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ABSTRACT

Retrievals of falling snow from space-based observations represent key inputs for understanding and

linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates

causes of differences among the first stable falling snow retrieval products from the Global Precipitation

Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling

snow product. An important part of this analysis details the challenges associated with comparing the

various GPM and CloudSat snow estimates arising from different snow–rain classification methods,

orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing

snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times

the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR).

The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar

pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even

though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall

rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that

retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic

reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same

snow scattering properties and particle size distributions in a final effort to minimize algorithm differ-

ences. CPR–DPR snowfall amount differences were reduced to;16% after adopting this diagnostic Z–S

approach.

1. Introduction and background

Observations of the global distributions of falling snow

are needed for a wide variety of scientific and societal

applications. For example, falling snow observations can

be used to evaluate global change precipitation science

predictions (Karl et al. 2009; Gergel et al. 2017; Harpold

and Kohler 2017) and are needed for assessing inputs

to snowpack water reserves (Lettenmaier et al. 2015).

While most of the societal needs for falling snow

measurements are important over land surfaces, falling

snow over oceans and lakes represents a loss to captur-

ing that water for resources and can affect the water

body characteristics by changing the salinity and/or

water temperature (Kattsov and Walsh 2000; Holland

et al. 2007). Since it is difficult to measure global pre-

cipitation from ground-based observations (Kidd et al.

2017), satellite observations are required (e.g., Levizzani

et al. 2011). The Tropical Rainfall Measuring Mission

(TRMM) and other satellite precipitation sensors have

shown the value of satellite-based global rain obser-

vations (Hou et al. 2014). Now there is great interest in

hydrological investigations with global falling snow-

rate products to help close the atmospheric inputs to

the water cycle (Field and Heymsfield 2015; Rodell

et al. 2015) and to study snowpack patterns and growth
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(Palerme et al. 2014; Boening et al. 2012; Margulis et al.

2016; Wrzesien et al. 2018).

Currently there are two National Aeronautics and

Space Administration (NASA) spaceborne platforms

with instruments capable of observing falling snow:

CloudSat (Stephens et al. 2002, 2008) and the Global

Precipitation Measurement (GPM) mission (Hou et al.

2014; Skofronick-Jackson et al. 2017).CloudSat, launched

in 2006, carries a single instrument, the W-band (94GHz)

nadir-pointing Cloud Profiling Radar (CPR; Tanelli et al.

2008), in a near-polar (988 inclination) sun-synchronous

orbit. The CPR, while designed as a cloud-observing ra-

dar, is also capable of sensing light to moderate rain and

falling snow. GPM, launched in 2014, was specifically

designed to measure both liquid precipitation and falling

snow using both the Dual-Frequency Precipitation

Radar (DPR) with a Ka and Ku band radar built by the

Japan Aerospace Exploration Agency (JAXA) and

Japan’s National Institute of Information and Com-

munications Technology (NICT) (Toyoshima et al.

2015) and the GPM Microwave Imager (GMI) radi-

ometer (Draper et al. 2015; Wentz and Draper 2016).

Specifications for CPR, DPR, and GMI are provided

in Table 1 along with orbital characteristics for GPM

and CloudSat.

Joint evaluations of GPM and CloudSat global

snowfall products are natural investigative pathways to

explore, especially as an avenue for assessing and im-

proving the products, but caution must be used when

comparing these datasets. The products developed by

the GPM and CloudSat missions for the three sensors

of interest in this study (DPR, GMI, and CPR) employ

disparate surface precipitation phase discrimination/

classification schemes in mission-affiliated official prod-

ucts, thus complicating comparison efforts (Casella et al.

2017). Orbital and resolution differences between CPR

and DPR cause sampling dissimilarities that affect

statistical analyses (e.g., Behrangi et al. 2012). The

performance characteristics of the instruments, most

notably the radar minimum detectable reflectivity

values, also cause differences. Further, the respective

radar observations are contaminated by range gate

clutter near Earth’s surface, and therefore near-

surface range gates above possible ground clutter (so-

called near-surface bins) are used to estimate surface

snowfall rates. Systematic differences in the near-surface

bin designation between these sensors are evident and

arise in part because of DPR scanning capabilities ver-

sus CPR fixed-nadir observations and other algorithm-

specific considerations (Casella et al. 2017). Differences

in the algorithmmethodologies and a priori assumptions

needed because of the underconstrained nature of the

retrievals are another challenge in comparing falling

snow products. The microphysical and associated scat-

tering properties that drive the relationships between

snowfall rate and radar reflectivity vary by radar wave-

length and snowmicrophysical regime (e.g., Sekhon and

Srivastava 1970; Leinonen et al. 2012; Heymsfield et al.

2016). As a result, the reflectivity–snow rate (Z–S) re-

lationships employed in radar-based algorithms, either

explicitly or implicitly, depend on the particular as-

sumptions about microphysical properties and their

uncertainties that are made within the algorithms. For

passive microwave retrievals as from GMI, snowfall

TABLE 1. CloudSat and GPM instrument and orbit characteristics.

CPR

DPR

GMIKuPR KaPR

Frequency 94GHz 13.6GHz 35.5GHz From 10.65 to 183.31GHz

(13 channelsa)

Footprint size ;1.7 km 3 1.4 km 5.05–5.60 km of diameter From ;6 to ;26 km

Near surface bin ;720–1200m ;750–2500m ;750–2500m —

Sensitivity ; 229 dBZ ;12–13 dBZ ;12–13 dBZ (HS),

;17–18 dBZ (MS)

Noise equivalent delta temperatures

range from 0.3–0.8K

Scanning mode Nadir pointing Cross track Cross track Conical

Range gate interval 240 mb 250m 250m (MS), 500m (HS) —

Swath width 1.4 km 245 km 125 km 885 km

Orbital altitude 705 km 407 km 407 km 407 km

Orbit Polar orbit Non-sun-synchronous

at 658 inclination
Non-sun-synchronous

at 658 inclination
Non-sun-synchronous

at 658 inclination

a The GMI channels in GHz are 10.65V and H, 18.7 V and H, 21.8 V, 36.5 V and H, 89V and H, 166V and H, 183.316 3V, and 183.316
7V, where V (H) means vertical (horizontal) polarization.

b Actual range gate spacing is approximately 480m but measurements are oversampled to provide data at 240m spacing.
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estimates can also be affected by variable surface

emissivity, especially over snow-covered surfaces. The

land surface variable emissivity hinders falling snow

detection compared to oceanic backgrounds that have

lower and more uniform emissivities (Skofronick-Jackson

et al. 2013), especially when compared to direct radar

measurements. Indeed, a seasonal study of GMI falling

snow retrievals has indicated a dependence on snow-cover

characteristics (Ebtehaj and Kummerow 2017). GMI,

however, has high frequencies (166 and 183GHz) that

have been shown to be particularly useful for falling

snow estimates (Panegrossi et al. 2017).

Datasets composed of near-coincident DPR–CPR

observations have been recently developed (Turk 2016;

Yin et al. 2017). Global snowfall studies that adjusted for

some of the complicating factors previously reported

have been performed using these datasets (Casella et al.

2017; Tang et al. 2017). These analyses show that CPR

observesmore light snowfall events thanDPR, while the

DPR snowfall detections exceed those from CPR for

higher intensity events (Casella et al. 2017; Tang et al.

2017)—not unexpected results given the respective ra-

dar sensitivities (Table 1). Furthermore, near-coincident

snowfall rates from each dataset are poorly correlated,

and DPR underestimates the total snow volume com-

pared to CPR (Tang et al. 2017; Casella et al. 2017).

