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Abstract 

 

We investigate the crustal structure of the SW Iberian margin along a 340 km-long 

refraction and wide-angle reflection seismic profile crossing from the central Gulf of Cadiz to 

the Variscan continental margin in the Algarve, Southern Portugal. The seismic velocity and 

crustal geometry model obtained by joint refraction and reflection travel-time inversion 

reveals three distinct crustal domains: the 28-30 km-thick Variscan crust in the north, a 60 

km-wide transition zone offshore, where the crust abruptly thins ~20 km, and finally a ~7 km-

thick and ~150 km-wide crustal section that appears to be oceanic in nature. The oceanic crust 

is overlain by a 1-3 km-thick section of Mesozoic to Eocene sediments, with an additional 3-4 

km of low-velocity, unconsolidated sediments on top belonging to the Miocene age, Gulf of 

Cadiz imbricated wedge. The sharp transition between continental and oceanic crust is best 

explained by an initial rifting setting as a transform margin during the Early Jurassic that 

followed the continental break-up in the Central Atlantic. The narrow oceanic basin would 

have formed during an oblique  rifting and seafloor spreading episode between Iberia and 

Africa that started shortly thereafter (Bajocian) and lasted up to the initiation of oceanic 

spreading in the North Atlantic at the Tithonian (late Jurassic-earliest Cretaceous). The 

velocity model displays four wide, prominent, south-dipping low-velocity anomalies, which 

seem to be related with the presence of crustal-scale faults previously identified in the area, 

some of which could well be extensional faults generated during this rifting episode. We 

propose that this oceanic plate segment is the last remnant of an oceanic corridor that once 

connected the Alpine-Tethys with the Atlantic ocean, so it is, in turn, one of the oldest 

oceanic crustal fragments currently preserved on Earth. The presence of oceanic crust in the 

central Gulf of Cadiz is consistent with geodynamic models suggesting the existence of a 

narrow, westward retreating oceanic slab beneath the Gibraltar arc-Alboran basin system. 

 

1. Introduction 

 



The region offshore SW Iberia lies at the eastern end of the Azores-Gibraltar fracture zone 

(AGFZ), and is part of the complex plate boundary between the African and Eurasian plates 

(Figure 1). The tectonic behavior along the AGFZ is complex, varying from extensional in the 

West, close to the Mid-Atlantic Ridge, strike-slip in the center, along the Gloria fault, and 

mostly compressional in the East, from cape São Vicente to the Strait of Gibraltar. The 

regional tectonic history has been dominated by the long-term evolution of the triple junction 

between the North-American, African and Eurasian plates, as well as the interaction with 

other smaller blocks such as the Iberian plate (e.g. Srivastava et al., 1990; Olivet, 1996). Plate 

kinematic models and GPS observations show that Africa is currently moving in a NW-WNW 

direction with respect to Iberia at 4-5 mm/yr (Argus et al., 1989; Nocquet and Calais, 2004). 

This plate boundary is fairly diffuse, marked by an E-W trending band of seismicity about 

100-200 km wide (e.g. Buforn et al., 1995). Moderate to strong earthquakes have struck here 

in the past, with a combination of compressional and strike-slip focal mechanisms (Grimison 

and Chen, 1986; Stich et al., 2003; 2006). In addition to this continuous, moderate magnitude 

seismic activity, the region has been also struck by large historical earthquakes, most notably 

the catastrophic Great Lisbon earthquake of 1755 (Mw=8.5-8.6) (Johnston et al., 1996).  

A major limit exists in the Gulf of Cadiz between the Central Atlantic domain, which 

opened in the Early Jurassic, and the Northern Atlantic domain, which opened in the Upper 

Cretaceous (e.g., Roest and Srivastava, 1991; Olivet, 1996; Rovere et al., 2004; Sahabi et al., 

2004). Available plate reconstruction models suggest that the region might have been the site 

of limited amounts of oceanic spreading due to the ESE migration of the African plate with 

respect to Iberia during this period of time (e.g. Stampfli and Borel, 2002; Schettino and 

Turco, 2011). The possible presence of an oceanic basin of Jurassic age in this area is a 

largely debated question that has profound implications in the geodynamic evolution of the 

Western Mediterranean, and most specifically the Alboran basin system (e.g. Lonergan and 

White, 1997; Gutscher et al., 2002; Faccenna et al., 2004). Unfortunately, the nature of the 

crust in the deep oceanic domains offshore SW Iberia is unknown and difficult to determine 

because there are few recognizable magnetic anomaly patterns (Verhoef et al., 1991), and the 

seafloor is covered by a thick layer of Mesozoic to recent sediments, thus basement samples 

are difficult to obtain. The only deep sea drilling in the region that penetrated to the basement 

was the DSDP site 120 on Gorringe Bank (Figure 1), where serpentinized peridotite 

corresponding to exhumed mantle, gabbro, and extrusive rocks were sampled (Ryan et al., 

1973). Similar rocks were also recovered during dredging and deep-sea submersible 

expeditions (Auzende et al., 1984; Girardeau et al., 1998). DSDP site 135 Southwest of the 

Coral Patch Ridge (Figure 1) penetrated Jurassic sediments (Aptian) but did not reach the 

basement (Hayes et al., 1972). Finally, continental rocks of Paleozoic age have been also 

sampled at the Guadalquivir Bank in the Iberian margin (Malod and Mougenot, 1979). 

