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Adaptive networks with time-varying connectivity, often called plasticity, provide a fundamental
paradigm to model complex dynamical systems. In these systems, different groups of elements
frequently exhibit different yet synchronized dynamics within each group. Here we propose a
framework to study patterns of synchronous solutions in a large class of plastic networks and derive a
general approach to analyze the stability of these solutions. This approach decouples the role of the
network topology from that of the dynamic, thus leading to a dimensionality reduction of the stability
problem and allowing us to investigate how adaptation affects the emergence ofmulti-stable patterns
of synchronized activity. To illustrate its potentialities, we apply our method to three networks of
oscillators, with distinct topology, dynamics, and adaptation rules. Our working framework
encompasses a large class of heterogeneous multi-layer dynamical networks, connected (even with
delays) via different plastic links, and can have a broad impact on the analysis of complex plastic
networks.

Many complexnetworks formedof interacting dynamical units can give rise
to cluster synchronization (CS), where different groups of elements exhibit
different yet synchronized dynamicswithin each group1. For example, CS is
a common phenomenon in teams of interacting robots performing syn-
chronous coordinated tasks2 and in biological and ecological systems3,4.
Furthermore, CS is responsible for traffic jams of vehicles5 and can be
employed for cooperative rendezvous and cooperative target classification
in networks of unmanned aerospace vehicles6. In neural dynamics, syn-
chronization of brain areas is believed to provide a cognition mechanism7,8,
functional assemblies of brain neurons display distinct interdependent
synchronous oscillations9, and central pattern generators exploit synchro-
nous clusters of neurons to generate gaits in animal locomotion10. Therefore,
the study of CS is relevant to analyzing and controlling both natural (eco-
logical, social, immune, neural, and cellular)11 and artificial12 systems.

A second common feature of natural and artificial complex systems
consisting of interconnected dynamical units is adaptivity (or plasticity), i.e.,
the presence of temporally evolving connectivity structures, which coevolve
with the network nodes13,14. A series of recent studies focused on the rele-
vance of adaptation for the dynamics of complex systems15–22. Some
papers23,24 investigated the role that adaptation (plasticity) plays in pro-
moting full synchronization in complex networks. Furthermore, an MSF
approach to study the stability of fully synchronized regimes in plastic
networks has been presented in25,26.

Despite the common concomitance of CS and adaptation in natural
and artificial systems, CS in adaptive networks has remained relatively
unexplored20,21, maybe because in most cases the synchronization is not
exact, but only approximate. Previous work has shown that already a not-
evolving complex network can support several coexisting patterns of syn-
chronized clusters (CS patterns)27; therefore, understanding the effects of
plasticity and the mechanisms ruling the emergence of CS in adaptive
networks is a relevant issue. In particular, these mechanisms may combine
with a learning strategy to encode specific patterns of synchronized activity
in the network28,29.

In this paper, we fill this gap by proposing amethod to analyze CS and
multi-stability in multi-layer adaptive systems with delays, based on a
dimensionality reduction provided by the Master Stability Function (MSF)
approach30. We remark that even if our focus is on exact synchronization,
the results of our analysis are robust to heterogeneity, at least to a certain
extent, meaning that the network nodes that belong to the same cluster
remain coherent when their homogeneity is broken. Some of the funda-
mental questions of broad scientific interest31–33 thatwe address are (i)which
CS patterns can exist in networks with adaptation; (ii) which ones of these
patterns attract the dynamics in the presence of adaptation; (iii) whether
we can perform the linear stability analysis in a reduced space to overcome
the large dimensionality of the stability problem. We will show that: (i) the
possible CS patterns (both stable and unstable) are determined by the
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network topology within the broad class of adaption rules we consider; (ii)
the possibly multiple stable CS patterns (adaptive networks are character-
ized by a strong presence of multi-stability) are determined also by the
network dynamics; (iii) the number of variables needed to perform the
stability analysis can be reduced significantly, even by orders of magnitude.
As stated above, the developed theory can be applied to many fields.

Here, we focus on three case studies to illustrate the potentialities of the
method and investigate the presence of multi-stability for different adap-
tation rules. The first case study is about encoding and storing visual
memory items in a network of neural mass models interacting via Hebbian
plasticity. The second case study is about a (two-layer) network of coupled
phase oscillators, which provides a model for tumor disease and sepsis. The
third case study is about a random network of chaotic oscillators without a
direct physical meaning, but with some features captured by our analysis
framework and complementary to those of the first two case studies. In all
cases, the proposedMSF-basedmethod allows for accurate stability analysis
of the possible CS solutions. This extensive numerical analysis is possible
thanks to the MSF dimensionality reduction.