Proposed methods to increase DPR signal fidelity near

its minimum detectable threshold can reduce this gap

significantly (Casella et al. 2017). The DPR, however,

observes snowfall events in some regions more effectively

than the CPR (e.g., some mountainous regions), pre-

sumably because of DPR scanning capabilities compared

to CPR nadir-only observations (Tang et al. 2017). The

DPR also shows a much broader latitudinal snowfall dis-

tribution compared to CPR (Tang et al. 2017). However,

this latitudinal feature is probably due to phase dis-

crimination disparities between the two datasets—a

topic that will be discussed further in this study.

While the Turk (2016) and Yin et al. (2017) co-

incident datasets provide specific examples of snow-

fall events observed by the CPR versus DPR and GMI,

these databases do not contain enough samples for robust

statistics at high to low snow rates all around Earth.

Casella et al. (2017) report about 35000 snowfall profiles

in the matched GPM-CloudSat dataset composed of the

first ;14 months of the GPM mission. Most of these

profiles were confined to latitudes exceeding 608N be-

cause of the combination of GPM sampling frequency

near its latitudinal apex (658N) and a CloudSat North-

ern Hemispheric observational bias due to CloudSat

daytime-only operations since 2011. The matched GPM-

CloudSat dataset is therefore not entirely geographically

representative of global snowfall. Thus, the matched

GPM-CloudSat database is not used herein; instead level

2 (instantaneous swath) retrieval products are utilized.

The most recent and stable falling snow estimates from

GPM (version 05, released May 2017) are compared to

CloudSat (release R04) products for a multiyear period

spanning the first 3 years of the GPM mission. This anal-

ysis differs from prior work by comparing active and

passive estimates, but more importantly it focuses the

analysis efforts on the product differences arising from

classification, instrumentation, sampling, and algorithm

differences to provide a more informative falling snow

comparison. Section 2 provides information on the GPM

datasets and the various falling snow products from

GPM and CloudSat. Section 3 describes CloudSat and

GPM product differences that are not related to un-

derlying algorithmassumptions andways tomitigate these

differences. Section 4 provides a methodology to reduce

Z–S differences for the CPR and DPR retrievals and thus

allow the adequacy of the mitigations described in section

3 to be evaluated. Section 5, discussion and conclusions,

provides a summary of the work and delves into the im-

plications of the comparison challenges, followed by next

steps and conclusions. For quick reference, a compre-

hensive list of acronyms is provided in the appendix.

2. GPM datasets and falling snow products

GPM level 2 instantaneous swath precipitation re-

trievals are analyzed from the GMI, the DPR, and the

combined DPR–GMI products. Because of DPR’s in-

strument configuration and scanning strategy, it pro-

duces falling snow estimates across the 245-km swath

for normal scan (NS) with the Ku band, and across the

125-km Ka inner swath for both the Ku 1 Ka matched

scan (MS) and the high-sensitivity (HS) mode with the

Ka channel (Kojima et al. 2012). In addition, there are

falling snow estimates from GMI [Goddard profiling

algorithm (GPROF); Kummerow et al. 2015] and from

the combined radar–radiometer algorithm (CORRA or

CMB; Grecu et al. 2016). A summary of the six GPM

snow products, along with theCloudSat product, is given

in Table 2. These products are not totally independent,

but there are important differences that are noted in the

information on the algorithms presented below.

GPROF is a physically based Bayesian retrieval of

hydrometeor profiles, selected from an a priori data-

base, that best fit the 13 channels of the GMI data. Each

hydrometeor profile is associated with a surface pre-

cipitation rate. GPROF retrieves all parameters using the

estimated expected value (a Bayesian method) described

in Kummerow et al. (2011, 2015). The a priori Bayesian

database used by GPROF is constructed by pairing ob-

served DPR and CORRA precipitation estimates
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with the GMI brightness temperature observations.

For version 05 of the GPROF algorithm, approxi-

mately 1 year of GPM observations are contained in

the a priori database. To distinguish liquid precipitation

from falling snow, the Sims and Liu (2015) technique is

implemented that relies on the 2-m wet-bulb temperature

(T2m). Acknowledging DPR’s limitations in estimating

light precipitation and discovering that the high-frequency

(166–183GHz) channels of GMI show a response to this

lighter precipitation in mid- and high latitudes, GPROF

has augmented its a priori database using CloudSat and

Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2016)

data to improve light precipitation estimation.

The GPM DPR and CORRA precipitation algorithms

convert the DPR measured reflectivity (Z) profiles to

precipitation particle size distribution (PSD) profiles, from

which precipitation rate andwater content canbeobtained.

These algorithms differ in their a priori assumptions re-

garding the PSD, additional information (besides the Z

profile) that is used to constrain the retrieval, and scattering

models that are used to simulate Z given the PSD. The

DPR algorithms model the PSD as a three-parameter

gamma distribution, although in practice, the shape pa-

rameter is fixed and the slope and intercept parameters are

constrained to follow a rain-rate–median mass diameter

(R–Dm or S–Dm, in the case of snow) power-law relation-

ship, whereas the CORRA algorithm fixes both the shape

parameter and normalized intercept (Nw). Both algorithms

condition the a priori relationships on the profile classifi-

cation (convective versus stratiform) as well as geographic

considerations (e.g., over ocean vs land). The DPR algo-

rithmsmodify theR–Dm relationship to obtain consistency

with the path-integrated attenuation, and in the case of the

MS products, the Ka-band reflectivity profile. Likewise,

CORRAmodifiesNw to obtain better consistency with the

path-integrated attenuation (PIA), Ka-band reflectivities,

andGMI radiances. Version 05 of CORRAuses scattering

tables derived from simulations of scattering from re-

alistically shaped pristine and aggregate snowflakes (Kuo

et al. 2016), which have been demonstrated to improve

active–passive forward modeling consistency relative

to low-density spherical scattering models (Olson

et al. 2016). In classifying precipitation as liquid or

frozen throughout the vertical column of radar obser-

vations, DPRuses brightband detection augmentedwith

modeled temperature profiles.

The CloudSat snow profile product (2C-SNOW-

PROFILE) (2CSP) release R04 product (Wood 2011;

Wood and L’Ecuyer 2013) used in this study provides

estimates of snowfall characteristics for each observed

profile that appears to contain snow reaching the surface.

Reflectivity profiles are affected by ground clutter in the

range bins nearest the surface, creating a so-called
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blind zone for CPR of about 1 km near the surface

where valid reflectivity measurements are not possible.

Surface snow is classified primarily by the CloudSat 2C

precipitation column algorithm (2C-PRECIP-COLUMN)

(2CPC) product (Haynes et al. 2009) based on the

strength of the radar reflectivity in the radar bin just

above the blind zone (the near-surface bin), the esti-

mated height of the melting level above the surface,

and a model for the rate of snow particle melting. If

2CPC indicates that snow at the surface is ‘‘likely’’ or

‘‘possible’’ and the melting-level height is such that the

melted mass fraction at the surface is less than about

15%, the 2CSP algorithm performs a retrieval. The

algorithm first retrieves estimates of vertically re-

solved snow PSD parameters. The retrieval is per-

formed using a Bayesian, optimal estimation (OE;

Rodgers 2000) technique applied to the reflectivity

profiles, supplemented with the reanalysis tempera-

ture profiles and a priori information about snow PSDs

and microphysical properties. PSDs are assumed to be

exponential with varying intercept and slope parame-

ters. The a priori PSD information uses temperature-

dependent estimates of the PSD parameters along with

their covariances. The a priori microphysical properties

include mass–dimension and projected area–dimension

power laws whose parameter values and uncertainties

are described using Gaussian probability distribution

functions (Wood et al. 2014, 2015). The algorithm uses

the retrieved PSD profiles along with the a priori mi-

crophysical properties to determine vertically resolved

profiles of snowfall rate and water content within the

retrieved layer. The surface snowfall rate is estimated

simply as the snowfall rate in the near-surface bin.