Because of the lack of basement samples, current knowledge of the crustal domains in the 

Gulf of Cadiz is based almost exclusively on geophysical data. Available multi-channel 

seismic (MCS) data (Sartori et al., 1994; Banda et al., 1995; Torelli et al., 1997; Gràcia et al., 

2006), as well as refraction and wide-angle reflection (WAS) data (Purdy, 1975; González et 

al., 1996; Gutscher et al., 2002) and models based on potential field data (e.g. Gràcia et al., 

2003; Fullea et al., 2010), globally highlight the eastward increase in sediment thickness, 

depth to basement, and depth to Moho (Iribarren et al., 2007; Gutscher et al., 2009b), but do 

not provide information on the crustal nature across the different tectonic boundaries.  

In fall 2008, in the framework of the EU-funded NEAREST (NEAR shore sourcES of 

Tsunamis: towards an early warning system) project, the NEAREST-SEIS WAS survey was 

performed in the Gulf of Cadiz. During that survey, two long profiles using Ocean Bottom 

Seismometers (OBS) and land stations were acquired to probe the deep structure of the SW 



Iberian margin and adjacent oceanic areas (Figure 1). One of the profiles was mainly designed 

to shed light on the unresolved question of the crustal nature in the central Gulf of Cadiz (N-S 

profile in figure 1). The interpretation of the modeling results obtained along this profile, 

which begins in the Seine Abyssal Plain, crosses the Gulf of Cadiz imbricated wedge (GCIW) 

and several of the “SWIM” lineaments (Zitellini et al., 2009), the Portimao bank, and 

continues up onto the Portuguese continental shelf until the Variscan Iberian domain, are the 

main goals of the work presented in this paper.  

 

2. Data acquisition 

 

The WAS data were acquired onboard the Spanish R/V Hesperides. Fifteen OBS were 

deployed along a 257-km-long shooting line reaching from the southern tip of the GCIW into 

the Portimao Canyon (Figure 1). Four of the OBS were L-Cheapo 4x4 instruments, designed 

by the Scripps Institution of Oceanography, and belonging to the Spanish OBS pool operated 

by the UTM-CSIC. The other eleven OBS were from the joint IFREMER-IUEM pool 

(Auffret et al., 2004). The profile was extended on land in Portugal by 7 land-stations. Due to 

timing problems we used only 3 of these stations in the modelling, giving a total recording 

length of 342 km. The source was composed of 7 airguns organized in two arrays, providing a 

total volume of 4320 c.i. The arrays were deployed at a depth of 12 m, and the shot interval 

was set to 90 s (210 m) to avoid noise generated by previous shots. Pre-processing of the 

OBS data included calculation of the clock-drift corrections and instrument relocation for 

spatial drift during their fall to the seafloor. 

Most of the WAS data have a good quality, showing clear sedimentary (Ps) and intra-

crustal refracted phases (Pg), reflections at the sediment-basement interface (PsP) and crust-

mantle boundary (PmP), and deeper arrivals refracted in the upper mantle (Pn) up to 100 km 

offset in some OBS, and to more than 150 km in the land stations. Five of the record sections 

at OBS and land stations are displayed in figure 2.  

Seismic sections of the instruments located on the top of the GCIW show clear low-

velocity sedimentary refractions (Ps) and reflections at the top of the basement (PsP). 

Significant variations are observed between record sections of the southern instruments, 

located towards the frontal part of the GCIW, and those located northward in the Algarve 

basin area (Figure 2d). Seismic sections from OBS located close to the Portimao canyon in 

very shallow water have limited quality. Conversely, long offset PmP and Pn phases can be 

clearly traced on the record sections of all the land stations (Figure 2e). Instruments located 

southward, in deeper water show clearer arrivals, including sediment and crustal arrivals 

(Figure 2a). In the modelling of the crustal structure we used data recorded at all the OBS and 

at the three land stations located the closest to the coast (Figure 1). 

 

3. Travel-time picking and modelling approach 

 

A total of 4003 picks, including first arrivals (Ps, Pg, Pn) and secondary reflections 

(PsP and PmP) were identified in the record sections. Picking was done manually on 

unfiltered data where possible and if needed, a deconvolution whitening, band-pass filtering 

(4-16 Hz) and Automatic Gain Correction were applied to improve lateral coherence and 

increase signal-to-noise ratio. Ps and PsP phases were observed and picked in all the OBS 

located on top of the sedimentary wedge, and Pg was also observed to variable offset in all the 



OBSs. PmP and Pn’s could not be identified in all the record sections, especially in the two 

shallowest, northernmost OBSs. A picking uncertainty was assigned to the different picks 

taking into account the quality of the phase, individual picking errors, and a possible 

systematic shift, of the order of half of the dominant period of the dominant signal, in the 

arrival identification. For Ps and near-offset Pg phases the average assigned uncertainty was 

40-50 ms, while it was 60-70 ms for far-offset Pg’s and 70-80 ms for Pn’s. For PsP reflections 

it was 50-60 ms, and 70-80 ms for PmP’s. 

The 2-D velocity-depth model was obtained using the tomo2d joint refraction and 

reflection travel-time inversion code described in Korenaga et al. (2000). The method allows 

inverting simultaneously and independently travel-times from first arrivals and from a 

reflected phase, to obtain a velocity model and the geometry of a floating reflector. Travel-

times and ray paths are calculated using a hybrid ray-tracing scheme based on the graph 

method (Moser et al., 1991) and a local ray bending refinement. Smoothing constraints for 

predefined correlation lengths and optimized damping for the model parameters are used to 

regularize the iterative linearized inversion (see Korenaga et al., 2000, for details). 

