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Abstract

The study of energetic free-surface flows is challenging because of the large range of interface scales

involved due to multiple fragmentations and reconnections of the air-water interface, with formation of

drops and bubbles. Because of their complexity the investigation of such phenomena through numerical

simulation largely increased during the recent years. Actually, in the last decades different numerical

models have been developed to study these flows, especially in the context of particle methods. In the latter

a single-phase approximation is most usually adopted to reduce the computational costs and the model

complexity. While it is well known that the role of the air largely affects the local flow evolution, it is

still not clear whether this single-phase approximation is able or not to predict global flow features like the

evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through

the study of a selected problem simulated both with single-phase and two-phase models. It is shown that,

interestingly, even though flow evolutions are different, energy evolutions can be similar when including

or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model

about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated

by cavity collapses.
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Introduction

In the last decades, the interest in free-surface flows has notably grown from both the scientific

and the engineering points of view, the involved problems ranging from marine and coastal

engineering fields. As is well known, this class of flows involves challenging phenomena to

model and simulate because of the multiple fragmentations and reconnections of the air-water

interface. Several numerical methods have been developed to date to tackle this problem; among

them, two classes of methods gained vast popularity in the numerical community: mesh-based

CFD (Computational Fluid Dynamics) solvers coupled with interface capturing techniques (Finite

Volumes, Differences, Elements with Level Set or Volume of Fluid approaches) and Particle

Methods (SPH, MPS). The former class, based on Eulerian grid, is currently applied in most

of naval/coastal and marine engineering applications. On the other side, Particle Methods, thanks

to their meshless Lagrangian character, have proven to be remarkably effective when dealing with

large deformation and fragmentations/reconnections of the air-water interface.

Besides the general numerical scheme adopted, the preliminary choice that must be made

when solving free-surface flows is related to the modelling of the gaseous phase. The density

ratio between water and air being large (∼ 820), in order to save computational resources and

to simplify the numerical modelling, only the liquid phase is often modelled, the role of the gas

being assumed negligible. Similarly, as the flow velocity is much smaller than the sound speed

in water, the chosen model is often the incompressible approximation, density variation being

therefore neglected. Nevertheless, when simulating complex free-surface flows, these choices are

not at all obvious nor easily justified. The replacement of air with vacuum deprives the flow of

cushioning mechanisms in cavities, which can significantly alter the dynamics of the flow and

energy transfer processes. Moreover, when a vacuum cavity collapses, a discontinuous drop of

mechanical energy occurs (see, e.g. 1) when the incompressible model is assumed. Conversely,

in a weakly-compressible model the cavity collapse induces rapid exchanges between mechanical

energy and internal (elastic) energy [2] which are dissipated in few cycles by numerical viscosity.

The objective of the present study is to address the implications of single-phase approximation

on the simulation of energetic free-surface flows, with particular focus on energy evolution,

transfer and dissipation. To this end, a Smoothed Particle Hydrodynamics (hereinafter SPH)

solver is used. This solver was chosen because of its intrinsic conservation properties (mass,

momenta and energy), the absence of numerical diffusion associated to advection (contrary to
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Eulerian methods), and the accurate description of the interface also during large deformation

and fragmentation (perfectly non diffusive interface). In Colagrossi et al. [3] an assessment

methodology of the SPH method for free-surface flows in terms of energy evolution and dissipation

was developed in a single-phase approximation context. It was validated and applied to viscous

free-surface test-cases like the attenuation of a viscous standing wave or the evolution of a breaking

wave in viscous flow. In the present work this analysis is extended to higher Reynolds number flow

in a multiphase flow context.

The article is organised as follows:

• section I: the main features of complex free-surface flows involving breaking processes

(multiple reconnections, fragmentations) are briefly re-called.

• sections II and III: the local governing equations for both single- and two-phase flows are

presented, as well as the global energy balance in the single- or two-phase flow domain;

• section IV: a brief introduction of the SPH numerical model and energy balance for this

particle system is given for multiphase flows;

• section V: analysis is made on the case of shallow water breaking wave. Attention

is first focused on the processes driving the mechanical energy decay under single-

phase approximation, and the role of free-surface deformation. For the lack of detailed

experimental data, a cross-validation with an available single-phase Finite Volume Level-

Set (LS-FVM) solver is provided. Then, the same test case is simulated using a two-phase

SPH solver. The mechanical energy exchange between air and water is analysed, together

with the possible reasons for energy dissipation during the plunging phase.

I. MAIN FEATURES OF ENERGETIC FREE-SURFACE FLOWS

The main complexity of energetic free-surface flows is linked to the reconnections of the free

surface which induce circulation and vorticity injection inside the fluid (see, e.g., [4, 5]), with the

related vortical post-breaking behaviour (see, e.g., [6]) where the air phase plays an important role.

The evolution of the air entrapped in cavities significantly depends on the pressure forces in

the gaseous phase, and on their importance when compared with the inertia of the liquid phase.

The non-dimensional parameter that properly represents this ratio is the Euler number defined as
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Eu = p0air/(ρwaterU2
water). If Eu is large, the air phase has an influence and can be treated as an

incompressible medium. Conversely in the limit of vanishing Eu, the process can be studied by

a single-phase approximation, then neglecting the air cushion effect [7] which plays a minor role

in that case. In the intermediate cases air needs to be modelled as a compressible medium and

Eu represents there the stiffness of the entrapped air (see, e.g., [8]). In the present study aiming at

macroscopic complex free-surface flows (as those encountered in marine and coastal engineering),

Eu has intermediate values and thus compressible modeling of the air phase must be adopted, as

we do in the present work.

