f ′ indicates f (r′)). For
the ease of the notation, we also define q = (r′ − r)/h and
q = ‖q‖ while the subscripts k, l,m, n denote the components
of vectors/tensors. As a consequence, the kernel gradient can
be rewritten as follows:

W = W(q) ⇒ ∇W = −
1
h

q
q
∂W
∂q

, (11)

and the structure of diffusive term in (5) becomes:

D = −
2
h2

∫
Ω

ψ

q
∂W
∂q

dV ′ (12)

We first consider the expression by Ferrari et al. [1]. Using
a Taylor expansion, we obtain:

DFe = ∇ρ·

∫
Ω

q ∇W dV ′ +
1
2
H(ρ) :

∫
Ω

q (r′−r)⊗∇W dV ′+O(h) ,

where H is the Hessian of ρ. For symmetry reasons, the first
term on the right-hand side is null inside the fluid domain
while is different from zero near the free surface and is directed
inwards the fluid region. Similarly to the term ∇ρ · ∇Γ in
equation (8), this leads to a positive contribution inside the
continuity equation and implies the impossibility to attain the
hydrostatic solution.

A similar analysis proves that the diffusive term by Antuono
et al. [3] converges to zero for h going to zero. Its main
contributions are:

DAn =
h
6

(
∂3ρ

∂rk∂rl∂rm

) ∫
Ω

qk ql qm

q
∂W
∂q

dV ′ +

+
h2

12

(
∂4ρ

∂rk∂rl∂rm∂rn

) ∫
Ω

qk ql qm qn

q
∂W
∂q

dV ′ + O(h3)

(13)

where qk = (r′k − rk)/h is the k−th component of q. For
symmetry reasons, the first term in the right-hand side is null
inside the fluid domain. On the contrary, near the free surface it
is generally different from zero but keeps very small. Note that
the diffusive term has no influence on the hydrostatic solution.
In fact, since the state equation of system (1) is linear, the
hydrostatic solution predicts a density field that is linear as
well. Consequently, this implies DAn = 0.

The presence of third- and fourth-order derivatives in (13)
ensures that the diffusive term acts only when short-scale
variations/fluctuations of the density field occur. As a conse-
quence, it smooths out the spurious numerical high-frequency
oscillations inside the pressure field without affecting the
actual solution.

A. Linear stability analysis

Here we provide the one-dimensional linear stability anal-
ysis for the SPH scheme with the diffusive term proposed by
Antuono et al. [3]. This analysis is performed at the continuous
level, that is, using the continuous differential operators which
are approximated by the discrete summations in system (1).
To do this, we neglect the action of the free surface and
take the limit for h going to zero. Under these hypotheses,
the convergence of the SPH differential operators is given by
Español & Revenga [9]. These allow rewriting system (1) into
the following continuous form:

Dρ
Dt

= − ρ∇ · u + δ h c0D ,

Du
Dt

= −
∇p
ρ

+ 2 ν∇ (∇ · u) + ν∇2u

p = c2
0 (ρ − ρ0) .

(14)

which corresponds to a weakly-compressible version of the
Navier-Stokes equations with a diffusive term inside the
continuity equations. Let us consider the linearized one-
dimensional form of system (14) and use the diffusive term
of Antuono et al. [3]. In one dimension ν = αhc0/6 (see, for
example, Monaghan & Gingold [5]) while the diffusive term
can be rewritten as:

DAn = − h2 B
d4ρ

dx4 (15)

where the parameter B is obtained by rewriting the second
integral term inside equation (13) in one dimension, that is:

Bi jkp =

∫
Ω

qi q j qk qp

q
∂W
∂q

dV ′ ⇒ B =

∫
Ω

q
∂W
∂q

dV ′ . (16)

Note that B depends on the specific kernel function used. Then,
system (14) becomes:

ρt + ρ0 ux + δ h3 c0 B ρxxxx = 0

ut +
c2

0

ρ0
ρx −

α h c0

2
uxx = 0

(17)

Let us assume:

ρ = ρ0 + R ei k (x−c t) + c.c. u = U ei k (x−c t) + c.c. (18)

where c = a + i b, k = 2 π/λ is the wave number and λ is
the wave length. Now, substituting (18) in (17) and using the
variable µ = k h, we get two different regimes for the solution
of the linearized equations. The first one is obtained when:

F(µ) = 1 −
µ2

4

(
α

2
− µ2 B δ

)2
≥ 0 . (19)

and gives:

a(±) = ± c0
√

F(µ) b(0) = −
µ c0

2

(
α

2
+ µ2 B δ

)
(20)

Conversely, when F(µ) < 0, we get the second regime:

a(0) = 0 b(±) = c0

{
−
µ

2

(
α

2
+ µ2 B δ

)
±

√
− F(µ)

}
(21)
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In this case, the correct damping rate is given by b(+) since
b(−) ≤ b(+) ≤ 0.