To perform the inversion we employed an original multi-step, hybrid inversion 

strategy consisting of (1) splitting the data into two subsets, one for instruments located on the 

sedimentary wedge, and the other for those in the continental margin, and (2) adding the data 

sequentially, starting from the shortest offsets/uppermost levels, and finishing with the longest 

offsets/deepest levels. 

The velocity model for the southern part of the profile was constructed in two steps, 

corresponding to the inversion of the sediments and crust. The Ps and PsP phases were used 

to invert for the velocities and thickness of the sedimentary wedge, and hence the geometry of 

the sediment-basement boundary (Figure 3a and 3b). The starting model was a laterally-

extended “minimum 1-D velocity model”, which is the one that fits the best the Ps travel-

times (e.g. Sallarès et al., 2003). The top of the basement reflector was initially set at 7 km. 

The inverted velocity model of the sediments was included as a priori information in the 

second inversion step, in which Ps, Pg and PmP arrivals were used to obtain the crustal 

velocity distribution and Moho geometry. The sediment velocity parameters were over-

damped by a factor of 20 to 1 to let the inversion modify the model preferably within the 

crust. The starting velocity model below the sediment layer was a 1-D model varying 

uniformly from 4.5 km/s at the sediment-basement boundary to 7.2 km/s 7 km below, 

simulating an Atlantic oceanic crust older than 140 m.y. (White et al., 1992). The initial Moho 

reflector was set 7 km below the sediment-basement boundary. The corresponding 2-D crustal 

velocity model, obtained after 8 iterations, is shown in figures 3c and 3d. 

The velocity model for the northern part of the profile was inverted in a single step, 

since no clear Ps or PsP phases were identified in the record sections. Consequently, 

sediments and crust were inverted together using the Pg and PmP phases to model the crustal 

velocity field and Moho geometry. The 2-D starting velocity model was constructed 

combining a 1-D model for the offshore section (i.e., the model that best fits Pg arrivals from 

the OBS located in the Algarve basin), and a second one for the onshore section, which was 

extracted from an onshore WAS profile acquired nearby (Palomeras et al., 2009). At the land-

sea transition, the seismic velocities of the reference model were calculated by linear 

interpolation of these two 1-D velocity-depth models. The 2-D crustal velocity model for the 

northern section obtained after 8 iterations is shown in figures 3e and 3f. 

In the third and last step, the southern and northern crustal models were merged 

together and a new inversion was performed using the whole set of refractions (Ps, Pg,and Pn) 

together with PmP’s, to obtain a complete model including sediments, crust and uppermost 



mantle along the entire profile. As in the previous steps, the velocity nodes above the basal 

reflector were over-damped to favour model changes below the Moho. Beneath the Moho, a 

laterally-extended 1-D velocity-model with velocity varying uniformly from 7.5 km/s below 

the Moho to 8.3 km/s at 35 km depth, although alternative models with higher velocity 

beneath the Moho were also tested. The 2-D velocity model obtained after 7 iterations is 

shown in figure 4. The final rms for this model is 65 ms (
2
=1.02), with an rms of 61 ms for 

first arrivals and 72 ms for PmP’s. The derivative weight sum (DWS), which is the column 

sum vector of the velocity kernel (Toomey and Foulger, 1989) and provides information on 

the linear sensitivity of the inversion, is shown in figure 5a.  

 

4. Results 

 

4.1. Seismic structure 

 The final velocity model in figure 4 shows marked differences between the 

sedimentary and crustal structures from south to north, with a marked transition zone between 

160 and 210 km distance along the profile where the crust thins sharply. The southern part of 

the model (0-160 km along profile), which runs across the GCIW, shows a ~5 km thick layer 

corresponding to the sedimentary cover, with velocities ranging from ~1.8 km/s at the top to 

3.5 km/s at the base. This layer can in turn be subdivided in an upper layer of 2-3 km with 

velocity between ~1.6 km/s and 3.0 km/s, and a bottom one of 1-2 km with velocity between 

2.8 km/s and 4.0 km/s. This sedimentary unit exhibits a quite uniform thickness along the 

southern 120 km of the profile, then thins progressively to the north, and more abruptly 

landward from ~125 km (between OBS37 and 38).  

The crust below the sedimentary units shows a rather uniform thickness of 7.0 km 

between 0 km and 160 km. Crustal velocities vary from 4.6-4.8 km/s at the top to 6.9-7.1 

km/s at the base. The vertical velocity gradient is steeper in the uppermost crust (0.45 s
-1

 in 

the upper 2 km) than in the lower part (0.14 s
-1

 in the lower 5 km) (Figure 4). The Moho 

depth and geometry is constrained by PmP reflections, and it follows the basement 

topography along most of the section. The long-wavelength crustal velocity field is rather 

uniform laterally, except for a pronounced anomaly centred at 130-145 km (between OBS38 

and 39), as indicated by the depression of the velocity contours observed in this area (Figure 

4) that gets down to the Moho but does not affect the sediments. The anomaly is clearly 

imaged in figure 6 representing the negative anomalies with respect to a laterally-smoothed 

velocity average along the profile. As it is observed in this figure, the corresponding anomaly 

(f1) has an amplitude of -0.5 km/s, dips to the south, and is >10 km-wide. A second crustal-

scale low-velocity anomaly with similar geometry but lower amplitude (~-0.15 km/s) was 

also detected at ~90 km (f0 in figure 6). 