Another important physical effect in general free-surface flows is surface tension. Again, given

the scales of the air-water flows at aim (involving typically breaking event sizes in the range 1m-

10m), the finest space resolutions which can be used numerically nowadays are of the order of

centimeters. It is therefore a sound assumption to neglect surface tension effects in this context.

Note that this assumption does not hold for the smaller and smaller structures appearing in spray

and degassing phases consequent to multiple breaking. Surface tension action on these structures

is neglected in the present work and assumed to play a negligible role in the flow energy evolution,

even though it its role is non-negligible locally.

These crucial aspects can raise doubts about the plausibility of the use of single-phase models

(most often without surface tension modelling) for the prediction of energy dissipation during

complex free-surface flow evolutions. Nevertheless several works addressing wave breaking under

single-phase approximation can be found in the literature. Moreover, in works like the ones

by, e.g., Landrini et al. [9] and Bouscasse et al. [10, 11], even using a single-phase assumption

the prediction of energy dissipation due to breaking is in line with both theoretical results and

experimental measurements. An in-depth discussion on this issue is provided in the next sections.

II. GOVERNING EQUATIONS

A. Single phase model

Consider a liquid domain Ωw delimited by its boundary, ∂Ωw, composed of a free surface,

∂ΩF and a solid surface ∂ΩB. The liquid evolution can be modelled by a single-phase weakly-

compressible model:
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
Dρ
Dt

= − ρ div(u) ,
Du

Dt
= g +

div(�)
ρ

De
Dt

=
� : �
ρ

,
Dr

Dt
= u, p = f (ρ) ,

(1)

where D/Dt represents the Lagrangian derivative, u the flow velocity, r the position of the material

points, ρ the fluid density, e the specific internal energy, � the stress tensor, � the rate of strain

tensor and g is a generic specific body force. Thermal conductivity effects are here neglected, and

the liquid is considered to be Newtonian:

� = −p1 + 2 µw� , (2)

where µw is the dynamic viscosity of the liquid and where viscosity effects linked to the

compressibility have been neglected; this is a usual approximation in the weakly-compressible

regime (see, e.g., 12).

The pressure p is considered to depend only on the density since for a liquid medium the

effects of entropy/temperature on the pressure are generally negligible; moreover, in the weakly-

compressible regime a simple linear equation of state can be used:

p = c2
0 w

(
ρ − ρ0 w

)
, (3)

where c0 w is the speed of sound (assumed constant) of the liquid medium and ρ0 w the density on

the free-surface (where p is assumed equal to zero). The weakly-compressible regime (density

variations smaller than 0.01ρ0 w) is guaranteed when the pressure variations stay within the range:

∆ρ

ρ0 w
< 0.01 ⇒

p
c2

0 w ρ0 w
< 0.01 . (4)

In other word by properly defining a reference velocity of the problem Uw (see e.g. [2]) and a

Mach number for the liquid phase as

Maw := Uw/c0 w , (5)

the fulfillment of the weakly-compressible assumption can be guaranteed if Maw remains always

less than 0.1 during the time evolution. For numerical purposes c0 w can thus be chosen smaller

than its actual value to avoid too small time steps; however, the constraint Maw < 0.1 has to be

respected to remain in the weakly-compressible regime [13].
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From the point of view of the dimensionless quantities the single phase model is governed by

the Reynolds, the Froude and the Mach numbers:

Rew :=
ρ0 w Uw L

µw
, Frw :=

Uw
√

g L
, Maw :=

Uw

c0 w
,

with L the reference length of the problem and g the gravity acceleration.

1. Boundary conditions

At the free surface both kinematic and dynamic boundary conditions must be satisfied. The

kinematic free-surface boundary condition implies that, while evolving with the fluid flow, the

material points initially on ∂ΩF remain on it. This condition fails to hold when reconnections of

the free surface occur (e.g., when a plunging breaking wave impacts on the free surface). The

dynamic free-surface boundary condition expresses the continuity of stress across the free surface.

In this work we assume surface tension effects to be negligible. As a consequence, zero stresses

act at the free surface.

As far as solid surfaces are concerned, in this work simple free-slip boundary conditions are

adopted, in order to avoid dissipations due to solid walls, making easier the monitoring of the

dissipation in the complex free-surface flows studied here.

B. Two-phase model

We now consider a two-phase domain Ω composed of a liquid domain, Ωwater, and a gas domain,

Ωair (i.e. Ω = Ωwater ∪ Ωair). The system of equations 1 is valid in each phase Ωwater and Ωair,

and the mutual interaction across the liquid-gas (water-air in our context) interface need to be

modelled. Following Zapryanov and Tabakova [14] and assuming that surface-tension effects can

be neglected , on the air-water interface the stress vector is continuous:

(� · n)water (r) = (� · n)air (r) ∀r ∈ ∂Ωwater ∩ ∂Ωair . (6)

This dynamic condition needs to be combined with a kinematic condition for the interface motion,

which ensures the continuity of the velocity field.