Figure 1 shows the GPM and CloudSat 2CSP level 2

mean annual snowfall rates calculated directly from the

standard products, publicly accessible from eachmission’s

data center (see Table 2), for the 3-yr period April 2014–

March 2017. There are some obvious and subtler differ-

ences between the snow amounts shown in Fig. 1 due to

several reasons including instrument capabilities, sam-

pling, snow–rain classification, and algorithm method-

ologies. While the details of these differences will be

provided in section 3, Figs. 1a–c (DPR NS, DPR HS,

DPR MS) indicate more snow over the Gulf of Alaska

and Fig. 1f (2CSP) hasmore snow in the SouthernOcean

and Antarctic regions. Other subtle differences between

the snow products are found in high mountainous areas

(e.g., Greenland, the Andes, and the Himalayas).

FIG. 1. GPM and CloudSat mean annual snowfall estimates (mm yr21) for: (a) DPR Ku NS, (b) DPR Ka HS,

(c) DPR Ku 1 Ka MS, (d) GMI GPROF, (e) Combined DPR 1 GMI CORRA, and (f) CloudSat 2CSP. Obser-

vations from April 2014 through March 2017 are used.
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More direct observations than the snowfall rates from

CPR and DPR are the calibrated reflectivities. Figure 2

provides the probability distribution functions for DPR

Ku, DPR Ka [in high-sensitivity (HS) mode], and CPR

W reflectivities. For the CPR, these reflectivities are

provided by the CloudSat geometric profile product

(2B-GEOPROF; Marchand et al. 2008) and are those

from the near-surface bin. They have been corrected for

gaseous attenuation and for path-integrated hydro-

meteor attenuation as estimated by the 2C-PRECIP-

COLUMN product (Haynes et al. 2009). In Fig. 2a at W

band, reflectivities for snow tend to saturate near

20 dBZ likely because of reduced backscattering effi-

ciency of larger aggregates relative to lower frequencies

and effects of hydrometeor attenuation and multiple

scattering in heavier, deeper snow events (e.g., Kuo et al.

2016; Matrosov and Battaglia 2009). Meanwhile Fig. 2b

implies that the DPR minimum detectable reflectivities

for snow events are around 12-dBZ Ku and Ka (in HS

mode), which correspond to the DPR design features.

Figure 2a shows a systematic transition in the reflectivity

distributions where DPR counts exceed CPR counts

in the 12–14-dBZ range. There is nothing surprising

about Fig. 2 as CPR and DPR were designed for very

different observations: CPR for small cloud particles

and DPR for precipitation-sized particles. GPM’s non-

sun-synchronous orbit was designed to observe falling

precipitation in the tropics and midlatitudes. The lower

frequencies, at which the DPR radars operate, while nec-

essary to avoid severe attenuation in heavier midlati-

tude and tropical precipitation, require larger instruments,

where weight and power consumption becoming limiting

design factors to improving dBZ sensitivity. Multiple

scattering and attenuation effectsmay partially offset each

other (Matrosov and Battaglia 2009), but the relative

importance of multiple scattering versus attenuation for

various radar wavelengths is not yet fully quantified

because of scattering and extinction uncertainties

that depend on highly variable microphysical prop-

erties (e.g., snow particle shape and size distribution)

and because of three-dimensional cloud structure. The

scanning nature of the DPR also reduces the dwell time,

as compared to the CPR, for integration of the signal to

obtain lower minimum detectable reflectivities. These

differences in sensor requirements and resultant in-

strumentation design lead to differing capabilities be-

tween the DPR and the CPR to estimate light to heavy

snow rates.

Of the three DPR products (NS, MS, and HS), only

the DPR MS product relies on the combined Ku 1 Ka

bands. Because of the narrow swath, these MS products

are near nadir (698) observations, where ground clutter

is less problematic and the measurements can be made

closer to the surface. TheMS product uses bothKu1Ka

bands allowing for including the more-sensitive Ku

measurements down to ;13 dBZ augmented by Ka-

band data where the snow is intense enough to produce

reflectivities above 18 dBZ. Therefore, only the DPR

MS product will be shown in future figures.

3. GPM and CloudSat falling snow product
differences

This section details factors that likely contribute to

differences between theGPMandCloudSat falling snow

products, but that can be mitigated in an effort to make

comparisons between radar-based products as equita-

ble as possible. The product differences result from four

main sources: classification, sampling, instrumentation

sensitivity, and algorithmic differences. Classification

refers to the method used to determine if a given profile

is rain or snow at the surface. Sampling differences due

FIG. 2. Probability distribution function of CPR and DPR calibrated reflectivities using data from April 2014–

March 2017 for snow-only (a) reflectivity occurrence in dBZ21, and (b) snowfall rate in mm day21 dBZ21.
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to differing orbits, swath widths, and resolutions cause

additional disparities between the products. The in-

struments, both radars and microwave radiometers,

have different design features, most notably radar

minimum detectable reflectivity (MDR) and radiom-

eter frequency sensitivities as described above. Fur-

thermore, radars such as the DPR and CPR resolve

measurements into vertical range gates whereas radi-

ometers like GMImeasure a column-integrated signal.

Even if all of these factors can be mitigated, differ-

ences in algorithm formulation and assumptions lead

to dissimilarities that are more difficult to reconcile.

One approach to put DPR and CPR estimates on a

common basis, compensating for algorithmic differ-

ences, will be presented in section 4.

As a note, in subsequent sections, efforts to mini-

mize product differences are limited to DPR and CPR

products, mostly because it is more straightforward to

work with similar radar datasets. GMI products are not

altered since GPROF retrievals use an a priori data-

base directly linked to radar-derived snowfall rates

(see section 2), thus complicating GPROF algorithm

sensitivity tests. GMI GPROF retrieval components

will be used, however, to adapt DPR snowfall retrievals.

Furthermore, no major adjustments are made to the com-

bined CORRA products, as these are based primarily on

the DPR data.

a. Classification-induced differences

A major algorithm difference identifiable in Fig. 1 is

that the DPR NS, HS, MS, and CORRA estimates

(Figs. 1a,b,c,e) show significant snow over mid–high-

latitude oceans (e.g., Gulf of Alaska), whereas CloudSat

2CSP and GMI GPROF do not. This is because the

DPR andCORRAalgorithms use precipitation phase at

the lowest radar range gate uncontaminated by surface

clutter, which may be 0.5–2.0km above the surface (even

over oceans). The profile of phase (ice, melting, or liquid)

is determined via a brightband detection algorithm or, if

one is not detected, the temperature profile provided by

ancillarymodel data [JMA’sGlobalAnalysis (GANAL)].

Meanwhile, CloudSat 2CSP uses the estimated height of

the melting level from the European Centre for Medium-

RangeWeather Forecasts (ECMWF) analysis andmodels

for expected snow particle melting to distinguish snow

from rain. Since temperature typically decreases with

height in the boundary layer, the lowest clutter-free range

gate is likely to be systematically colder than the sur-

face, resulting in too-frequent classification of pre-

cipitation as snowfall by the DPR and CORRA

algorithms. The Tang et al. (2017) results also indicate

widespread DPR surface snowfall signatures at equa-

torward latitudes compared to other global snowfall

estimates like CloudSat 2CSP, most likely because of

DPR’s snow–rain classification approach. In contrast,

the GPROF algorithm for GMI (and other passive

microwave sensors; Kummerow et al. 2015) uses T2m

from global weather model analyses to classify the

probability of snow versus rain using the approach of

Sims and Liu (2015). The model is GANAL for GMI

GPROF near-real-time and production products while

ECMWF interim reanalysis (ERA-Interim) (Dee et al.

2011) is used for the GMI GPROF CLIM (climate)

products. Le et al. (2017) have introduced a different,

experimental method of rain/snow classification for

DPR using characteristics of the dual-frequency ratio

profile, but this still only uses data above the surface

clutter. Since each of the algorithms classifies surface

snow differently, having a common definition of what

constitutes falling snow is imperative for snow in-

tercomparison studies.