The profile section between 160 and 210 km (between OBS41 and 44) corresponds to 

the rough topographic region between the GCIW and the Algarve Basin. This segment 

accommodates almost all the crustal thickening. Within ~60 km, the Moho deepens from ~14 

km to 25 km depth (corresponding to a slope of 12-13°), so the crust thickens drastically 

from ~7 km to 24 km. Northward from 210 km the vertical velocity gradient decreases 

(0.05 s
-1

), reaching maximum velocities of 6.9-7.0 km/s just above the crust-mantle 

boundary. The Moho geometry in this section is mainly constrained by PmP arrivals (OBS44 

in figure 2d). The shallow velocity field at the transition zone from the oceanic domain 

towards the continent indicates the presence of a thin sediment cover on top of the basement, 

so that Ps/PsP phases are not distinguished in the record sections, so that the structure of the 



sedimentary layers and the sediment-basement interface could not be properly defined. In this 

area, two bathymetric highs are present, one located at ~180 km (the Portimao Bank) and the 

other one located at 200-210 km (a spur bounding the Portimão canyon). The isovelocity 

contour of 4.0 km/s reaches there almost the surface, indicating that the basement is possibly 

outcropping here (BH in Figure 1). Two zones of relatively low crustal velocity, similar to 

that described in the southern part of the model, can be seen at ~180-190 km (between OBS42 

and 43) and ~225 km (around OBS44) (Figure 5). Both features are also reflected as 

pronounced, south-dipping, negative velocity anomalies of up to -0.7 km/s that seem to start 

at the seafloor and reach a maximum depth of 13-14 km (f2 and f3 in figure 6). Similarly to 

f1, f2 and f3 extend laterally to >10 km in the model and show dip angles of 35-45º. 

 The northernmost part of the model, between 210 km and the end of the profile 

(Figure 4), corresponds to the upper part of the contouritic drift and shelf and the Algarve 

Basin, characterized by the Variscan basement. It shows only a residual sedimentary cover 

that is less than 1 km-thick. In this area the Moho gently deepens from ~25 km at 210 km 

along profile (between OBS43 and 44) to ~29 km at 260 km (north from OBS45 in figure 1). 

A maximum crustal thickness of 29 km is obtained at the coastline, where crustal velocity 

ranges from ~4.8 km/s and ~7.1 km/s. The velocity field in this area is mainly constrained by 

the PmP phases recorded in the land stations, so there is a trade-off between lower crustal 

velocity and Moho location. The upper mantle is sampled by Pn phases only a few kilometres 

below the Moho, and the obtained velocity appears to be considerably low for upper mantle 

(7.6-7.7 km/s). 

 

4.2 Uncertainty analysis  

In order to estimate model parameters uncertainty owing to a combination of data 

picking errors and other non-linear effects related to the theoretical approximations made, the 

starting model selected, and the experiment geometry, we performed a Monte Carlo-type 

stochastic error analysis. The approach followed is similar to that described in Sallarès et al. 

(2005) and Gailler et al. (2007), which is a modified version of that of Korenaga et al. (2000), 

and consists of: (1) generating a set of 250 2-D starting models by randomly perturbing 

velocity and reflector depth in the initial models within reasonable bounds, which are chosen 

according to a priori lithological information. In our case we have used the resulting model 

shown in figure 4 as reference. Velocities have been varied within ±0.35 km/s in crust and 

mantle, and Moho geometry within ±1.25 km in the oceanic domain and within ±2.5 km in 

the continent. In addition, 250 noisy data sets have been generated by adding random timing 

errors of ±60 ms, including common phase errors (±30 ms), common receiver errors (±10 

ms), and individual picking errors (±20 ms), to the reference data set, constituted by first 

arrivals and PmPs. Then, we repeated the inversion for 250 randomly selected perturbed 

velocity models-noisy data set pairs, using the same inversion parameters as with the model 

shown in figure 4. According to Tarantola (1987), the mean deviation of all realizations of 

such an ensemble can be interpreted as a statistical measure of the model parameters 

uncertainty. The mean deviation of model parameters is shown in figure 5b. The average rms 

of all the Monte-Carlo realizations diminishes from 361 ms (
2
=36.2) before the inversion, to 

63 ms (
2
=1.1) after the inversion.  

Uncertainty within the sedimentary layer is low (0.1 km/s), increasing to 0.15 km/s 

near the top of the basement, due to the sharp velocity contrast between sediments and 

basement and to the strong velocity gradient in the upper part of the crust (e.g. Calahorrano et 

al., 2008). Velocity uncertainty within the oceanic crust is also low (0.1 km/s), confirming 

that the crustal velocity field obtained in the oceanic domain of the model is remarkably well 



constrained by the data. The Moho geometry in this oceanic domain has an average 

uncertainty of less than 0.5 km (Figure 5b).  

The transitional and continental domains (between 160 km and the end of the model) 

also display rather low crustal velocity uncertainty, increasing from 0.15 km/s in average in 

the upper third of the crust to ~0.20 km/s near the Moho boundary. This locally high 

uncertainty reflects the lack of multi-fold ray coverage in this area, especially in the deep part 

of the model sampled only by PmP phases, which are subject to trade-off between the 

reflector location and the velocity field above it (e.g. Korenaga et al., 2000; Sallarès et al., 

2005). Interestingly, Moho depth uncertainty in the continental domain is reasonably low, 

varying between 1.0 km in the transition zone, and 1.5 km beneath the coast line, in the 

deepest part of the model (Figure 5b). 