To model the air phase the following polytropic equation of state is used:

p = P0 air

(
ρ

ρ0 air

)γair

⇒ c2
0 air =

P0 air γair

ρ0 air
, (7)
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where ρ0 air is the air density at rest, γair = 1.4 is the air adiabatic index, and finally P0 air is the air

ambient pressure.

Differently from the single-phase model, the speed of sound c0 air can not be adjusted for

computational convenience, as in the the case of c0 water. Indeed, we are interested in simulating

flows where the air phase can be entrapped by the water phase during impact events. Considering

the model for compression of an air-pocket by a plunging water jet proposed by [15] the maximum

density ρMax
air in the entrapped air pocket follows the scaling law:

ρMax
air ∝

(
1
√

Eu

)1/γair

=

(
Maair

√
γair ρ0 water

ρ0 air

)1/γair

, Maair :=
Uwater

c0 air
, (8)

where we assumed that the reference velocity for the air phase is the same used for the water phase.

In coastal/naval engineering problems, from model to real scale the Eu number varies within the

range (100 - 1) and, therefore, even if Maair is less than 0.1, the weakly compressible regime

(density variations less than 1%) is not guaranteed in the air phase. Thus, the real value of c0 air has

to be adopted in the model to take into account the possible non-negligible compressibility effects.

This aspect is rarely discussed in the literature of breaking waves. The adoption of the real value

of c0 air implies small time steps when solving explicitely the system (1), and the CPU costs can

thus be rather high even in a 2D framework. It is worth mentioning that the scaling law (8) has

been numerically verified for shallow water breaking wave in [7] using a two-phase SPH model.

Finally, from the point of view of the dimensionless quantities the two-phase model is governed

by:

Rewater ,Frwater ,Mawater ,

(
µair

µwater

)
,

(
ρ0 air

ρ0 water

)
,Eu , γair , (9)

where the Weber/Bond number is omitted being the surface tension effects not considered in the

present work.

III. DISSIPATION OF MECHANICAL ENERGY

The mechanical energy of the fluids EM is given by the sum of the kinetic EK and potential

energy EP. Assuming that no external non-conservative forces are present, and that the solid

surfaces ∂ΩB are not moving, the time variation of EM is given by:

ĖM =

∫
Ω

div (�) · u dV . (10)
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Applying the divergence theorem, the mechanical power P∂Ω/ f luid, acting on the fluids on their

boundaries ∂Ω, can be expressed as:

P∂Ω/ f luid =

∫
∂Ω

(n · �) · u dS =

∫
Ω

div(�) · u dV +

∫
Ω

� : ∇u dV , (11)

n being the outward unit normal vector. The surface integral is zero on ∂ΩB, since the forces on

the solid surfaces are not doing mechanical work on the fluid media. When considering a two

phase model, ∂Ω ≡ ∂ΩB; conversely, with a single phase model, ∂Ω = ∂ΩB ∪ ∂ΩF . However, the

power P∂Ω/ f luid is still zero on ∂ΩF if surface tension effects are neglected. Therefore for both the

models, by taking into account the symmetry of the stress tensor it is possible to write:

ĖM = −

∫
Ω

� : � dV . (12)

A. Single phase model

Let us consider the single phase model first, with constitutive law (2). Equation (12) can be

rewritten as:

ĖM + ĖC = − 2 µw

∫
Ω

� : � dV , (13)

EC being a pure reversible elastic energy, linked to the weak compressibility. Its expression

depends on the equation of state adopted (see, e.g., 2); in our case it is:

EC = EC(ρ0) + c2
0

∫
Ω

[
log

(
ρ

ρ0

)
+
ρ0

ρ
− 1

]
ρ dV . (14)

The right hand side of (13) is the power dissipated by viscosity:

PV := −
∫

Ω

εV dV , εV := 2 µw� : � , (15)

εV being the volume-specific viscous dissipation power. Time integration of PV yields the viscous

heating QV .

The elastic energy EC is null for an incompressible medium. If in addition the fluid is

also inviscid, the energy balance (13) can not be satisfied anymore during impact events, and

instantaneous energy loss must take place (see, e.g., 1, 2). In that case the energy balance has to

be rewritten as:

ĖM − Ė∆ = 0 , (16)
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where the time variation Ė∆ must behave as a Dirac delta function:

Ė∆(t) =
∑

l

Klδ(t − t?l ) . (17)

This term is non-zero only during collisions of liquid surfaces and/or during liquid/solid impacts,

taking place at a finite number of time instants t = t?l . The intensities Kl are unknowns, as they

depend on the kinematics and geometric configuration of the impinging liquid surfaces.

For an inviscid weakly-compressible flow, the elastic energy EC is generally not negligible

during fluid-fluid or fluid-solid impact events [16]. EC is characterised by high frequency acoustic

components and this energy is exchanged with the mechanical energy EM with time cycles whose

duration depends on the speed of sound cw. These pressure oscillations, if not properly handled,

represent an issue. As theoretically found by Cooker [17], and shown in Marrone et al. [2] by

numerical simulations, once these acoustic components are dissipated the value of the residual

mechanical energy EM is close to the incompressible flow solution, the dissipated elastic energy

being quite close to E∆. This is due to the fact that in the weakly-compressible regime the solution

of the compressible Euler equation can be approximated with the solution of an incompressible

medium plus a superimposition of an acoustic component (see e.g. 18).