Since b is negative in both the regimes, this ensures
the stability of the δ-SPH scheme. Figure 1 displays a/c0
(dashed line) and b/c0 (solid line) as functions of µ for
α = 0.01, δ = 1.0 and B = 1/8 (Gaussian kernel). The
damping coefficient b is strictly decreasing in the first regime,
reaches a minimum at the boundary with the second regime
and, then, become an increasing function of µ (here we
refer to b(+)). This implies that the occurrence of the second
regime is associated with a reduced damping of the higher
frequencies (or equivalently, with a reduced damping of the
shorter wave lengths). For this reason, an optimal choice for
δ is that ensuring the occurrence of the first regime, that is,
the fulfillment of the condition (19). This corresponds to:

1
Bµ2

(
α

2
−

2
µ

)
≤ δ ≤

1
Bµ2

(
α

2
+

2
µ

)
. (22)

Now, we have to define the range of variability of µ. Note
that the minimum length of the spurious oscillations in the
SPH framework is that corresponding to a sawtooth profile,
that is, λ = 2 ∆x. Then, the maximum value for µ is given
by µ0 = π (h/∆x). For the Gaussian kernel h/∆x = 4/3 and,
therefore, µ0 = 4 π/3. Since the upper bound in (22) is a
strictly decreasing function of µ while the lower bound has
a maximum at µ = 6/α, the expression (22) can be modified
to get a sufficient condition for the fulfillment of the condition
(19) for all µ ∈ [0, µ0]:

1
B

(
α

6

)3
≤ δ ≤

1
Bµ2

0

(
α

2
+

2
µ0

)
. (23)

Note that the expression above is valid for α < 12/µ0
otherwise the lower bound is greater than the upper bound.
For α = 0 and B = 1/8 (Gaussian kernel), relation (23) simply
becomes δ ≤ 0.21. Then, to guarantee the occurrence of the
first regime, we fix δ = 0.2 in all the numerical simulations
that implement DAn.

It is interesting to repeat the analysis above for δ = 0, that
is, when only the viscous term is included inside the SPH
scheme. In this case, the linear stability analysis still confirms
that the solution is stable for each choice of α. Specifically,
the condition (19) is surely satisfied when:

0 < α <
4
µ0
. (24)

Similarly to the analysis made for δ , 0, values of α out of
the interval in (24) lead the solution in the region of slow
damping. Before proceeding to the analysis, it is useful to do
a final remark. The range of variability of α in (24) is more
narrow than the case with diffusion (for which 0 < α < 12/µ0).
This means that the use of the diffusive term allows for a more
efficient action of the viscosity against the numerical spurious
oscillations.

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

µ

a/c0

a(−)/c0

a(+)/c0

b/c0

b(+)/c0

b(−)/c0

Fig. 1. sketch of the regimes predicted by the one-dimensional linear stability
analysis: a/c0 (dashed line) and b/c0 (solid line) for α = 0.01, δ = 1.0 and
B = 1/8 (Gaussian kernel).

IV. Integration Scheme

Before proceeding to the numerical analysis, it is important
to briefly describe the integration scheme. We tested both
a third-order TVD Runge-Kutta scheme (see, for example,
Gottlieb & Shu [10]) and a classic fourth-order Runge-Kutta
scheme. We found that the accuracy of these schemes was
practically equivalent even if the fourth-order Runge-Kutta
scheme proved to be faster than the TVD scheme because
of its higher Courant-Friedrick-Lewy number. For this reason,
the fourth-order Runge-Kutta scheme has been used for the
simulations that implement the diffusive term of Antuono et al.
[3]. On the contrary, to follow exactly the integration scheme
proposed in Ferrari et al. [1], we used the third-order TVD
Runge-Kutta scheme for simulations with DFe.