The worst-resolved part of the model corresponds to the upper mantle, where 

uncertainty is locally 0.2 km/s. A common problem in WAS experiments is that the low 

mantle velocity gradient makes that Pn phases do not dive deep into the mantle (see DWS plot 

in figure 5a), so they only carry limited information on the velocity structure of the uppermost 

few km of the mantle (e.g., Sallarès and Ranero, 2005). In order to test the reliability of the 

obtained upper mantle velocity, we performed two additional inversions using the same 

reference crustal velocity model and data set, but including two end-member uppermost 

mantle velocities of 7.4 km/s and 8.1 km/s. Both models converged to low mantle velocity 

ranging between ~7.5 km/s and ~7.8 km/s, respectively. Given that the upper mantle is 

covered only by Pn to a few km below the Moho, which have a very limited azimuthal 

coverage and have a limited penetration, the model parameter resolution at the upper mantle 

is low, so that the velocity represents an average along the ray path.  

 

5. Discussion 

 

5.1. Nature of the crustal domains offshore SW Iberia 

The final velocity model of figure 4 reveals the presence two distinct crustal domains 

(labelled 1 and 2 in our interpretative model of figure 7, summarizing our main structural 

interpretations), with a transition zone in between. In domain 1 the crust is ~7.0 km thick. It is 

overlain by a 1-2 km of high-velocity sediments, and by other 3-4 km of lower-velocity 

sediments. These two sedimentary units had been previously identified in different local MCS 

profiles over the GCIW (Tortella et al., 1997; Torelli et al., 1997; Gràcia et al., 2003; 

Gutscher et al., 2009a). According to these authors the lower unit is constituted by Mesozoic 

to Eocene sedimentary rocks, whereas the upper one includes the GCIW, mainly emplaced 

during Late Miocene, and a thin layer of Upper Miocene to plio-Quaternary sediments that 

overlay the GCIW. However, the interpretations regarding the evolution and tectonic behavior 

of both units differ in several aspects. A number of authors have suggested that the GCIW is 

an allocthonous body emplaced tectonically by the westward migration of the Gibraltar arc 

between ~15 Ma and ~8 Ma (e.g. Torelli et al., 1997; Gràcia et al., 2003; Medialdea et al., 

2004; Iribarren, 2009), whereas Gutscher et al. (2009b) consider that this unit is as an actively 

deforming accretionary prism on top of an eastward-subducting oceanic slab, source of the 

largest earthquakes having occurred in the region. There is however overall agreement in that 

the lowermost unit covering the basement is Mesozoic in age (e.g. Sartori et al., 1993; Torelli 

et al., 1997; Tortella et al., 1997; Gràcia et al., 2003), giving an upper bound for the age of the 

basement below. 



Domain 2 corresponds to the stable continental Variscan margin of SW Iberia, and 

consists of a continental crust (27-30 km thick) overlain by a poorly contrasted sedimentary 

layer made of Mesozoic units (Terrinha et al., 2003). The velocity structure and crustal 

thickness are very similar to that modelled along the on-shore IBERSEIS WAS transect 

(Palomeras et al., 2009), and it is also consistent with that of González et al. (1996), which is 

based on land recordings of the IAM data. The transition zone in between both domains is 

roughly 60 km-wide, across which occurs an abrupt lateral variation in crustal thickness 

between the continental margin and the central Gulf of Cadiz. The sharpest transition takes 

place at km 160-170 (marked by “COB” in figure 7).  

Concerning the nature of the crust in domain 1, there are in principle three possible 

interpretations; namely thinned continental crust, exhumed mantle or oceanic crust. Available 

heat flow data above the GCIW indicate values from 59-45 mW/m
2
 (Grevemeyer et al., 

2008), values that are consistent with old lithosphere but do not help constraining the crustal 

type. Some ENE-WSW trending magnetic anomalies are also present in the internal Gulf of 

Cadiz (Verhoef et al., 1991; Dañobeitia et al., 1999), but these are too subdued and sparse to 

be identified as seafloor spreading anomalies. In the absence of direct basement samples or 

well-defined magnetic anomalies, the best available indicator on the nature of the crust is the 

velocity structure and crustal thickness provided by offshore WAS data. Figure 8 shows a 

comparison of 1-D velocity-depth profiles representative of the two crustal domains and the 

transition zone with compilations made for: (1) exhumed mantle sections along the western 

Iberian margin (Srivastava et al., 2000), (2) >140 m.y.-old Atlantic oceanic crust (White et al., 

1992), (3) continental crust (Christensen and Mooney, 1995), and (4) altered oceanic crust 

near subduction trenches (Meléndez et al., 2009). A comparison of the velocities obtained in 

domain 1 to velocities of exhumed/serpentinized upper mantle (Figure 8a) show that crustal 

velocities are far too slow and velocity gradients too smooth to correspond to exhumed 

mantle. In contrast, the obtained velocities are too high to correspond to extended continental 

crust (Figure 8a). An additional observation that helps to rule out this option of continental 

crustal affinity is that all the continental thinning occurs in domains 2 and 3, and there is no 

thinning at all in domain 1 for more than 150 km, an observation that is hardly compatible 

with an extended continental nature. 