B. Two phase model

When considering the two fluid domains Ωair and Ωwater, eq. (13) becomes:
(ĖM + ĖC)water + (ĖM + ĖC)air = PV water + PV air

PV water := − 2 µwater

∫
Ωwater

� : � dV , PV air := − 2 µair

∫
Ωair

� : � dV .
(18)

The viscous heats QV water and QV air are obtained by time integration of their respective powers

PV water and PV air.

Once integrated in time, the terms of equation (18) can be rearranged as:
Lair/water = (∆EM + ∆EC)water − QV water

Lwater/air = (∆EM + ∆EC)air − QV air

Lair/water + Lwater/air = 0 .

(19)

Lwater/air being the work done by water on the air phase and Lair/water the work done by air on the

water phase. In system (19) we adopted the notation:

∆EX y :=
∫ t

0
ĖX y dt .

10



The main difference with the single phase model is that now, in the collisions of liquid or

liquid/solid surfaces, the gaseous phase initially separates those surfaces.

In terms of energy components, in the two-phase model we have that:

I) differently from the single-phase model, ∆ECwater plays a minor role since liquid-liquid

impacts are attenuated by the entrapped gas bubbles. This term is generally negligible,

as confirmed by the numerical simulations shown in the following;

II) because of the very small air–to–water density ratio, ∆EM air is negligible with respect to

∆EM water;

III) ∆EC air, i.e. the energy term related to air-cushion phenomena, strongly depends on the Euler

number and is linked to air bubble oscillations, characterised by high frequency components.

In the numerical simulations performed in this work, ∆EC air remains always negligible with

respect to ∆EM water, though the air compressibility can strongly affect the pressure field and

the related flow evolution.

From the above considerations, the system (19) can be simplified as:

Lair/water ≈ ∆EM water − QV water

Lwater/air ≈ −QV air

Lair/water + Lwater/air = 0 ⇒ ∆EM water ≈ (QV water + QV air) .

(20)

Therefore, ∆EM water is likely to decrease monotonically, with a time derivative very close to

(PV water + PV air) ≤ 0. The ratio between the two viscous heating QV water, QV air is a priori

unknown. For example, in the 3D breaking wave simulated by Lubin et al. [19], the authors find

that the main dissipation mechanism is linked to the motion of the entrapped air bubbles, which

implies that QV water is dominant. Conversely, in the recent work of Iafrati et al. [20], where the

dynamics of the modulational instability of 2D free surface waves is studied, it has been observed

that, during breaking events, large dipole structures in the air phase are generated, with values of

QV air larger than QV water.

Therefore, it seems that the ratio between these two components is problem-dependent and

deserves more in-depth investigation. Furthermore, in Iafrati et al. [20] it is clearly shown that

numerical difficulties arise in achieving converged values for the two components QV water and

QV air, even in a two-dimensional framework. This is probably related to the fact that large velocity
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gradients are very localised in time and space, as further discussed in the next sections. This is the

main reason why, in the following, our work is limited to 2D cases, seeking to obtain converged

results from which to draw as reliable as possible conclusions. The attainment of converged results

on similar 3D complex free-surface flows is actually beyond current computational capabilities.

IV. NUMERICAL MODEL

A brief introduction on the adopted SPH scheme is given in this section. As described in section

II, the weakly-compressible model described is adopted for the liquid phase, while air is treated as

a compressible medium so that air-cushion effects can be properly accounted for [7]. Given a set

of particles, each characterised by its own mass mi, velocity ui and position ri, and belonging to a

specific phase, the set of governing equations (1) can be discretized, in the SPH framework, as:

ρ̇i(t) = − ρi

∑
j

m j

ρ j
(u j − ui) · ∇iWh

u̇i(t) = −
∑

j

m j

ρi ρ j
( p j + pi)∇iWh +

∑
j

(
2 µi µ j

µi + µ j

)
m j

ρi ρ j
πi j ∇iWh + gi

ėi(t) = −pi

∑
j

m j

ρi ρ j
(u j − ui) · ∇iWh +

∑
j

(
µi µ j

µi + µ j

)
m j

ρi ρ j
πi j(u j − ui) · ∇iWh

ṙi(t) = ui(t) ,

pi = c2
0 water ( ρi − ρ0 water ) + Pbg if i ∈ water ,

pi =
c2

0 air ρ0 air

γair

[(
ρi

ρ0 air

)γair

− 1
]

+ Pbg if i ∈ air ,

(21)

where ρi, pi and ei are, respectively, the density, pressure and internal energy, of the i-th particle.

The positive constant pressure Pbg is used to ensure that the pressure field is always greater than

zero in order to avoid the so-called tensile instability. The kernel function Wh = Wh (ri − r j)

is a positive, smooth approximation of the Dirac delta function W. The symbol ∇i indicates

differentiation with respect to the position of the i-th particle. Wh has a compact support of radius

2h, h being the smoothing length in the SPH literature. The viscous stresses are modelled through

the formula by Monaghan and Gingold [21]:

πi j = 2 (n + 2)
(u j − ui) · (r j − ri)
‖r j − ri‖

2 , (22)
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where n is the number of spatial dimensions of the problem at hand. Thanks to the symmetric

structure of equations (21) the exact momentum and energy conservations of the system are

guaranteed (see, e.g., 22).