A relevant feature of the considered adaptive networks is the emer-
gence of multi-stability, represented by different CS patterns with different
collective dynamics, i.e., by coexisting clusters that differ in composition and
coherent dynamics, ranging from stationary to oscillatory. Our analysis can
characterize the stability of different CS solutions and, as such, provides a
flexible tool for understanding the complexity of synchronization scenarios
in adaptive networks.

Results
We study the dynamics of a general adaptive multi-layer network, which
encompasses a wide variety of single-node dynamical models, different
connection types, and plasticity rules. The dynamical evolution of this
adaptive network composed of N coupled nodes can be described by the
following general set of delay differential equations (i, j = 1,…,N):

_xiðtÞ ¼ FiðxiðtÞÞ þ S xi;
XL

‘¼1
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ijðtÞ ¼ �ϵ‘ b‘ijðtÞ þ H‘ðxiðtÞ; xjðtÞÞ
� �

; ð1bÞ

where xi is the m-dimensional state vector of the node i, with individual
dynamics described by the vector field Fi∈Rm, i = 1,…,N, and S is an m-
dimensional function (e.g., a saturation function) describing the coupling of
the node with the rest of the network. This network contains L different
types of connections, each corresponding to a different layer, indexed by ℓ.
For each layer (ℓ = 1, 2,…, L), A‘ ¼ fa‘ij ¼ a‘jig is the symmetric adjacency
matrix that describes the connectivity (a‘ij 2 f0; 1g), σℓ is the overall coupling
strength, and gℓ is the coupling function.The adaptivenature of the coupling
is taken into account by the N-dimensional matrix B‘ ¼ fb‘ijðtÞg (asym-
metric, in general), whose entries evolve dynamically according to the
adaptive rule Eq. (1b). The parameter ϵℓ > 0 represents the inverse of the
adaptation time scale. The evolution of the adaptive coupling terms b‘ijðtÞ is
controlled by a nonlinear function Hℓ, which depends on the state of the
nodes i and j. This adaptation rule can cover a wide class of plasticity
functions, includingHebbianplasticity34,Wang-Rinzel plasticity35, aswell as
other adaptive schemes26,36,37.

This paper deals with the emergence of CS in the general system (1).
We consider a partition of the set V of the network nodes into clusters
C1; C2; . . . ; CQ, ∪ Q

p¼1Cp ¼ V, Cp \ Cq ¼ ; for p ≠ q. In particular, we are
interested in the existence and stability ofCSpatterns,where all the elements
within each cluster have an identical time evolution, i.e., xi(t) = xj(t) if i and j
belong to the same cluster. A first challenge is to identify possible patterns of
cluster synchronization for the general system of equations (1). In the
Supplementary Note 1, we show that any equitable cluster partition for the
adjacency matrix A corresponds to a flow-invariant cluster synchronous
solution for the system (1). As the considered network model can have

different types of connections, a valid solution presenting CS with the
minimum number Q of equitable clusters can be found by using a
variation38,39 of Hasler and Belykh’s coloring algorithm40 (for more details
see Supplementary Note 1).

A second challenge concerns the stability of CS solutions, which
depends on the complete networkdynamical evolution, governedbyEq. (1).
Therefore, once theQ equitable clusters are found, theCS analysis is applied
to a coarse-grained dynamical model (called quotient network) whose Q
nodes correspond to the possible equitable clusters. In particular, we analyze
the stability of the CS patterns by linearizing Eq. (1) about a state corre-
sponding to synchronization among all the nodes within each cluster39. By
denoting the cluster synchronization state as xi(t) = sp(t), where the node i
belongs to the cluster Cp, we can write the quotient network dynamics,

_spðtÞ ¼ f pðspðtÞÞ þ S spðtÞ;
XL
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where fp is the vectorfieldof eachnodebelonging to the clusterCp (i.e., fp = Fi
for any i∈Cp), k

‘
pq represents theweight of the connection of type ℓ between

the clusters Cp and Cq, and the Q− dimensional matrix R‘ ¼ fr‘pqg is the
quotient matrix of ℓ-th type, such that r‘pq ¼

P
j2Cq a

‘
ij

(i 2 Cp; p; q ¼ 1; 2; . . . ;Q). Let np be the number of nodes in the cluster

Cp, therefore
PQ

p¼1 np ¼ N . In the following, we will tacitly assume that p

depends on i and q depends on j, i.e., p = p(i) and q = q(j).