The comparison with the velocity structure for >140 m.y.-old Atlantic oceanic crust 

(White et al., 1992) is shown in figure 8b. The velocity structure in domain 1 is closer to 

oceanic crust than to the two options shown in figure 8a, but it is near the lower velocity 

bound. This atypical velocity profile may be the result of fault-related rock fracturing and 

subsequent alteration by fluids percolating through faults at this anomalously old (probably of 

Jurassic age, see introduction and explanation below), and hence cold and brittle crust. The 

presence of low velocity anomalies that spatially coincide with two of the long, N120°E 

trending strike-slip “SWIM lineaments”, interpreted by Zitellini et al. (2009) as crustal-scale 

faults, would support this hypothesis. Anomaly f1 (figure 6) corresponds to the location of the 

northernmost lineament (LN in figure 1), whereas f0 is located next to the southern one (LS in 

figure 1). Additionally, the uppermost mantle velocity is low, which might be indicative of 

mantle serpentinization, probably by means of fluids percolating through the aforementioned 

faults crossing the Moho. The low crustal and upper mantle velocity is a common feature in 

the oceanic plate at subduction zones. It has been described for the incoming plate in Chile 

(Ranero and Sallarès, 2004; Lefeldt et al., 2009) and Middle America (Ivandic et al., 2009; 

Meléndez et al., 2009). It has been associated to the presence of pre-existing lithospheric-

scale normal faults that are reactivated by flexure at the outer rise allowing the water to 

percolate through the crust well into the upper mantle (Ranero et al., 2003). To check this 

hypothesis, we have included in figure 8b a 1-D velocity-depth profile extracted from a WAS 



profile acquired in the outer rise area of the Nicaraguan margin (Meléndez et al., 2009). 

Clearly, this is the velocity profile that fits the best our model, suggesting that the crust in the 

central Gulf of Cadiz could well be a fragment of fractured, altered and serpentinized oceanic 

lithosphere. As expected, domains 2 and 3 (Figure 8c and 8d) show 1-D velocity-depth 

profiles that fit well within the range of extended and normal continental crust velocities 

(Christensen and Mooney, 1995). According to these observations continent-ocean boundary 

(COB) is located at the northern limit of domain 1, some 100 km south from the coast line 

(Figure 7). 

 

5.2. Origin and tectonics of the SW Iberian and NW African margins 

The study area is located at the intersection of the NW African and the SW Iberian 

continental margins. The NW African margin developed during Triassic-Jurassic times (Le 

Roy and Piqué, 2001), as the Central Atlantic formed by the rifting of Africa from North 

America at the southern end of the modern day Grand Banks of Newfoundland by extension 

by transcurrent motion along the current southern Grand Banks fault (Bill et al., 2001; 

Stampfli and Borel, 2002) (Figure 9). The SW Iberian margin and the Gulf of Cádiz domain 

developed at the intersection of a N-S trending margin, between the West Iberia and the 

Flemish Cap - Grand Banks Margin of Newfoundland (Canada), and the Grand Banks 

transform referred to above (Roest and Srivastava, 1991). According to reconstructions based 

on available plate tectonic models (Stampfli and Borel, 2002; Schettino and Turco, 2011) this 

domain may have been the site of limited amounts of oblique seafloor spreading that 

accommodated the ~N-S component of the migration of Africa with respect to Eurasia during 

the Jurassic. This spreading could have opened a narrow oceanic basin separating southern 

Iberia from NW Africa (Figure 9). These reconstructions indicate that the oceanic spreading 

between Africa and Iberia would have been coeval with the opening of the Central Atlantic, 

starting in the Bajocian (Middle Jurassic) at ~180 Ma (Roeser et al., 2002) and finishing with 

the onset of rifting at the North Atlantic in the Tithonian (latest Jurassic), some 145 Ma 

(Stampfli and Borel, 2002; Schettino and Turco, 2011). 

Our work provides the first direct evidence for the presence of oceanic crust between 

North Africa and SW Iberia. According to this interpretation, the oceanic crustal section 

imaged in figure 4 would represent the westernmost segment of the Alpine-Tethys ocean, the 

pre-Alpine oceanic domain that opened between NW Africa and Eurasia in the Jurassic and 

closed during the Alpine orogeny (Stampfli and Borel, 2002; Schettino and Turco, 2011; 

Handy et al., 2010). A south-eastern branch of this oceanic domain is the true Tethys, which 

was consumed by north-dipping subduction as Africa converged northward with Europe, a 

process which continues today beneath the Hellenic and Calabrian arcs (e.g. Faccenna et al., 

2001). Therefore, the Alpine-Tethys domain represented the boundary zone between the 

Atlantic and Tethys domains during the Jurassic and the Mesozoic (Figure 9). According to 

these reconstructions, the oceanic crustal segment that we have identified in the Gulf of Cadiz 

would represent the last remnant of the western Alpine-Tethys lithosphere and, therefore, it 

would be one of the oldest oceanic crustal fragments currently preserved on Earth. It is 

interesting to note that the oceanic spreading would have mainly occurred during the so-called 

“Jurassic Quiet Zone” (Larson and Hilde, 1975), which would also explain the absence of a 

clear magnetic anomaly pattern in the area (e.g. Verhoef et al., 1991) despite its oceanic 

crustal nature. 

In this context, we suggest that the large, prominent, south-dipping, low-velocity 

anomalies of figure 6 could be related with the presence of faults created during this rifting 

episode. Our interpretation is that they represent a smeared, coarse image of either the 



fractured, altered and fluid-saturated zone surrounding the fault area, or the contrast between 

rocks with different properties at both sides of the faults. According to our interpretation, f2 

and f3 would correspond to extensional faults generated during this phase, whereas f1 (and 

possibly f0) could represent either normal faults created during oceanic spreading or fracture 

zones. As we explained above, f0 and f1 coincide spatially with the two northernmost “SWIM 

lineaments”, whereas f2 coincides with a south-dipping fault reaching the seafloor that 

spatially coincides with the one imaged along MCS profile Voltaire-3 in the southern flank of 

the “Guadalquivir basement high” (see figure 9 in Terrinha et al., 2009). To our knowledge, 

there are no MCS data crossing the f3 anomaly (figure 6), so there is no link between this 

anomaly and other faults in the area. Finally, it is worth noting that f2 and f3 are imaged up to 

13-14 km and no deeper, this is near the base of the upper crust in the Variscan belt 

(Palomeras et al., 2009). This depth corresponds to the maximum expected depth for 

continental earthquakes, which is believed to be associated with a thermal limit that marks the 

transition between “brittle” upper crust and “ductile” lower crust (e.g. Scholz, 1988). 