For simple domain geometries the fluid particles can be initially positioned on a regular lattice;

at the initial instant all particles have the same volume, namely V0, which is equal to the fluid

domain volume divided by the number of fluid particles. Consistently, the particle mean spacing is

denoted by ∆x = V1/n
0 . Along with the volume distribution, the initial pressure, velocity and mass

of the particles are prescribed. For h → 0 and ∆x/h → 0, the system (21) is consistent with the

Navier-Stokes equations (see, e.g., 23).

Concerning the internal energy equation in (21), the two terms on the right-hand-side are linked,

respectively, to the power components PC and PV defined in (15):

P SPH
C = −

∑
i

∑
j

mi m j

ρi ρ j
pi (u j − ui) · ∇iWh

P SPH
V = −

∑
i

∑
j

(
µi µ j

µi + µ j

)
mi m j

ρi ρ j
πi j (u j − ui) · ∇iWh .

(23)

Furthermore, for the liquid phase, substituting the equation of state (3) and using the continuity

equation in P SPH
C , after some algebraic manipulations it is possible to recover the equation (14) at

the discrete level:

P SPH
C = Ė SPH

C , E SPH
C = E SPH

C (ρ0 water) + c2
0 water

∑
i

mi

[
log

(
ρi

ρ0 water

)
+
ρ0 water

ρi
− 1

]
, (24)

and the same procedure can be repeated for the air phase using the equation of state (last equation

of 21).

Thanks to the Lagrangian formulation the enforcement of the kinematic free-surface boundary

conditions is intrinsically satisfied. For the single-phase model the dynamic free-surface boundary

is also intrinsically satisfied in the present SPH model since work done by the stresses on the

free-surface is zero as shown in Colagrossi et al. [23, 24] .

Note that any two-phase SPH model naturally keeps the air-water interface sharp [7, 25, 26]

due to its Lagrangian nature, and also preserves exactly the mass of each phase, being a particle

method. Also, the dynamic boundary condition (6) at the interface is intrinsically satisfied in a

smoothed sense, thanks to the symmetry of the particle-particle interactions.

For the enforcement of boundary conditions on solid surfaces, since in this work only flat

surfaces are considered, the simple classical ghost-fluid approach is adopted (see 7).
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The above SPH schemes have been widely validated in the past years for both single and two-

phase models on several benchmark test-cases. In particular in [7, 25, 26] the two-phase SPH

model has been used to simulate bubbly-flow evolution comparing the SPH outputs with reference

solutions. The convergence of the scheme has been also heuristically verified through dedicated

tests changing the spatial/time resolutions.

Concerning the time integration, a 4th-order Runge-Kutta scheme is used. For the simulations

presented in this article the acoustic constraint is always the most restrictive (for more details see

e.g. [27])

∆t ≤ Ka
(2 h)
c0X

, (25)

where 2h is the Kernel radius, Ka is the Courant-Friedrichs-Lewy constant which depends on the

specific time integrator (in the present case Ka is equal to 0.75) and c0X is the speed of sound in the

generic phase X. When considering the two-phase model, as stated in section II B, the numerical

sound speed in the air phase must be the physical one, c0 air = 343 m/s (with ambient temperature

and pressure conditions), which implies very small time steps.

A. SPH model with numerical diffusive terms

As the PDEs (21) are integrated in time with an explicit scheme and as the spatial differential

operators are spatially centred with respect to the particle position, the SPH scheme develops

non-physical pressure oscillations at high frequency. This is a well-known issue in the literature,

see, e.g., [28, 29]. To cope with this problem, in the present work the δ-SPH scheme is adopted.

This variant of the classical SPH scheme is a derivation from Riemann-based SPH solvers and

is characterised by the use of an additional diffusive term in the continuity equation aimed at

removing the acoustic noise in the pressure field, while preserving a proper treatment of the free-

surface [30]. Because of the additional numerical diffusion introduced in that case, a further energy

component P SPH
N appears in eq. (13):

Ė SPH
M + Ė SPH

C = P SPH
V + P SPH

N . (26)

This term P SPH
N is consistent (it tends to zero when increasing the spatial resolution) and can be

exactly quantified [31]. In spite of the introduction of an artificial diffusive term, when treating

inviscid flows this scheme allows for a better mechanical energy conservation with respect to
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the standard SPH one, where part of the mechanical energy is converted into non-physical high

frequency components of EC [31].

V. NUMERICAL SOLUTIONS OF A SHALLOW WATER BREAKING WAVE

In this section a violent shallow water flow is considered, characterized by the formation of a

large plunging jet and by the presence of multiple breaking events. A possible way to generate such

a flow is to create an intense breaking wave by using a moving piston in shallow water condition;

however, such a generation would add the complexity of taking into account the mechanical work

done by the piston on the fluid. Instead, we generate such a large plunging breaker and consequent

multiple breaking events by means of a confined dam-break flow.

Indeed, this complex free-surface flow generation represents an ideal candidate for the analysis

to be carried out, the flow being characterised by clearly identifiable stages, each with a peculiar

dissipation mechanism:

I) inviscid fluid deformation,

II) water impact on a vertical wall,

III) backward plunging jet formation,

FIG. 1: Sketch of the confined dam-break flow problem. Contours are representative of the pressure field

in the initial configuration.
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IV) splashing stage with several cycles,

V) final sloshing flow regime,

VI) back to calm water.

This test has been extensively used in the literature (see, e.g., 7, 32, 33, 34, 35) and good

comparisons with experimental measurements have been obtained using different SPH models.