To analyze the local stability of the synchronous state, we introduce
infinitesimal variations about sp(t): wi(t) = xi(t)− sp(t) and
y‘ijðtÞ ¼ b‘ijðtÞ � k‘pqðtÞ, where i 2 Cp and j 2 Cq. It is important to
emphasize that the stability problem involvesN variableswi(t) and up toN

2

variables y‘ijðtÞ for each ℓ, which for sufficiently large Nmakes the analysis
soon infeasible. This motivated us to develop a technique to reduce the
dimensionality of the stability problem, which we present in the following.

First, we find the variational equations in vector form (see Supple-
mentary Note 2), in terms of two vectors (W(t) and y‘qðtÞ) and of theN ×N

diagonal matrix Ep, which is the cluster indicator matrix: Ep has entries
Ep,ii = 1, if node i 2 Cp, 0 otherwise, i.e., this matrix identifies all the nodes
that belong to cluster Cp. Next, we find a coordinate transformation that
separates the perturbation modes in the stability analysis as much as pos-
sible, thus reducing the stability problem into sub-problems of the lowest
dimension. To this end, we compute the transformation (based on a
simultaneous block diagonalization, SBD) introduced in41–43, which has
been previously applied to analyze the stability of complete
synchronization44 and CS45 in non-adaptive networks. The canonical

transformation matrix46 (see Supplementary Note 3) T ¼ Tk
T?

� �
is the

orthogonal matrix that simultaneously block-diagonalizes the matrices A1,
A2,…, AL, E1, E2,…, EQ into M diagonal blocks, each one of size dα
(α = 1,…,M). The Q ×N sub-matrix T∥ is associated with longitudinal
perturbations to the synchronizationmanifold,which therefore characterize
the nature of the synchronized dynamics (e.g., periodic, quasi-periodic,
chaotic) but not the stability of the CS. This is taken into account by
transverse perturbations associated with the (N−Q) ×N sub-matrix T⊥

47.

To analyse the CS stability by following the MSF approach30, we now
consider the transformed coordinates η(t) = (T⊗ Im)W(t) (where⊗
denotes the Kronecker product) and ξ‘qðtÞ ¼ Ty‘qðtÞ. In particular, we focus
on the perturbations along the transverse manifold, η⊥(t) = (T⊥⊗ Im)W(t)
and ξ‘q?ðtÞ ¼ T?y

‘
qðtÞ.
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By using thematrixT (see details in the SupplementaryNote 2), for the
transverse perturbations we finally obtain,

_η?ðtÞ ¼ ρ1 spðtÞ
n o� �

η?ðtÞ þ ρ2 spðt � τÞ
n o� �
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where the terms ρ1,…, ρ4 are the time-varyingmatrices defined inMethods.
The set spð�Þ

n o
collects all the synchronous solutions (delayed or not)

corresponding to the Q clusters.
Through Eq. (3b), each entry of the vector ξ‘q?ðtÞ corresponds to one

and only one entry of the vector η⊥, q = 1,…,Q. Moreover, through
Eq. (3a), the entries of the vectorη⊥ are organized intoM groups, each one
independent of the others, and in general with a different number of
elements. M depends on the network topology and the analyzed cluster
pattern and ranges between 1 (each component of η⊥ depends on the
other components) and N−Q (all the entries of the perturbation vector
η⊥,i are independent of each other). The largerM, the higher the degree of
decoupling and therefore the dimensional reduction. If we callD the sum
of the distinct dα values, the number of equations to analyze is
Nred = (m+ LQ)(Q+D).

We have therefore decoupled the stability problem into independent
lower-dimensional equations. We remark that the time evolution of each
entry of the vector ξ‘q?ðtÞ is decoupled from all other entries. Some of these
entries are multiplied by zero coefficients on the right-hand side of Eq. (3a)
and so can be safely removed from the analysis. According to the MSF
approach, the stability of the cluster solution can be studied in terms of the
Transverse Lyapunov Exponents (TLEs)48,49.