To test the theory that a snow product difference lies

in the adopted surface snow/phase identifier schemes for

the various algorithms, the DPR retrievals were reclas-

sified using the Sims and Liu (2015) probabilistic phase

from the nearest GMI pixel to distinguish liquid rain

from falling snow, with an upper threshold of 15% liquid

required for a snow classification. While not exactly the

same, this is consistent with the CloudSat 2CSP meth-

odology, which allows snow particles to fall a distance

below the melting level, as diagnosed from coincident

temperature profiles, and still be considered snow. The

distance is based on modeling of particle melting that

shows the resulting melted mass fraction to be less than

15%. The results of that test are shown in the snow fre-

quency plots of DPR MS, DPR MS (with T2m adjust-

ment), CPR, andGMIGPROF in Figs. 3a–d, respectively.

Clearly, theseDPR falling snow retrievals in the northern-

latitude oceans are much closer to the GMI GPROF and

CloudSat 2CSP snowproducts. Therefore, for consistency,

the T2m adjustment for DPR snow retrievals will be used

in the rest of the analyses in this paper.

We also compare the DPR V05 phaseNearSurface

(PNS) flag to the experimental flagSurfaceSnowfall

(FSS) flag of Le et al. (2017) and the nearest-GMI-

derived phase in Fig. 4. Over land, the methods result in

fairly similar snow occurrences, although the PNS tends

to slightly overestimate snowfall compared to the FSS

flag, which in turn is a slight overestimate compared

to the T2mmethod. Over oceans, the PNS and FSS flags

are fairly similar although some regional patterns are

evident: particularly, the PNS flag has a greater snowfall

occurrence downwind of the continents in the Northern

Hemisphere and near Antarctica, whereas FSS occur-

rences are slightly greater upwind of continents and in

the middle latitudes (408–508S) of the Southern Ocean.
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A far more significant reduction in snowfall occurrence

is seen in Fig. 4 when the T2m method is applied. Re-

markably, this method nearly entirely eliminates the

occurrence of snow over the Gulf of Alaska, northern

Atlantic south and east of Iceland, and Southern Ocean

north of about 508S. The land–ocean disparities among

various classification methods make sense in that cold

air outbreaks over ocean produce steeper lapse rates

than over land (because of the larger heat capacity of

water), which coupled with the surface moisture flux

are more likely to produce shallow convection (Kulie

et al. 2016; Kulie and Milani 2018). Thus, over-ocean

retrievals are much more susceptible than those over

land because of classification errors in the radar-based

methods that do not use information about the tem-

perature structure near the surface. This does not nec-

essarilymean that theGMIGPROF andCloudSat 2CSP

approach is always better than the DPR approach since

it relies upon a model analysis, which may be in error,

particularly near sharp temperature gradients and com-

plex terrain, whereas the DPR approach uses the radar

measurements more directly.

b. Sampling-induced differences

Orbits, instrument resolutions, and scanning patterns

introduce sampling-induced differences. The GPM Core

Observatory spacecraft carrying DPR and GMI is in a

non-sun-synchronous orbit with inclination angle of 658
meaning that only precipitation between the latitude

bands of about 6708 (6668) is observed by GMI (DPR)

because of the extension of their swath widths beyond the

inclination latitude. The CloudSat 2CSP snow estimates

go nearly pole to pole (6828), since it is at a 988 in-

clination. Thus, CloudSat observes significant amounts

of snow located near the poles that GPM misses (espe-

cially near Antarctica where light snow is more fre-

quent). On the other hand, GPM’s orbit allows for

sampling the diurnal cycles that CloudSat cannot pro-

vide. The diurnal cycle in mid- and high-latitude cold

season precipitation, where snow is most prevalent, is

weaker than in warm season liquid precipitation (Dai

2001). GPM observations, however, indicate an early

morning snowfall occurrence maximum over Northern

Hemispheric oceanic regions (Adhikari et al. 2018).

Possible diurnal influences are not corrected in our

analyses.

In Fig. 1, it is not instantly apparent that the sampling

from the different orbits and swath widths play a role in

the annual snow amounts. While numerous studies have

shown global snowfall using gridded CloudSat products

(Liu 2008a; Kulie et al. 2016; Kulie and Milani 2018),

most of these studies utilizeCloudSat observations from

the 2006–10 data record when the CPR operated con-

tinuously. Over most of its lifetime, CloudSat has flown

in formation with NASA’s A-Train, or Afternoon

Constellation of satellites led by Aqua. After a battery

system anomaly caused an inoperative period of sev-

eral months in 2011, CloudSat began operating in a

‘‘daytime-only operations’’ mode. For this mode, start-

ing in November 2011, the CPR has made measure-

ments during only the sunlit portion of the orbit.

Figure 5 illustrates the latitudinally imbalanced sam-

pling that results for these more recent CloudSat ob-

servations. There is a clear Northern Hemispheric bias

FIG. 3. Snow occurrence percentage for (a) DPRMS, (b) DPRMS with the GMI (Sims and Liu 2015) T2m snow

classification methodology, (c) CloudSat 2CSP, and (d) GMI GPROF retrievals. Different scales are adopted for

the top panels to accentuate regional snowfall occurrence patterns.
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in CloudSat observations because the CPR operates

during the first part of the descending orbital path [i.e.,

CPR takes some observations after transitioning from

ascending (daylight) to descending (no daylight) orbital

mode]. Depending on the season, CPR observations are

reduced or nonexistent over extreme Southern Hemi-

sphere latitudes because of limited solar input for power

and a slight lag when the CPR is powered on during the

descending to ascending orbital transition. CPR observa-

tions are restricted to GPM latitudinal limits in this study,

thus reducing the number of Southern Hemisphere CPR

data void regions in the complete dataset. Some seasonal

CPR data gaps may still exist in the extreme southern

portions of GPM’s latitudinal range during austral winter.

To derive meaningful and comparable near-global

snowfall rates and occurrences from CPR and DPR,

only CPR observations within 6668 are considered

in this analysis. The mean snowfall rate and snowfall

occurrence were calculated in 18-latitude bands and

weighted by the cosine of latitude, and the weighted

means are given in Table 3. Only the near-nadir DPR

data were considered in order to mimic as closely as

possible the CPR lowest clutter-free bin height. Clearly,

CPR’s superior detection is evident in that it observes an

order of magnitude more snowfall occurrence than

DPR; however, because these are light events below the

detection thresholds of DPR, in terms of rate the CPR:

DPR ratio is only a factor of 3. There are also some

differences between the DPR products. While the DPR

NS and DPR MS retrievals are nearly identical, the

DPR HS retrieval only detects 76% of the snow occur-

rence of the DPR NS, (and DPR MS) retrievals, and

50% of the snowfall rate. While it is not surprising that

the DPR NS and DPR MS statistics are similar (the Ku

MDR is much lower than the Ka MS MDR, and both

are used in the MS algorithm), it is somewhat surprising

that the DPRHS detection is lower than DPRNS, since

the DPR HS MDR is similar to DPR NS (Toyoshima

et al. 2015).

FIG. 4. DPR MS surface snow occurrence differences using dif-

ferent phase classification schemes. Differences between (a) orig-

inal DPR algorithm using the phaseNearSurf (PNS) and Le et al.

(2017) flagSurfaceSnowfall (FSS) flags, (b) FSS and Sims and Liu

(2015) T2m, and (c) PNS and T2m methodologies.

FIG. 5. CloudSat orbits for the April 2014–March 2017 period.

Hemispheric differences are due to CloudSat ‘‘daylight-only’’ op-

erations after November 2011. The Northern Hemisphere contains

more orbits since the CPR operates during a portion of the de-

scending orbital path during both austral and boreal summers.