For what concerns the fourth-order Runge-Kutta scheme,
the diffusive term can be added directly in all the sub-steps.
However, the expense of re-evaluating the diffusive term at
every stage of the scheme may be substantial. Then, Jameson
et al. [11] proposed a faster scheme to integrate systems with
artificial diffusive/dissipative terms. First, we rewrite system
(1) as Dw/Dt = Q(w) + D(w) where D contains only the
diffusive term. Then, this is integrated by using a fourth-order
Runge-Kutta scheme with “frozen” diffusion, that is:

w(0) = wn

w(1) = w(0) + D
(
w(0)) ∆t/2 + Q

(
w(0)) ∆t/2

w(2) = w(0) + D
(
w(0)) ∆t/2 + Q

(
w(1)) ∆t/2

w(3) = w(0) + D
(
w(0)) ∆t + Q

(
w(2)) ∆t

w(4) = w(0) + D
(
w(0)) ∆t +

+
[
Q
(
w(0)) + 2Q

(
w(1)) + 2Q

(
w(2)) + Q

(
w(3)) ] ∆t/6

wn+1 = w(4) .

(25)

Jameson et al. [11] proved this scheme to be robust and
reliable. The integration of the artificial diffusive term is less
accurate then the classic fourth-order Runge-Kutta scheme but,
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in any case, this can be regarded as a minor issue since D does
not represent a physical diffusion phenomenon.

The last part of the analysis is devoted to the definition of a
proper Courant-Friedrick-Lewy number (CFL hereinafter) for
the integration scheme described in (25). Using equations (13)
and (16), we can rewrite the diffusive term as follows:

DAn
i =

h2

12
B jkpq

(
∂4ρi

∂r j∂rk∂rp∂rq

)
, (26)

where i is the particle index while j, k, p, q are the indexes of
the spatial coordinates. Substituting (26) inside the continuity
equation and comparing with Dρi/Dt it follows:

∆t ≤ CFL(di f f ) h
δ c0

. (27)

This means that the time step should decrease when the
diffusive coefficient increases. For a fourth-order Runge-
Kutta scheme with a Gaussian kernel we heuristically found
CFL(di f f ) = 0.44. The global CFL should also account for the
artificial viscosity and for the particle acceleration ai. The
time-step bounds deriving from these terms have been modeled
following the works of Monaghan & Kos [12] and Morris et
al. [13]. They depend on the specific integration scheme very
weakly and are given by the following bounds:

∆t ≤ 0.125
h2

ν
∆t ≤ 0.25 min

i

√
h
‖ai‖

, (28)

where, according to Monaghan [7], ν = αhc0/(2n + 4)
is the kinematic viscosity of the SPH scheme (n is the
spatial dimension). Finally, the advective/acoustic component
of system (1) should be accounted for. For a fourth-order
Runge-Kutta scheme with a Gaussian kernel we heuristically
found:

∆t ≤ 2.2 min
i

(
h

c0 + ‖ui‖ + h max j πi j

)
. (29)

The global CFL is given by the minimum over all the bounds
above.

V. Test cases

In the following sections we provide some numerical simu-
lations that highlight the main features of the diffusive terms
mentioned before. Because of the resemblance of the diffusive
term of Molteni & Colagrossi [2] with that of Ferrari et al.
[1], hereinafter we just consider the latter one.

In all the numerical simulations that follow the solid
boundaries have been modeled through the fixed ghost particle
technique (see Marrone et al. [14]) and a free-slip condition
has been imposed. A renormalized Gaussian kernel has been
adopted (see, for example, Landrini et al. [15]).

A. Hydrostatic solution

In the present section we deal with a simple hydrostatic
problem: a two-dimensional tank is partially filled with water
at rest. Here, L is the tank length and H is the filling height.
Figure (2) displays the comparison between the SPH with the
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Fig. 2. hydrostatic solution. Left panels: SPH with the diffusive term of
Ferrari et al. [1]. Right panels: SPH with the diffusive term of Antuono et al.
[3].
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0.12
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0

E
P
/ ½ ρLH

2

t(g/H)
½

Fig. 3. hydrostatic solution. Evolution of the potential energy as predicted
by the SPH scheme with the diffusive term of Ferrari et al. [1] (dashed line)
and with the diffusive term of Antuono et al. [3].

diffusive term of Ferrari et al. [1] and with the diffusive term
of Antuono et al. [3] for two spatial resolutions. As expected,
in the former case the fluid particles tend to move upward
because of the inaccuracy of the diffusive term close to the free
surface and the hydrostatic solution is completely destroyed.
This behavior still persists using a finer resolution even if
it slightly decreases in intensity. Conversely, the use of the
diffusive term of Antuono et al. [3] does not alter the correct
hydrostatic solution.