 

5.3. Implications for regional geodynamic models 

Different models have been proposed to date to explain the different geological, geophysical 

and geochemical observations of the Gibraltar arc-Alboran basin system, including past or 

present collision of continental lithosphere combined with lithospheric recycling either by 

convective removal (Platt and Vissers, 1989; Calvert et al., 2000), delamination (Seber et al., 

1996), or slab break-off (Zeck, 1997); together with a variety of models of either continental 

or oceanic subduction with southward (Sanz de Galdeano, 1990; Morales et al., 1999), 

northward (Torres-Roldan et al., 1986; Mauffret et al., 2007), westward (Docherty and Banda, 

1995; Zeck, 1997), or eastward dips (Lonergan and White, 1997; Gutscher et al., 2002). The 

nature of the crust in the Gulf of Cadiz has important implications for these competing 

geodynamic models proposed for the SW Iberia region, especially for those proposing 

rollback of an eastward dipping subducted slab as the main driving force for the formation of 

the Alboran basin (Lonergan and White, 1997; Gutscher et al., 2002; Duggen et al., 2004; 

Faccenna et al., 2004). 

Some authors had previously suggested the presence a 10-15 km-thinning of the 

Variscan continental crust in the central Gulf of Cadiz, based on land recordings of marine 

seismic data (González et al., 1996), modelling of gravity data (Gràcia et al., 2003), combined 

modelling of potential field data (Fernández et al., 2004; Zeyen et al., 2005), and joint 

geophysical and petrological modelling (e.g. Fullea et al., 2010). In contrast, our current 

findings evidencing the presence of oceanic crust in the central Gulf of Cadiz are fully 

compatible with the presence of a narrow, east-dipping, fast retreating oceanic slab beneath 

the Gibraltar arc. Our model and interpretation is also in agreement with available 

seismological data suggest the presence of a continuous, 150-200 km-wide slab that dips from 

the Gulf of Cadiz towards Gibraltar, reaching the 660 km-discontinuity beneath the Alboran 

basin. These data include the global tomography images showing a narrow subducted slab 

beneath Alboran and Gibraltar (e.g. Spakman and Wortel, 2004), the dispersion analysis of 

body waves from the deep mantle indicating the presence of a steeply eastward dipping low 

P-wave waveguide within a high velocity slab (Bokelmann and Mauffroy, 2007), and the 

recent shear-wave splitting measurements indicating a semicircular mantle flow pattern 

beneath the Gibraltar arc (Díaz et al., 2010). 

 

6. Conclusions 



 

Our WAS modelling results indicate the presence of three crustal domains in the SW Iberian 

margin. In the north, a 28-30 km-thick Variscan continental crust that gently thins to ~25 km 

beneath the coastline. Immediately South from it, a ~60 km-wide zone where almost all the 

crustal thinning (from ~25 km to ~7 km), concentrates. In the Southernmost part of the 

profile, a 150 km-wide segment of ~7 km-thick crust, overlain by a 1-2 km-thick lower unit of 

consolidated Mesozoic to Eocene sediments, and a 3-4 km-thick upper unit of sediments 

corresponding to the Upper Miocene GCIW that is covered in turn by a thin layer of plio-

Quaternary sediments. The velocity gradient and crustal thickness in the southern section 

strongly suggests that the lithosphere is oceanic in nature, although absolute velocities are 

somewhat lower than “normal” probably due to fault-related rock fracturing and alteration 

and mantle serpentinization. The abrupt ocean-continent transition is suggested to be the 

result of the initial tectonics of the margin setting during the Triassic-early Jurassic as a 

transform margin, followed by oblique seafloor spreading between southern Iberia and north-

western Africa during the Middle-Late Jurassic (roughly 180-145 Ma). According to our 

interpretation, the oceanic spreading that took place in the Jurassic would have generated a 

~150 km-wide oceanic basin that would be part of the system that have once connected the 

Atlantic and Tethyan oceanic domains. Based on the spatial coincidence with previously 

identified active faults, we suggest that the wide, crustal-scale, south-dipping, low-velocity 

anomalies imaged in the velocity model are the tomographic expression of the area affected 

by crustal-scale faults, some of which could have been created during this rifting period. The 

fragment of oceanic crust identified in the velocity model would therefore constitute the only 

remnant of the western Alpine-Tethys ocean and one of the oldest oceanic crustal fragments 

currently preserved on Earth. The presence of a narrow oceanic basin in the Gulf of Cadiz 

agrees with recent seismological observations, and it is consistent with the geodynamic 

models proposing roll-back of an eastward dipping slab as the main driving force for the 

opening of the Alboran Sea within the Betic-Rif system. 
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 Figure 1.-  

 

 

 

Location map of the study area of the NEAREST-SEIS wide-angle seismic survey, including 

the two profiles that were acquired. Yellow circles display OBS and land stations locations 

along the N-S profile presented in this paper. The multi-beam bathymetry is a combination of 

the SWIM compilation (Zitellini et al., 2009) and GEBCO digital atlas (IOC et al., 2003). The 

different faults are taken from the NEAREST active faults map (Zitellini et al., 2009). White 

stars mark the location of DSDP sites 120 and 135. Inset: Global map including the major 

tectonic plates. Abbreviations: AB: Alboran Basin; AGFZ; Açores-Gibraltar Fault Zone; 

EUR: Eurasian plate, AFR: Africa/Nubia plate, IB: Iberia, BH: Basement High; CPS: Coral 

patch ridge, CPRF: Coral Patch Ridge fault, GF: Gloria Fault; GO: Gorringe bank, HAP: 

Horseshoe Abyssal Plain, HF: Horseshoe fault, LN: North SWIM lineament, LS: South 

SWIM lineament, PC: Portimao Canyon; SAP. Seine Abyssal plain, TAP: Tagus Abyssal 

Plain. 