TABLE 3. Global snowfall occurrence (between6668) and mean

rate from CloudSat 2CSP and DPR products. Only the near-nadir

DPR profiles (rays 23–25, 11–13, and 11–12 for NS, MS, and HS,

respectively) were considered in order to minimize height of the

lowest clutter-free bin above the surface, and the phase classifica-

tion was matched to the nearest GMI GPROF pixel.

Instrument

Snow

occurrence (%)

Mean snow rate:

mm day21 (mm yr21)

CloudSat (native

resolution) 2CSP

2.422 0.1229 (44.9)

DPR NS 0.262 0.0401 (14.6)

DPR MS 0.262 0.0402 (14.7)

DPR HS 0.199 0.0208 (7.60)

CMB NS 0.284 0.0414 (15.1)

CMB MS 0.284 0.0444 (16.2)
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For occurrence statistics, the different sizes of the

CPR and DPR footprints must also be considered. The

area of a DPR footprint is about 11 times larger than a

CPR footprint. However, because precipitation is not

randomly distributed within a DPR footprint and CPR

only samples along-track, an 11-footprint moving av-

erage of CloudSat 2CSP may not result in equivalent

sampling statistics to DPR, so in Table 4, 5- and 11-

footprint moving averages are used to calculate snow

occurrence and mean rate using all data, to give rea-

sonable bounds on the conversion of 1-D CloudSat

2CSP to two-dimensional (2D) DPR statistics. As ex-

pected, the mean rate is unaffected, but the occur-

rence increases from 2.4% (native) to 2.9% and 3.5%

for the 5- and 11-pixel moving averages (somewhat

similar to Behrangi et al. 2012), respectively, further

exacerbating the discrepancy with DPR due to sen-

sitivity differences.

c. Instrumentation-induced differences

The differences caused by instrumentation fall into

1) detectability/sensitivity thresholds, 2) differences

in backscattering efficiency of various snowflake

shapes/sizes at each frequency, and 3) surface clutter.

These differences are not easily mitigated because

they are inherent properties of the instrumentation

design; however, some techniques can be used to equalize

comparisons.With regard to differences in backscattering

efficiency, the scattering model handles these—this is

just a way of stating that even if a Ku-band and W-band

radar had the same sensitivity (e.g., 0 dBZ), they would

still see different snowfall occurrence because of these

backscattering differences. Surface clutter is a more

fundamental problem that cannot be easily fixed, but

using near-nadir DPR pixels, such as for the MS

products, and CPR nadir-beam observations allow for

both instruments to experience about the same amount

of surface clutter.

As Table 1 states, Fig. 2 shows, and section 2 discusses,

CPR has a much lower MDR. This increased sensitivity

allows CPR to observe smaller snow rates than GPM’s

DPR. It is not possible to increase DPR’s sensitivity to

small snowfall rates postlaunch, but it is possible to ar-

tificially truncate CPR’s MDR. This synthetic CPR

MDR application allows for global snowfall compari-

sons between CPR and DPR at a common detectable

range of snow rates; it does not however, allow one to

compute total snow accumulations globally. Because the

same snow PSD may produce markedly different re-

flectivity at Ku, Ka, and W band (Kneifel et al. 2011;

Leinonen et al. 2012; Kulie et al. 2014), there is

not a one-to-one relationship between the DPR MDR

and an equivalent W-band threshold. However, a sta-

tistical threshold may be derived by truncating the

CPR observations at progressively higher thresholds of

reflectivity until the near-global snowfall occurrence is

reduced to the DPR level. This approach is illustrated in

Fig. 6 where the truncated CloudSat 2CSP occurrence

and rate cumulative distribution functions (CDF) are

compared to the DPRMS CDFs. Using this approach, a

lower sensitivity cutoff for CPR of 8–9 dBZ yields the

same global snowfall occurrence as detected by DPR

MS (the exact value depends on whether attenuation-

corrected or observedW-band reflectivities are used and

the length of the along-track averaging window applied

to the CloudSat data). While this is lower than the DPR

minimum sensitivity of about 13 dBZ at Ku band, it is

consistent with the frequency-dependent backscattering

efficiency reduction that is observed and produced by

scattering models (Liu 2008b; Tyynela et al. 2011; Kuo

et al. 2016). The 8-dBZ CPR cutoff produces the same

approximate number of global snowfall occurrences as

DPR (Fig. 6), while regional snowfall occurrence dif-

ferences remain between the DPR MS and truncated

CloudSat 2CSP snowfall datasets (Fig. 7). Even after

applying a synthetic 8-dBZ MDR, CloudSat 2CSP ob-

serves more snow occurrences (Fig. 7a) and higher an-

nual mean snowfall rate (Fig. 7b) than DPR MS over

many mountainous regions (e.g., Greenland, the Hi-

malayas, Alaskan and western Canadian mountains,

Andes Mountains, coastal Norway) and large portions

of the Southern Ocean. Conversely, DPR MS indicated

snow occurrences exceed CloudSat 2CSP in some

Northern Hemispheric oceanic (e.g., east of Asia and

North America) and continental (e.g., eastern half of

Canada, western Russia) regions. These inflated DPR

MS snowfall occurrences, however, do not produce

drastically different mean annual snowfall rate dif-

ferences (Fig. 7b). These regional differences can be

partially explained by possible snowflake microphysical

details. For instance, if the truncated 8-dBZ CloudSat

2CSP dataset detects more snowfall than DPR MS in

a given region, it implies that Ku–W differences are

less than average, and, therefore, snow PSDs consist of

smaller particles on average in that region. Conversely,

TABLE 4. CloudSat 2CSP snowfall occurrence and global mean

snowfall rate after performing along-track averaging and trunca-

tion to match DPR instrument characteristics.

Snow

occurrence (%)

Mean snow rate

(mm day21)

2CSP along-track

averaging

All data .8 dBZ All data .8 dBZ

5 pixel 2.879 0.277 0.1212 0.0613

11 pixel 3.303 0.277 0.1212 0.0575
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where theCloudSat 2CSP (8-dBZ cutoff) dataset detects

less than DPR in certain regions, it would imply that

Ku–W differences are greater than average, which can

be interpreted as the influence of larger particles.

Despite yielding a similar occurrence, Table 4 shows

that a cutoff of 8 dBZ for CloudSat 2CSP yields a mean

snowfall rate 43% higher than DPRMS and 30% higher

than CMB MS. This points to further differences in the

algorithm related to the snow microphysical assump-

tions and scattering models that lead to higher snowfall

rates from CloudSat 2CSP than DPR, even when the

same events are being observed. In section 4, we will

attempt to reconcile this discrepancy using common

scattering models and PSD assumptions.

d. Summary of classification, sampling, and
instrumentation adjustments

Comparisons between GPM andCloudSat products

are more equitable after adjusting for classification

[using a common T2m approach as specified by Sims

and Liu (2015)]. The adjustment for sampling by

averaging over 11 CPR pixels over similar latitude

and longitude ranges also reduces differences. Using a

CPR cutoff of 8–9 dBZ puts the occurrence statistics of

falling snow from CloudSat 2CSP and DPR on equal

grounds. However, Table 4 shows that even with all these

adjustments implemented as described in section 3, the

average falling snow rates of CloudSat 2CSP far exceed

those of the DPR. These differences in average falling

snow rates seem inconsistent with the reflectivity ranges

shown in Fig. 2. This inconsistency is likely symptomatic of

differences in the fundamental underlying assumptions

(e.g., microphysical and scattering properties) made

by the DPR- and CPR-based retrieval algorithms.

These assumptions affect the implicit relationships

between snowfall rate and radar reflectivity at the

core of these algorithms. By applying a consistent

FIG. 6. Cumulative probability distribution plots with respect to reflectivity for various CloudSat along-track

averaging (solid: 11 pixel; dot–dash: 5 pixel) and minimum reflectivity cutoffs as compared to DPR MS (using the

Ku-band reflectivity and with T2m snow classification applied): (a) cumulative occurrence and (b) cumulative

snowfall rate.