A further prove of the unphysical action of the diffusive term
of Ferrari et al. [1] is given in figure 3 where the evolution of
the potential energy is displayed. In hydrostatic conditions, the
potential energy should be conserved since no motion should
occur. On the contrary, the diffusive term of Ferrari et al. [1]
leads to a rapid decrease of the initial energy value.

The unphysical motion of the free surface also affects those
problems characterized by a slow particle motion and a long-
time dynamics as, for example, sloshing problems and gravity
wave propagation. Conversely, for more energetic events and
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Fig. 4. sketch of the dam-break problem described in Buchner et al. [16].
Symbol P1 indicate the pressure probe at the right wall.
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Fig. 5. snapshots of the evolution for the dam break problem (α = 0). Top
panels: SPH without diffusion. Middle panels: SPH with the diffusive term of
Ferrari et al. [1]. Bottom panels: SPH with the diffusive term of Antuono et
al. [3].

short-time dynamics (as, for example, water jets and impacts),
the influence of the spurious terms close to the free surface is
much smaller. This is highlighted in the next test case.

B. Dam break

Here we consider the experimental campaign of Buchner
[16] on dam-break problems. A sketch is displayed in figure
4: a reservoir is placed at the left side of a rectangular basin
with water at rest. Then, the right wall of the reservoir is
suddenly removed and the water starts moving until it impacts
against the right wall of the basin. Along the wall, a probe
(indicated by P1) records the pressure signal. The sketch in
figure 4 displays the pressure field just after the right wall of
the reservoir has been removed.

The simulations have been first performed with α = 0
and implementing the diffusive term of Ferrari et al. [1] and
of Antuono et al. [3]. Some snapshots of the evolution are
displayed in figure 5 along with the standard SPH (that is, the
SPH model without diffusion). The impact against the right
wall occurs at about t ' 2.81

√
H/g where H is the initial

water height. Then, a plunging breaking wave is generated and
collapses at about t ' 6.48

√
H/g. These plots clearly prove

that the use of a diffusive term drastically reduced the high-
frequency spurious noise that affects the pressure field. In this
case, the diffusive term of Ferrari et al. [1] gives the best results
since, being a second order operator, smooths out the largest
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diffusive term of Antuono et al. [3] (bottom panel, dashed line).

part of the spurious sound waves which propagate inside the
fluid. Conversely, the diffusive term of Antuono et al. [3] still
displays some traveling sound waves after the impact at the
right wall (see the lower right panel of figure 5).

In figure 6 the evolution of the mechanical energy (that
is, potential plus kinetic energy) is shown. Because of the
weakly-compressibility assumption, part of the mechanical
energy is converted in internal energy during the impact and
the subsequent splash-up processes. The standard SPH scheme
and the SPH with the diffusive term of Antuono et al. [3] show
a good agreement and a good conservation of the mechanical
energy. Conversely, the SPH with the diffusive term of Ferrari
et al. [1] displays a larger action of the weakly-compressibility
and a consequent larger damping of the mechanical energy.

Figure 7 displays the pressure signal at the probe P1 and
the comparison with the experimental data of Buchner [16].
Differently from the results shown in Marrone et al. [14] where
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Fig. 8. snapshots of the evolution for the dam break problem at t = 6
√

H/g
for α = 0 (left panels) and α = 0.01 (right panels). Solid lines indicate the
free surface predicted by the BEM solver. Top panels: SPH without diffusion.
Middle panels: SPH with the diffusive term of Ferrari et al. [1]. Bottom panels:
SPH with the diffusive term of Antuono et al. [3].

the signals were averaged over the probe area, here we provide
the local numerical solution at (x/H, y/H) = (5.366, 0.266)
(i.e., at the probe position). The pressure signal predicted
by the standard SPH is practically destroyed by the high-
frequency spurious oscillations (see top panel of figure 7).
Conversely, the signal is recovered when the diffusive terms
are introduced inside the continuity equation. As expected, the
diffusive term of Ferrari et al. [1] (second-order differential
operator) tends to smooth out lower frequencies with respect
to that of Antuono et al. [3] (fourth-order differential operator).
In any case, the pressure signals are comparable and show a
good agreement with the experiments. Specifically, the match
is very good up to t = 5.7

√
H/g. After this time, the plunging

wave is closing a cavity that in the experiments is filled with
air. Thus, the experimental pressure probe starts recording the
influence of the air-cushioning before the actual closure of
the cavity (see [6]). Conversely, in the present mono-fluid
simulations, the pressure increase is predicted with a small
delay, occurring only when the plunging wave actually closes
the cavity at t = 6

√
H/g.