In summary, the dimensional reduction provided by the MSF
approach can be quantified as follows. The original Eqs. (1) are
Norig =mN+ LN2, which is the same number of equations of the varia-
tional system, i.e., Eqs. (2) and (3). However, the Eqs. (3) haveM diagonal
blocks, corresponding toM independent sets of equations, which allows
the study of the stability of clusters in terms of a set of decoupled
equations39,50,51. All the 1-size blocks can be parameterized according to
the MSF approach so that only one equation must be simulated. For
example, if the network has an all-to-all topology we have the maximum
reduction since all blocks are scalar, i.e., M =N−Q, D = 1, and the
number of equations to analyze is Nred ¼ ðmþ LQÞðQþ 1ÞÞ, where we
recall that m is the dimension of the state vector of the ith oscillator, Q is
the minimum number of equitable clusters, and L is the number of dif-
ferent types of connections.

Applications of the methodology to three case studies
To validate and illustrate the potentialities of the introduced methodology,
thiswill be applied to case studies that differ in the adaptation rulesandother
topological and dynamical features.

The first example refers to neural systems and to the possibility of
storing stimulation patterns in memory, where the memory items are
representedby synchronized clusters displayingpopulationbursts in theβ-γ
range52–55. The corresponding network has the following characteristics: all-
to-all initial topology, uniform delay, homogeneous nodes, Hebbian adap-
tation rule, and a single layer.

The second example models the emergence of a disease state in a
volume element of tissue represented as a two-layer network of phase
oscillators, whose interactions are slower than the oscillators’ dynamics and
are modeled through an adaptive process. The healthy state corresponds to
synchronized dynamics, and the presence of several frequency clusters
denotes a pathological regime56,57. The corresponding network contains two
layers with a multiplex initial topology, no delay, heterogeneous nodes, and
an adaptation rule that depends on a parameter related to age.

The third case study is a small (N = 10) synthetic network with Erdős-
Rényi initial topology, no delay, homogeneous nodes, Hebbian adaptation
rule, and a single layer.

The theoretical approach previously described allows us (i) to analyze
the stability of a given CS solution through system (3) and (ii) to study the
behavior of the corresponding quotient network through system (2), at a
reduced computational cost.

Populationcoding: aplasticnetworkof neuralmasses.We consider a
network of N identical neural mass models58, arranged in a single layer
and interacting via plastic gap junctions, with homogenous synaptic
delay transmission τ. In particular, each network node corresponds to a
Wilson-Cowan model, which describes the dynamics of a neural mass
made up of two coupled populations of neurons, one excitatory and one
inhibitory59. The network plasticity obeys theHebbian rule60 and involves
only excitatory-excitatory connections. The model parameters (see
Methods) are set to values that correspond to the emergence of a sta-
tionary regime for the dynamics of an isolated node, i.e., the excitatory
and inhibitory population firing rates (represented by the state variable E
and I) approach a constant value61. Our goal is to study the emergence of
firing rate oscillations in biologically relevant frequency ranges induced
by the stimulation of a sub-group of neural populations, as in the case of
visual and auditory stimuli62,63. Furthermore, oscillatory behavior
(population bursts) promoted by the plastic properties of the network can
provide a means to store memory items, somehow in analogy to the
mechanisms reported for working memory64.

In particular, we consider a network with a fixed, fully connected,
initial topology. Since the all-to-all topology is compatible with any col-
oring of the network, i.e., with any CS pattern38,40, the network per se
admits any clustering configuration.We now aim to check if the network
can encode and decode simple visual memory patterns. This, in turn,
provides a unique test-bed to investigate which patterns are selected by
the adaptation rule.

As afirst test (see Fig. 1a)we stimulatedN1 nodes of the networkwith
a current pulse with normalized height 0.2 and 100 ms duration,
mimicking an external stimulation. The other N2 nodes (with
N1+N2 =N) are not stimulated.Wewant to study the network capability
of encoding/decoding information through coexisting CS solutions.
Notice that the analysis depends on the ratioN1/N; therefore, it is valid for
any value of N, owing to the assumption of fully-connected initial
topology. To this end, we start with the simplest case of a network with
Q = 2 stable clusters – where C1 contains theN1 stimulated nodes and C2

contains the N2 non-stimulated nodes – to study if the nodes of the
network reach a stable solution. We analyze the stability of the cluster
pattern solution that emerges at regime (i.e., after the effects of the initial
pulse are over), meaning that the stimulus has determined the onset of
two stable clusters in the network. Once the clustering has been induced
and the corresponding quotient network found, we can analyze the sta-
bility of the CS solution. The TLEs computed through Eq. (3b) are always
negative (see Supplementary Note 6). Therefore, the emerging cluster
solution is always stable and the nodes within each cluster are phase- and
frequency-synchronized. As the nodes within each cluster are synchro-
nized, the frequency of the collective oscillations can be computed by
analyzing the behavior of theQ = 2 nodes of the quotient network, which
is much simpler than the original network.