During stage (iii) a large plunging jet is formed which can be properly discretized reducing

numerical uncertainties with respect to other possible test cases. Because of this large plunging

breaker an energetic breaking flow then develops, during which evolution the different energy

components are recorded and analysed.

Figure 1 depicts a sketch of the problem: H indicates the initial height of the dam and is used

as reference length scale for the problem, while Uwater =
√

gH is used as reference velocity. In

Figure 1 the free surface configuration at time t(g/H)1/2 = 6.02 is also depicted in order to show

that the plunging jet has a O(H) characteristic length.

First row of table I reports the main dimensionless numbers at the model scale. On the second

row the ones used in the SPH simulations. Because of numerical constraints the Rewater as well

as Mawater need to be modified. Regarding the latter, in section II A it has been already explained

that the numerical speed of sound of water is decreased in order to avoid too small time steps.

However, since Mawater is less than 0.1 the weakly-compressible regime is still guaranteed for the

liquid phase.

Frwater Rewater Mawater µair/µwater ρair/ρwater Eu γair

Model Scale 1 1.5 106 1.6 10−3 10−2 10−3 17.2 1.4

SPH 1 5103 10−2 10−2 10−3 17.2 1.4

TABLE I: Dimensionless parameters at model scale (top row) and the ones used in the numerical simulations

(bottom row). On the left part of the table the three parameters used in the single-phase model; on the right

the additional four numbers needed in the two-phase model.

Concerning the Reynolds number, it is defined as ReH = H
√

gH/ν and is here kept fixed and set

equal to 5000. Note that the Reynolds number based on H is comparable to much higher Reynolds

numbers based on, e.g., the wave length or other horizontal characteristic lengths as in, e.g., Iafrati

[36] where Reλ = O(105) (λ being the wave length) is equivalent to ReH = 3000. With this choice
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of ReH all the main vortex scales can be resolved through a SPH direct numerical simulation,

attaining the convergence of the viscous dissipation QV with a number of particles of O(106) (in

a two-dimensional framework). Therefore, in this way turbulence models can be avoided thus

simplifying the analysis. For the chosen Re, the viscous effects are small enough not to mar the

inertial character of the plunging breaking waves of the test case. Indeed, the obtained solutions

are very close to the inviscid ones presented in the literature, in terms of fluid deformation and

pressure loads [32].

In the initial condition, the liquid is at rest and has only potential energy. The final configuration

is the one with the fluid at rest filling the tank width. Therefore, the potential energy difference

between these two configurations can be used as characteristic total energy of the problem:

∆EP = EM0 − EM∞ = ρ g H3
[
1 −

2H
LW

]
. (27)

In the next section as a first analysis, the problem is studied in the single-phase approximation.

The SPH solver is cross-validated against an incompressible single-phase Level-Set Finite Volume

method (LS-FVM). Then, in section V B the two-phase SPH model is adopted in order to highlight

the differences and limits of the single-phase approximation and investigate the effect of the

presence of air in the wave breaking dissipation.

A. Single-phase approximation solution

In figures 2 and 3 the time evolution of the confined dam-break flow problem is shown for both

the SPH and LS-VFM solutions. The contour plots refer to the pressure fields. The maximum

resolution used in the single-phase SPH solver is H/∆x = 800 (corresponding to 1,280,000 fluid

particles). For the LS-FVM solver, used for cross-validation, the maximum spatial resolution

was limited to H/∆x = 400, corresponding to about 1,300,000 mesh nodes, with a uniform

discretisation of the whole tank.

The two solvers predict similar flow evolutions and pressure fields. Because the weakly-

compressible regime is adopted in the SPH model, some travelling acoustic waves can be

recognised in figure 3. However, the global pressure patterns obtained by the two solvers are

quite similar, especially for the plots presented in figure 2. Larger discrepancies are visible in

figure 3 where a small time shift can be also recognised.

In the initial stage, the water column collapses and the resulting flow impacts the right wall.
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FIG. 2: Confined dam-break flow: comparison between SPH (left column) and LS-FVM (right column)

solvers for the time instants t
√

g/H = 2.0, 5.8, 6.2, 6.8. Contours are representative of the pressure field.

(Single-phase model).

During this stage the viscous effects are negligible, the flow being practically irrotational (first row

of figure 2). Then a plunging wave is formed (second row of figure 2). This inviscid stage ends

with the plunging closure (t
√

g/H = 6.0) followed by a complex splash-up stage (third and fourth

rows of figure 2). In actual flows, starting from this instant the air phase plays a relevant role,

as discussed in the next section. Under single-phase approximation, instead, an empty cavity is

formed, whose volume reduces as the plunging jet enters the flow bulk and splashes up (first row

of figure 3).

Due to the limited water depth, the splash-up feeds an upwelling water column which reaches

a height larger than H. From this water column a fast thin jet is released, that hits the left vertical

wall at time t
√

g/H = 8.0 (first row of figure 3). Because of the high kinetic and potential energy

content of this jet (about 10% of the initial mechanical energy EM0), it plays a non-negligible role

in the dissipation mechanism, as shown in the following. At later time, the volume cavity reduction

goes on, until its collapse induces a violent fluid-fluid impact at about t
√

g/H = 8.4 (second row
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FIG. 3: Confined dam-break flow: comparison between SPH (left column) and LS-FVM (right column)

solvers for the time instants t
√

g/H = 8.0, 8.4, 8.8, 9.2. Contours are representative of the pressure field.