To complete the present analysis, we also inspected the
influence of the artificial viscosity on the SPH simulations.
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Fig. 9. evolution of the mechanical energy for the dam break problem with
α = 0.01. SPH without diffusion (◦), SPH with the diffusive term of Ferrari
et al. [1] (�), SPH with the diffusive term of Antuono et al. [3] (4).

Figure 8 displays a comparison between the SPH outputs
with α = 0 (no artificial viscosity) and α = 0.01 during
the generation of the plunging breaking wave. The action of
the viscosity plays a major role in the standard SPH (upper
panels) leading to a reduction of the spurious noise in the
pressure field and a more regular shape of the free surface. For
what concerns the diffusive SPH schemes (middle and bottom
panels), the viscosity influence is less evident but, similarly
to the previous case, it helps regularizing the free surface. All
the free surface profiles have been compared with the potential
solution obtained by using a Mixed Eulerian Lagrangian
Boundary Element Method (BEM-MEL) [17] (solid lines in
figure 8). The match generally improves when the diffusive
terms are included in the SPH scheme and the viscosity seems
not to alter the global shape of the plunging jet. As a final
part of this analysis, we show the evolution of the mechanical
energy with α = 0.01 (figure 9). The overall behavior is
similar to that highlighted in figure 6 with a faster damping
of the mechanical energy because of the use of the artificial
viscosity. During the earlies stages of the evolution, the SPH
scheme with diffusive term of Antuono et al. [3] seems to
better preserve the mechanical energy and shows a good
match with the standard SPH scheme. Conversely, the SPH
scheme with diffusive term of Ferrari et al. [1] displays the
larger dissipation. Apart from these details, the use of a small
artificial viscosity does not alter the overall behavior of the
simulations and helps regularize the different SPH schemes.
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[2] (�, δ = 0.5). Right: comparison between the experimental data (4), the
SPH with the diffusive term of Ferrari et al. [1] (solid line) and with the
diffusive term of Molteni and Colagrossi [2] (dashed line, δ = 0.5).
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Before concluding, we show the comparison between the
SPH with the diffusive term of Molteni & Colagrossi [2] and
the diffusive term of Ferrari et al. [1]. As already pointed
out, these terms have the same structure, that is, they are
both second-order differential operators. Comparing formulas
(7) and (10), it turns out that they have the same order of
magnitude if the diffusive term of Molteni & Colagrossi [2]
is implemented with δ = 0.5. Figure 10 displays the results
obtained by using the SPH schemes that implement these
diffusive terms. The left panel shows the plunging breaking
wave and the comparison with the BEM-MEL solver while
the right panel displays the comparison between the pressure
signals at probe P1 and the experiments. As expected, the
diffusive terms of Molteni & Colagrossi [2] and Ferrari et al.
[1] lead to results that are very similar. This further confirms
the validity of the theoretical analysis provided in Section II-A
and Section III.

VI. Conclusions

The theoretical analysis of the different numerical diffusive
terms showed some inconsistencies in the formulations of
Ferrari et al. [1] and Molteni & Colagrossi [2]. These are
both incompatible with the hydrostatic solution and lead to
an unphysical motion of the fluid particles. This issue also
affects those problems characterized by a slow particle motion
and a long-time dynamics as, for example, sloshing problems
and gravity wave propagation. Conversely, the formulation
proposed by Antuono et al. [3] proved to be consistent both
in hydrostatic and dynamic conditions.

Apart from this, all formulations proved to be reliable and
accurate when applied to problems characterized by energetic
events and short-time dynamics (as, for example, water jets
and impacts). In this context, the formulations of Ferrari et al.
[1] and Molteni & Colagrossi [2] showed a stronger smoothing
action on the pressure field than the formulation of Antuono
et al. [3].
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