FIG. 7. CloudSat 2CSP (8-dBZ threshold applied) and DPR MS

(2-m wet-bulb temperature surface phase classifier applied) dif-

ferences for (a) snow occurrence (%) and (b)mean annual snowfall

rate (mm yr21).
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explicit Z–S relationship to observed reflectivities,

this inconsistency can be minimized, allowing the ad-

equacy of the mitigations described in section 3 to be

examined. Demonstrating that these mitigations are

adequate provides justification for their use to establish

equitable bases for comparisons of CloudSat, DPR,

and other future falling snow retrieval products.

4. Algorithm (Z–S) differences

As shown in section 3 and Table 4, even when ac-

counting for differences in classification, footprint size,

and sensitivity, there remains a residual difference of

30%–40% in global mean snowfall rate between the

CloudSat and DPR estimates. Since the radar algo-

rithms require assumptions about the snow microphys-

ical properties and scattering models to relate observed

reflectivity to estimated snowfall rate, in this section we

will develop and apply a consistent set of Z–S relation-

ships at Ku andW band to the respective DPR and CPR

observed reflectivity probability distribution functions

(PDF) in order to determine if these result in a more

consistent snowfall rate PDF and globally averaged

snowfall rate. It is important to note that these are not

meant to replace the existing official falling snow prod-

ucts. W-band reflectivities observed from satellite, in

particular, can be subject to hydrometeor attenuation

that may be balanced partially by multiple scattering

effects (e.g., Matrosov and Battaglia 2009) and this can

lead to saturation of W-band reflectivity (Matrosov

2019). Performing retrievals in profile (e.g., Wood and

L’Ecuyer 2013), as opposed to applying Z–S relation-

ships to individual radar bins, and using a reflectivity

forward model that models attenuation and multiple

scattering effects can compensate to some extent

for these effects. In this work, however, the Z–S re-

lationships are applied to W-band reflectivities that

have been corrected for estimated path integrated

attenuation where possible (Haynes et al. 2009).

Further, the focus of this work is not to develop and

provide approximate, numerical Z–S relationships as

could be used to develop a retrieval product. Instead,

these fitted relationships serve only as a tool by

which the reflectivities as observed by the different

instruments can be compared on a common basis (i.e.,

as snowfall rates) of meteorological and hydrological

relevance.

To begin, we derived a table relating snow water

content, snowfall rate, and reflectivity at Ku, Ka, and W

bands using an exponential PSD with constant intercept

parameter (No 5 105m24). The exponential slope pa-

rameter was varied to produce an array of PSDs with

mean mass-weighted diameter Dm increasing from 0.28

to 12mm. Snowfall rates for the respective PSDs were

calculated using aggregate snowflake mass and particle

fall speed relationships derived from previous studies

(e.g., Locatelli and Hobbs 1974; Mitchell 1996; Wilson

and Ballard 1999; Heymsfield et al. 2004). The best fit

microphysical relationships adopted for this study are

shown in online supplemental Fig. S1. Simulated mul-

tifrequency radar reflectivities were produced by in-

tegrating modeled snowflake backscattering properties

over the PSDs [e.g.,Wood et al. 2015, their Eq. (15)]. An

ensemble of aggregate snowflake models from the Kuo

et al. (2016) database (maximum particle size exceeded

25mm) was used to calculate mean snowflake back-

scattering properties. Scattering models from the Liu

(2008b) database were also used to augment the en-

semble snowflake backscattering database at particle

sizes smaller than 1mm. Ensemble mean particle

backscatter cross sections for the three radar frequen-

cies of interest are shown in supplemental Fig. S2. The

maximum simulated Ku–Ka (Ku–W) dual-frequency

ratio was ;10 (;17) dB using the described scattering

model and PSD combinations (supplemental Fig. S3). A

table showing the snowfall rate and reflectivity calcu-

lations are also provided as supplemental material

(Table S1). Combining simulated snowflake scattering

properties with various PSD and mass/fall speed as-

sumptions in a similar fashion as the current study has

been adopted in previous studies for different snowfall

remote sensing applications (e.g., Liu 2008a; Kulie and

Bennartz 2009; Kulie et al. 2010; Kneifel et al. 2011,

2015; Leinonen and Moisseev 2015; Olson et al. 2016).

We then used the Ku–Ka dual-frequency ratio from

two radar datasets to derive Dm given the PSD and

scattering assumptions described above as demon-

strated by Liao et al. (2016). The first dataset is the

matched Ku–Ka-band near-surface reflectivities from

DPR, filtered by the GMI GPROF precipitation type as

described in section 3a. To achieve better sensitivity at

Ka band than is available from the MS (matched scan)

data, the HS (high sensitivity) data at Ka were used,

which are interleaved between theKu scans (Toyoshima

et al. 2015) and have a 500-m vertical range gate. For

each Ka data point the surrounding 4 Ku rays at the two

corresponding Ku range gates (for a total of 8 Ku re-

flectivity measurements) were averaged (after converting

to linear Z units of mm6m23) to get a matched Ku and

Ka reflectivity pair. The second dataset was derived from

the Airborne Precipitation Radar-2 (APR-2) measure-

ments during the GPM Cold-Season Precipitation Ex-

periment (GCPEx; Skofronick-Jackson et al. 2015). Six

cases with snow as the predominant precipitation type

were selected (Table 5) representing synoptic and lake-

effect snow events. Only observations within 1 km of
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the ground were considered in order to represent near-

surface microphysics. Although the APR-2 dataset is

not nearly as broad as the DPR dataset, the APR-2

sensitivity is superior to DPR with a Ku-band sensitivity

near 0 dBZ and Ka-band sensitivity near 220 dBZ

during GCPEx (Durden et al. 2012). These are useful

for developing Z–Dm relationships that can be ap-

plied to CPR reflectivities far below the DPRminimum

sensitivity.

The two-dimensional histograms of Ku and Ka

reflectivity from APR-2 and DPR are shown in the top

panels of Fig. 8. In the bottom panels, the PDFs are

shown with the y axis converted to Dm using the tables

derived previously. Both the APR-2 and DPR data

show a clear trend toward increasing Ku–Ka difference

(and therefore, increasing Dm) as Ku reflectivity in-

creases. ThemeanDFR-derivedDm in each 0.25-dBZKu

bin was used to fit a least squares ZKu–Dm power law,

weighted by the total number of observations in each

0.25-dBZKu bin. The coefficients of these power laws

(fitted with Z in linear, not log, units) are given in the

Fig. 8 legends. The ZKu–Dm power law fit to the APR-2

data has a larger intercept and lower exponent than the

DPR fit, resulting in larger Dm values up to a Ku re-

flectivity of about 33 dBZ. This difference could be a

result of the presence of supercooledwater in lake-effect

snow, which is likely overrepresented in theAPR-2 sample

and can enhance the dual-frequency ratio at low altitudes

because of attenuation. This enhancement, if interpreted

as Dm, would erroneously result in larger than actual Dm

values. Notwithstanding this potential source of error, we

will take the APR-2 and DPR Z–Dm fits to establish

upper and lower bound Z–S lookup tables at W band,

using the same self-consistent table of Z, Dm, and S.

Applying these Z–S tables to the observed Ku- and

W-band reflectivity PDFs from DPR and CPR, respec-

tively, results in the snowfall rate PDFs shown in Fig. 9. The

APR-2 fit, when applied to the CPR reflectivity PDF,

results in much higher snowfall amount at all rates com-

pared towhen it is applied to theDPRdata.However, the

DPR-based fit gives similar results when applied to both

reflectivity PDFs, when only the range above the DPR

sensitivity (about 0.2mmh21 with this fit) is considered.