(Single-phase model).

of figure 3).

After the cavity closure, the water column originated by the first splash-up starts to collapse

under the action of gravity, in the form of a mushroom-like structure, forming a backward-facing

jet and a further plunging jet almost in the middle of the domain (third and fourth rows of figure

3). This kind of dynamics is very similar to the ones discussed by Bonmarin [37] for deep water

breaking waves and by Landrini et al. [9] for breaking bores. However, in the present case, because

of the shallow water regime, the vortical structures originated by the different breaking events

cannot freely move below the free surface and remain confined and squashed in a limited water

depth.

Figure 4 depicts the time history of the mechanical energy recorded with the two solvers. In

the plot, the initial potential energy EM0 has been subtracted to EM which is then made non-

dimensional with the reference energy ∆EP (see eq. 27). Until the plunging jet formation

(t
√

g/H = 6.0) the dissipation is practically zero as expected. During the splash-up, before the
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FIG. 4: Time histories of the mechanical energy evaluated by SPH and LS-FVM solvers. (Single-phase

model).

FIG. 5: Time histories of the SPH mechanical energy with varying the spatial resolution. (Single-phase

model).

cavity closure, about 10% of the mechanical energy has been dissipated by the viscosity, whereas,

just after the cavity closure, almost another 15% of the mechanical energy is dissipated in a very

short time range because of the fluid-fluid impact. Remarkably, both the incompressible and the

weakly-compressible models predict a similar energy drop, as introduced in section III.

After this stage, the flow becomes quite complex because of the vortical structures generated

and because of the secondary splash-up stage; therefore, the dissipation process cannot be

associated to particular events and, in addition, the time histories of the mechanical energy

predicted by the two solvers starts to depart, although the magnitude of the predicted dissipation

remains close. At time t
√

g/H = 10.0 both solvers predict a dissipation of about 50% of ∆EP.
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FIG. 6: Contour of the volume-specific dissipation εV (see eq. 15) for four time instants at Re=5000 using

a spatial resolution H/∆x = 800. (Single-phase model).

This value is close to the one reported in Iafrati [36], where a comparable ReH is used (of 3000)

as mentioned above.

Figure 5 shows the time histories of the SPH mechanical energy, obtained with different spatial

resolutions. A clear convergence of EM is observed with an almost superimposition of the two

highest resolution results.

In figure 6 the volume-specific viscous dissipation field εV is reported, in order to show the

regions where viscous dissipation plays a major role. The last two time instants reported are the

ones where the power PV (see eq. 15) presents the highest values. They correspond to the cavity

closure instant t(g/H)1/2 = 8.43, already commented above, and to the collapse of the splash-up at

time instant t(g/H)1/2 = 9.35.

B. Two-phase solution

In this section we study the same case by using a two-phase SPH model. The maximum spatial

resolution used in this case is H/∆x = 400 which corresponds to 320,000 water particles and

2,258,000 air particles. For this resolution, using the inequality (25), the time step is ∆t ' 10µs

and, since the final time is t = 2.5 seconds, the number of iterations required is about 250,000.

This simulation has run for 2 days on a cluster machine using 200 cores (Intel Xeon 5500 2.8

GHz). For a 3D simulation with the same spatial resolution around 2.5 billions of nodes would be

needed (the same order of node number as used in 38) which, together with the small time step
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FIG. 7: Confined dam-break flow: SPH time evolution of the two-phase simulation. The plots refer to time

instants t
√

g/H = 6.11, 8.02, 8.43, 9.35. (Two-phase model).

required to model the air phase, would make it, even nowadays, quite challenging and is therefore

postponed to future works.

Consistently with the previous section, the Reynolds number for the water, Rewater =

H
√

Hg/νwater, has been fixed to 5000 and the physical ratios:

ρair

ρwater
= 10−3 ,

νair

νwater
= 10

are used (see table I). Figure 7 shows four snapshots of the air-water domains during the time

evolution. Until time t(g/H)1/2 = 6.1 the air-water interface is virtually the same as the one

obtained with the single-phase model: the role of the air phase is thus negligible, also in terms

of dissipation. Next, at the cavity closure, the pressure field his affected by the air-cushioning

effect, as documented in Colagrossi and Landrini [7]. Further, during the splash-up stage, the air-

water evolution is quite different with respect to the one calculated with the single-phase model,

as expected. The closure of the cavity follows a different evolution, and complex drop/bubble

dynamics can be recognised. The height of the upwelling water column is lower than the one

formed with the single-phase model. However, the fast thin jet, released during the splash-up,

contains more mass, momentum and mechanical energy with respect to the single-phase case;

in particular, about 20% of the initial water mechanical energy is stored in this jet. This jet is

fragmented into several drops during its free fall, causing a large dissipation in the air phase

induced by the cloud of drops. Besides the above differences between the evolutions of the

single-phase and two-phase cases, the mushroom-like structure, generated by the collapsing of
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FIG. 8: Contour of the volume-specific dissipation εV (see eq. 15) for four time instants using a spatial

resolution H/∆x = 400. (Two-phase model).

the upwelling water column, is still present in both simulations.