  



Figure 2.-  

 



Recorded seismic sections (up) and record sections with corresponding observed arrivals 

(grey circles with error bands) and calculated arrivals (white circles), corresponding to the 

vertical component of OBS32 (a), OBS37 (b), OBS41 (c), OBS44 (d) and lans station # 3 (d). 

Their corresponding locations along the profile can be seen in figure 1. The vertical axis 

represents reduced travel time (in seconds), and the vertical axis is offset (in km). Reduction 

velocity is 6 km/s. The white labels indicate the seismic phases that have been identified and 

modelled (see text for description). Short data gaps (white bands) are present in 3 OBS and 

the land station. 
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Partial results at the different steps of the tomographic inversion procedure and ray tracing 

corresponding to the inverted seismic phases. White circles indicate OBS locations. Grey 

lines show the different geological boundary interfaces. (a) Resulting velocity model for the 

sedimentary layer. (b) Ray coverage of seismic phases used in the sedimentary layer inversion 

(Ps, PsP). (c) Resulting velocity model for the oceanic crust segment. (d) Ray coverage of 

seismic phases used in the oceanic crust inversion (Ps, Pg, PmP). (e) Resulting velocity model 

for the continental crust. (f) Ray coverage of seismic phases used in the continental crust 

inversion (Pg, PmP). 
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2-D final velocity model obtained by tomographic inversion of the whole data set, constituted 

by arrival times of Ps, PsP, Pg, PmP and Pn phases. White circles indicate OBS locations. 

Black lines show the sediment-basement and crust-mantle boundaries (i.e., Moho). The initial 

model used in the inversion is a combination of the models displayed in figure 3 (see text for 

details).  
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(a) Derivative weight sum (DWS), and (b) Velocity and Moho depth uncertainty 

corresponding to the mean deviation of the 250 Monte Carlo realizations (see text for details). 

White circles indicate OBS locations. 
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Map of negative velocity anomalies along the velocity profile, which correspond to the 

difference between the model displayed in figure 4 and a laterally-smoothed version of the 

same model. The filter applied to smooth the model is a Gaussian one with a lateral 

correlation length of 20 km and a vertical correlation length of 0.5 km. f0, f1,f2, and f3 

indicate the location of the most prominent and continuous features in the model that are 

interpreted in the text. White circles indicate OBS locations. 
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Interpretative model of the structure and tectonics of the SW Iberian margin along the WAS 

profile displayed in figure 1. The different units and domains discussed in the text are 

indicated with the different colors. White circles indicate OBS locations. Abbreviations: f0, 

f1,f2, and f3 are faults; COB: Continent-Ocean Boundary, GCIW: Gulf of Cadiz imbricated 

wedge; LC: Lower Crust; UC: Upper Crust; BH: Basement High.  
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1-D P-wave velocity/depth profiles shown at three different locations along the WAS profile 

compared with compilations made for exhumed mantle, oceanic crust, and continental crust. 

(a) 1-D velocity-depth profile extracted at 60 km along the profile (P2, black line) and 

corresponding uncertainty bar (grey band), velocity profiles of exhumed mantle sections 

along the western Iberian margin (Iap, green line) and Tagus Abyssal plain (Tap, yellow line) 

(Srivastava et al., 2000), extended continental crust (ECC, brown area) (Christensen and 

Mooney, 1995), (b) 1-D velocity-depth profile extracted at 60 km along profile (P2, black 

line) and corresponding uncertainty bar (grey band), velocity profiles from Atlantic oceanic 

crust older than 140 m.y. (AOC, blue area) (White et al., 1992) and fractured, altered oceanic 



crust and serpentinized mantle at the outer rise of the Nicaragua subduction zone (FOC, dark 

blue line with error band) (Meléndez et al., 2009), (c) 1-D velocity-depth profile extracted at 

190 km along profile (P2, black line) and corresponding uncertainty bar (grey band), velocity 

profiles from AOC and ECC (see definition above), (d) 1-D velocity-depth profile extracted at 

190 km along profile (P2, black line) and corresponding uncertainty bar (grey band), velocity 

profiles from non-extended continental crust (CC, brown area) (Christensen and Mooney, 

1995). 
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Sketch summarizing our interpretation of the geodynamic and tectonic evolution between 

Eurasia/Iberia, Africa and north America during the Jurassic. The sequence includes (a) the 

initial phase of the ~E-W oceanic spreading at the Central Atlantic and the opening of the 

fracture zone, and (b) the initiation of oceanic spreading between Iberia and Africa to 

generate a series of narrow oceanic basins of oceanic crust connecting the Tethyan and 

Atlantic domains. Abbreviations: Bal: Balearic islands; Sar: Sardegna; Cor. Corsica; Adr: 

Adriatic; Apul: Apulia; Kab: Kabilie. 

 

 