The resulting near-global snowfall rates are given in

Table 6, where it is evident that the DPR-based fit

snowfall rate distribution provides a closer match than

the APR2-based fit. The DPR NS (0.0467mm day21)

and truncated CPR (0.0392mm day21) global mean

snowfall rate relatively differ by ;16% using the

DPR-based fit. This relative difference increases to

FIG. 8. Two-dimensional normalized histograms of Ku and Ka reflectivity measured by APR2 during (top left)

GCPEx and (top right) DPR. (bottom) The y axis has been converted to units of mean mass-weighted particle size

and a power law, with coefficients given in the legend, has been fit to the mean values at each Ku-band

reflectivity bin.

JULY 2019 SKOFRON ICK - JACK SON ET AL . 1441



;60% using the APR2-based fit, with CPR conversely

displaying a larger mean snowfall rate compared to

the DPR-based fit. Caution should be used when in-

terpreting these results because of the respective

dataset discrepancies, especially at lower CPR re-

flectivities where there is little information from theKu–

Ka measurements to derive Z–S relationships. These

results, however, show that the large DPR–CPR global

snowfall rate differences using native datasets (CPR

exceeded DPR by a factor of 3) can be reduced to under

20% by systematically eliminating dataset differences

caused by algorithm assumptions (PSD assumptions,

size–fall speed relationships, phase classification schemes),

and inherent instrument discrepancies as noted in section

3. As the size–fall speed relationship used to derive this

snowfall rate is another source of uncertainty, it should be

recognized that the value of the calculated global mean

snowfall rate is less meaningful than the finding that when

the CPR and DPR reflectivity PDFs are analyzed on a

common basis, the calculated global mean rates are con-

sistent with each other. Another significant finding is that

the range of snowfall rates for which Ka band offers in-

dependent information to Ku band can be gleaned from

Fig. 8. Both APR-2 and DPR datasets show that the

Ku–Ka difference begins to significantly depart from 0dB

around Ku reflectivity values of 15 dBZ. Coincidentally,

this is close to DPR’s minimum detectable reflectivity, and

suggests that over nearly the entire range of snowfall rates

DPR can detect, which by our methodology accounts for

nearly 50% of global snowfall by amount, the Ka band

provides additional information to constrain the snowfall

rate. In May 2018 the DPR scan pattern was changed to

collocate the HS Ka footprints to match the outer swath of

the Ku footprints (Iguchi et al. 2018) and this should

provide a better constraint on the snow PSDs at low re-

flectivities than the MS products used herein that lose the

Ka signal at 18 dBZ.

5. Discussion and conclusions

GPM, version 05, snowfall estimates are now avail-

able fromDPR, GMI, and combined radar–radiometer

FIG. 9. Near-global snowfall PDF derived fromDPR- and CPR-observed reflectivity PDFs. (left)Z–S relationships

derived from APR2 data during GCPEx and (right) data derived from DPR.

TABLE 5. GCPEx cases.

Date(s) Start/end time (UTC) Type of snow No. of DPR Ku–Ka pairs

19 Jan 2012 1507–1808 Synoptic 1 400 707

28 Jan 2012 1602–1916 Synoptic 4 853 792

30–31 Jan 2012 2338–0244 Synoptic with mesoscale bands 2 328 110

12 Feb 2012 0303–0624 Lake effect 1 398 400

21 Feb 2012 2012–2059 Synoptic 992 614

24 Feb 2012 1334–1708 Synoptic 2 137 809
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algorithm products. GPM and CloudSat global snow-

fall comparisons represent a natural investigative

pathway, as CloudSat is an available spaceborne data-

set with demonstrated global snowfall detection and

retrieval capabilities; however, numerous instrument-,

sampling-, and algorithm-related issues must be

considered carefully, since they complicate compar-

isons between the respective snowfall datasets. This

study characterizes some of these GPM and CloudSat

snow retrieval complexities, describes best practices

to adopt for comparisons, and presents a unified ap-

proach to evaluate these two spaceborne global

snowfall datasets that minimizes instrument and al-

gorithm differences.

This study highlights four instrument and algorithm

related issues:

1) Surface precipitation phase classification algorithm.

Adopting common phase classification parameters is

essential for dataset comparisons. DPR snowfall de-

tection results are substantially altered and much more

consistent withGMI andCPR results when aGMI-like

surface precipitation phase classification scheme is

adopted.

2) Instrument sampling. CPR products are con-

strained by GPM orbital limits and are averaged

over varying footprint sizes to mimic DPR-like

sampling. CPR sampling deficiencies in the South-

ern Hemisphere are noted during the 2014–17

period.

3) Instrument sensitivity. CPR observations are artifi-

cially truncated using an 8-dBZ threshold to repli-

cateDPR radar sensitivities. The 8-dBZ threshold is

chosen by equalizing total global snowfall occur-

rences from each dataset and is further justified

by Ku-/W-band reflectivity differences produced

by differential particle backscattering at each radar

frequency.

4) Quantitative precipitation estimate algorithm com-

ponents. Consistent multifrequency reflectivity (Z)

to snowfall rate (S) tables are created and applied

directly to both radar datasets in order to mitigate

algorithm assumption effects.

Equitable GPM DPR and CloudSat CPR global snowfall

comparisons are enabled by considering these important

issues.

This study first compares native DPR, GMI, and CPR

gridded global snowfall products for the April 2014–

March 2017 time period. Large regional annual snowfall

amount differences are produced by these disparate

datasets. These results are not surprising given differing

instrument characteristics and algorithm formulations

employed by the various products. Native-resolution

DPR and CPR radar reflectivity distributions empha-

size radar sensitivity differences that allow CPR to

detect lighter and more snowfall events compared

to DPR. Conversely, the DPR snowfall dataset extends

to larger radar reflectivities than does the CPR dataset.

This difference, rooted in underlying differences in

scattering and hydrometeor attenuation between

DPR’s Ku band and CPR’s W band, proves the capa-

bility of the DPR to effectively quantify snowfall in

deeper, more intense snowfall events that would likely

prove difficult for the CPR. Even with DPR-like lat-

itudinal restrictions applied, native-resolution CPR

detects ;9–12 times more snowfall events than the

various DPR products. Furthermore, CPR quantita-

tively estimates more global snow than DPR by a

factor of 3. CPR observations in the CloudSat day-

light operations era (after November 2011), however,

are more plentiful in the Northern versus Southern

Hemisphere, and thus sampling complications may

arise if extreme Southern Hemisphere CPR obser-

vations are used. Larger footprint averaging (5 and 11

pixels) increases CPR snowfall event detection from

;2.4% to 2.9%–3.5% but does not change mean

snowfall rate calculations appreciably. These results

confirm that native DPR and CPR observations be-

have consistently with inherent radar capabilities,

similar to previous studies that adopt a combined

DPR 1 CPR falling snow observational strategy

(Casella et al. 2017; Adhikari et al. 2018).

Investigators using spaceborne datasets, however, must

carefully consider algorithm components when analyzing

surface snow retrievals. For instance, nativeDPRproduct

snowfall maps indicate a much broader snowfall lat-

itudinal range compared toGMI and CPR products (e.g.,

distinctive snow signals over the Gulf of Alaska, North

Atlantic Ocean southern latitudes, and Southern Ocean

northern latitudes). These systematic differences are

caused primarily by algorithm phase classification dif-

ferences, whereby version 05 DPR products use con-

ditions at the lowest usable clutter-free data bin height

to classify precipitation phase rather than attempting

to assign a surface precipitation phase by other means.

Adopting a 2-m wet-bulb temperature (T2m) surface

TABLE 6. CloudSat CPR and DPR-derived global mean snowfall

rate using Z–S relationships derived from APR2 and DPR data.