Figure 8 shows for the same time instants as of section V A the specific energy dissipation field,

in both air and water. From the last two frames, it is possible to see that non-negligible viscous

dissipation occurs in air. This can be read as a counter-intuitive result; however, even if the viscous

ratio µair/µwater = 0.01 is quite small, the velocity gradients in the air are much higher (about ten

times more than the velocity gradients in water). In fact, especially during impact stages, the air

is energetically pushed by the collapse of the water fronts. Furthermore, boundary layers are also

formed in air around the falling water drops. As a consequence the two power terms PV water and

PV air are of the same order of magnitude.

As a consequence the viscous dissipations QV water and QV air are comparable as shown in

figure 9. This result is consistent with what was found by Iafrati et al. [20] where a deep-water

breaking wave dynamics was studied. Specifically, for the case studied in this section, the viscous

dissipation in the water phase is dominant up to t
√

g/H < 9, while at the end of the simulation

the viscous dissipation in the air phase becomes larger than in the water. This is mainly due to the

fragmentation of the splash-up jet with the consequent formation of several small water drops. The

latter dissipate their mechanical energy because of the air drag action. Note that surface tension

effects, neglected here, shall be further investigated in this part of the flow.

In figure 10 the time evolution of the mechanical energy decay for the water phase is plotted

and compared with the one obtained with the single-phase model. As commented in section III B,

EM water decreases almost monotonically, but in a smoother way here. Actually, conversely to
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FIG. 9: Comparison of the SPH viscous dissipation terms QV water and QV air during the confined dam-break

flow evolution. (Two-phase model).

FIG. 10: Comparison of the mechanical energy decay between SPH single-phase (dashed) and SPH two-

phase model (solid) during the confined dam-break flow evolution. (Two-phase model).

the single-phase model, there are no energy jumps connected with the empty cavity collapses.

Remarkably, besides the many differences between the single-phase and the two-phase solutions,

the mechanical energies dissipated during this complex breaking flow evolution are not so

different. At time t(g/H)1/2 = 10, both the models predict an energy decay of 45%. This result, if

confirmed in more general cases, may justify the use of single-phase approximation for simulating

complex free-surface flows also when air trapping is not negligible. Note again that this kind of

single-phase simulation of complex free-surface problems involving breaking waves is common

practice by SPH users.
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FIG. 11: Time histories of the SPH mechanical energy of the water phase varying the spatial resolution.

(Two-phase model).

FIG. 12: Time histories of the SPH energy terms ∆EC water, ∆EC air and ∆EM air. (Two-phase model).

Figure 11 depicts the time evolution of the mechanical energy decay for the water phase

predicted by the two-phase SPH solver with varying the spatial resolution. This plot shows that

global convergence of the SPH results is attained. Small local differences can be related to the

water drops formation and evolution which, in absence of surface tension modelling, is limited

only by the spatial discretisation.

Finally, in figure 12 time histories of the energy terms ∆EC water, ∆EC air and ∆EM air are
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reported. Those components are practically negligible with respect to the others, thus confirming

the hypotheses discussed in section III B.

VI. CONCLUSIONS

In the present work the assessment of single-phase approximation to model complex free-

surface flows has been investigated. The analysis has been performed on the base of energy

considerations, using both single-phase (water only) and two-phase (air-water) models.

The Smoothed Particle Hydrodynamics solver was adopted as investigation tool. This solver

was chosen because of its conservation properties (mass, momenta and energy) and because of

its ability to accurately describe the interface evolution also during its large deformation and

fragmentation.

In order to get convergent results quite high spatial resolutions have been considered. This

constraint limits the analysis to ad-hoc 2D test cases. The test case selected is a dam-break flow

in a confined domain. Actually, this test case involves a complex flow evolution including the

formation of a large shallow water breaking wave followed by multiple splash-up events.

For the single-phase model a cross-validation was performed with a Finite Volume Level-Set

approach. The results proved that the energy dissipation evaluated with a weakly-compressible

particle method and that one calculated with an incompressible mesh-based solver are quite close.

The same test case is then solved using an air-water SPH model, where the air phase is modelled

as a compressible gas considering realistic values of the Euler number. This choice implies very

small time steps and high computational costs even in a 2D framework.

With respect to the single-phase model, the main results obtained with the two-phase model

are:

i) after a similar initial stage up to when the plunging breaker touches the interface, the flow

evolution becomes quite different during the splash-up phase, as expected;

ii) the mechanical energy dissipation process is smoother in time and not related to specific flow

features such as the cavity collapses or the jet impacts;

iii) beside these differences, the amount of mechanical energy dissipated remains close to the

one evaluated with the single-phase model.
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The last item is in agreement with the previous works [9], [10], [11]. In these articles it is

shown that even using a single-phase model the viscous dissipation is correctly evaluated. The

present contribution confirms those results and inspects the mechanisms behind these behaviours,

that is, the energy dissipation mainly occurs in impacts and cavity collapses in the single-phase

model while, in the two-phase model, it is mainly due to the viscous dissipation at the air-water

interfaces.

The present and the above mentioned works consider only shallow water flows in a confined

domain. In order to identify a general criterion for the appropriateness of the single-phase

approximation the present investigation has to be extended to other flow regimes, as for example

breaking waves in deep water condition as the ones we have in ocean.

Finally, the last result we found is that using the two-phase model, at least for the Reynolds

regime considered, the viscous heating in air and in water is of the same order of magnitude. This

counter-intuitive result has been confirmed also by the recent literature for deep-water breaking

wave [20].
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