Instrument

Mean snow

rate (mm day21)

using APR2 fit

Mean snow

rate (mm day21)

using DPR fit

DPR (Ku) 0.0244 0.0467

CPR (all data) 0.0789 0.0989

CPR (.8 dBZ) 0.0498 0.0392
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precipitation phase classification methodology (Sims

and Liu 2015) in DPR products eliminates these large

surface snowfall signatures over midlatitude oceans.

The T2m phase discriminant scheme provides DPR

snowfall detection results that are much more consis-

tent with GMI and CPR and indicates that underlying

algorithm mechanics can drive important snowfall

dataset differences. Since the hydrologic research

community is a potential end user for spaceborne

snowfall estimates, algorithm developers are also encour-

aged to provide best estimates of surface precipitation

within a consistently defined, physically realistic frame-

work. This issue is extremely challenging since quan-

titative spaceborne radar snowfall estimates originate

from a near-surface bin at heights ranging from 0.5 to

over 2 km to avoid surface ground clutter in lowest

range gates. Future spaceborne snow remote sensing

efforts should recognize the need to obtain meteorolog-

ical data as near to the surface as possible to optimize

surface snowfall estimates. Long-term ground-based

profiling radar datasets offer the ability to investigate

current and future instrument performance trade-offs to

quantitatively assess near-surface bin selection criteria

(e.g., Maahn et al. 2014) and meteorological conditions

associated with surface snowfall.

Further steps are taken in this study to minimize

DPR and CPR instruments differences, thus providing

a more equitable comparison between the respec-

tive snowfall datasets. A synthetic 8-dBZ minimum

detectable reflectivity (MDR) is applied to the CPR

dataset to mimic the DPR MDR. This artificial

CPR MDR is justified by approximately equalizing

snowfall occurrence statistics between the CPR and

DPR snowfall populations within the same latitudinal

boundaries. TheW-band 8-dBZ value is also consistent

with particle scattering theory that predicts W- and

Ku-band reflectivity disparities due to backscattering

efficiency differences. Despite similar snowfall pop-

ulations using the 8-dBZ CPR cutoff, CPR mean

near-global snowfall rate estimates exceed DPR by

30%–45%, although regional differences are evident,

including some regions where DPR estimates more

snowfall than CPR. These regional occurrence dif-

ferences show regional characteristics of snow PSDs

that cause the Ku–W reflectivity to differ from the

global mean, while the 30%–45% residual difference

in global mean snowfall rate points to different al-

gorithm assumptions.

Recognizing that the respective snowfall rate al-

gorithms employ unique methodologies to convert

radar reflectivities (Z) into snowfall rates (S), this

study creates unified Z–S tables applied to DPR and

CPR observations. The unified Z–S approach also

allows the efficacy of the mitigations described in

section 3 to be quantified. This pathway also dem-

onstrates that future researchers can use similar

mitigations to obtain an equitable basis for evaluating

different algorithms against CloudSat or DPR. The

Z–S tables are developed using modeled aggregate

snowflake scattering properties integrated over ex-

ponential particle size distributions, consistently ac-

counting for radar wavelength differences. This final

sensitivity test demonstrates that the initially large

DPR–CPR global snowfall rate differences using

native datasets (CPR exceeded DPR by a factor of 3)

can be reduced to under 20% by removing dataset

differences caused by differences in phase classifica-

tion, sampling, instrument capabilities, and retrieval

assumptions. It also points that investigators must be

careful when reporting conclusions about global

snowfall rates using combined spaceborne radar da-

tasets without mitigating the quantitative snowfall

estimate methodologies to establish such an equita-

ble basis. For future studies evaluating snowfall es-

timates from space-based radar observations at

different frequencies, multifrequency Z–S tables

based on consistent microphysical and scattering as-

sumptions and that can be applied universally to

multifrequency space-based radar observations (sim-

ilar to the approach used in this study) are essential

to demonstrate the adequacy of other mitigations.

This study showed that Ka band offers indepen-

dent information complementary to Ku band over

much of the DPR sensitivity range, comprising 50%

of global snowfall by volume. At intensities near

and below the DPR detection threshold (about

0.5 mm h21), coincident measurements at Ka and

W band are needed to provide the same indepen-

dent information about mean particle size and

concentration.

Furthermore, more coordinated multifrequency radar

observations as recommended in the 2017 NASA

Earth Science Decadal Survey (National Academies of

Sciences, Engineering, and Medicine 2018) are essential

to improving the measurement of global snow from

low to high rates. Ideally such future snow measure-

ments would include Ku, Ka, and W radar bands with a

radiometer for integrated ice water paths (IWP) and

liquid water paths (LWP) quantities, and for wide-swath

observations. Doppler capabilities would allow for ver-

tical velocities of the precipitating particles. If these in-

struments are all on the same platform, it affords the

opportunity to have a common viewpoint of the un-

derlying falling snow conditions.

Future studiesmight include careful validation ofGPM

and CloudSat estimates with ground-based observations
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over various surface and snow-rate conditions. These

comparisons must be done in a careful and coordinated

matter because of the complexities of falling snow

particle shapes and sensitivities due to blowing and

melting snow and snowpack compaction; the differ-

ences between snow measured at the surface from

ground devices and the remotely sensed falling snow,

which may actually be more sensitive to snow at alti-

tudes above Earth’s surface; and because of the fields

of view that differ between ground-based and satellite

observations. Nevertheless, it would be worthwhile to

determine if the assumptions used in the various re-

trieval algorithms were appropriate at regional, syn-

optic, or global scales.

It is vitally important to assess Earth’s water cycle

contributions in terms of the falling snow inputs. From

the results reported here, there are subtle and obvious

adjustments that must be made to the various radar

and radiometer satellite datasets in order to make

them comparable in an equal fashion. Since it is un-

likely that the various satellite programs will adopt a

common falling snow classification or common algo-

rithm assumptions, and there is no way to address

sampling and instrument differences without follow-

ing the recommended adjustments outlined herein,

care must be taken when comparing various satellite-

based falling snow products.
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APPENDIX

List of Acronyms

2CPC 2C-PRECIP-COLUMN

2CSP CloudSat 2C-SNOW-PROFILE

2D Two-dimensional

APR-2 Airborne Precipitation Radar-2

CDF Cumulative distribution function

CLIM Climate

CMB GPM DPR–GMI combined algorithm

CNR-

ISAC

NationalResearchCouncil of Italy, Institute

of Atmospheric Sciences and Climate

CORRA Combined radar–radiometer algorithm

(same as CMB)

CPR Cloud Profiling Radar

dBZ Reflectivity (in decibel units)

DPR Dual-Frequency Precipitation Radar

ECMWF European Centre for Medium-Range

Weather Forecasts

ERA-

Interim

ECMWF interim reanalysis

FSS FlagSurfaceSnowfall

GANAL Japan Meteorological Agency’s Global

Analysis

GCPEx Global Precipitation Measurement Cold

Season Precipitation Experiment

GHz Gigahertz

GMI GPM Microwave Imager

GPM Global Precipitation Measurement

GPROF Goddard profiling algorithm

HS High-sensitivity KaPR scanning mode

IWP Ice water path

JAXA Japan Aerospace Exploration Agency

KaPR Ka-band Precipitation Radar on DPR

KuPR Ku-band Precipitation Radar on DPR

LWP Liquid water path

MDR Minimum detectable reflectivity

MRMS Multi-Radar Multi-Sensor

MS Matched scan for KaPR and KuPR

NASA National Aeronautics and Space

Administration

NICT National Institute of Information and

Communications Technology

NS Normal scan for KuPR

OE Optimal estimation

PDF Probability distribution function

PIA Path-integrated attenuation

PNS PhaseNearSurface

PSD Particle size distribution

S Snowfall rate

UTC Coordinated universal time

Z Reflectivity (in mm6m23 units)
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