Figure 1b shows the color-coded asymptotic behavior of the net-
work, for different values of the synaptic coupling strength σ and of the
numberN1 of stimulated nodes. In the dark blue region, both populations
have the same low persistent activity, corresponding to a constant
population firing (i.e., not corresponding to brain oscillations), as shown
in Fig. 1c. In the blue region, the stimulated population produces stable
brain oscillations, as shown in Fig. 1e, whereas the non-stimulated
population remains in a low persistent regime. In the green region, the
stimulated (non-stimulated) populations present high (low) persistent
activity as shown in Fig. 1d, but again not corresponding to brain
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oscillations. The edges between these regions (dashed lines) have been
computed semi-analytically (see Supplementary Note 5).

The oscillations in the light blue region are in the β-γ range, as illu-
strated in Fig. 1f, which shows the frequency of the collective oscillations at
the three values of σmarked by colored vertical bars in Fig. 1b. Each curve in
Fig. 1f has the same coloring as the corresponding bar. The curves are
plotted versus the numberN1 of stimulated nodes.Wenotice that the higher
the synaptic coupling σ, the lower the number N1 of nodes that must be
stimulated to observe brain oscillations. Moreover, the obtained range of
frequencies is the same for any considered value of σ.

We remark that, in the absence of adaptation, this network (with the
same parameters) would not be able to generate persistent brain oscillations
(see Supplementary Note 6).

We have obtained proof-of-concept evidence that the considered
network can code the visual stimulus into brain oscillations whose fre-
quency depends on the global coupling σ and the stimulus itself. Next, we
will check if the network can code the stimulus into CS solutions corre-
sponding to Q = 3 clusters.

As a second test (shown in Fig. 2), we stimulated two groups of nodes
for 100 ms with stimulations of different intensity: namely, N1 (N2) nodes
with a current pulse of higher (lower) normalized height. The other N3

nodes (with N1+N2+N3 =N) are not stimulated, as shown in Fig. 2a.
Accordingly, to analyze the network behavior we split the nodes intoQ = 3
clusters:C1 andC2 containing active nodes, whereas nodes inC3 are in a low
persistent regime.As in thefirst test, thenodeswithin each cluster are always
frequency- and phase-synchronized since the TLEs are always negative.
Therefore, the activity of the whole network can be studied by analyzing the
quotient network. We observe that stable oscillations in the quotient net-
work can emerge for a suitable combination of N1 and N2 nodes. In these
cases, the activity of the two stimulated clusters is phase-locked with a
constant phase lag Δ (see Methods) and generates oscillations again in the
range β-γ.

Figure 2b andc show, for different values ofN1 andN2, the color-coded
frequency f of the nodes in the clusters C1 and C2 and phase lag Δ between
oscillations of nodes in C1 and in C2. In the white regions, there are no
oscillations.Moreover, the behavior along the thick diagonal corresponds to
the case N3 = 0, i.e., to the case with only two populations, both stimulated.
In the colored region, the studied oscillatory solutions are stable since all the
TLEs are negative. Figure 2d and e show the time plots of the state variables
E1 (blue) andE2 (orange) for the two sets of parameters corresponding to the
red (Fig. 2d) and black (Fig. 2e) dots in Fig. 2b, c.

We observe a complete symmetry in the diagram reported in Fig. 2b
by exchanging N1 with N2, due to the homogeneity in the original net-
work, and that γ oscillations emerge whenever N1 >>N2 (or equivalently
for N2 >>N1). By contrast, low frequencies in the β-range are observable
when the composition of the two stimulated clusters is comparable.

Furthermore, we observe that the phase lag between the two clusters
ranges in the interval [π/2, 3π/2]. We remark that the phase lag is π
wheneverN1 =N2 and deviates from π as far as ∣N1−N2∣ increases. Notice
that, due to the symmetry of the network, the phase is symmetric with
respect to the axis (N1 = N2), i.e., Δ(N1,N2) = 2π−Δ(N2,N1).

This second test proves that the network can code two different stimuli
into persistent brain oscillations with different frequency f and phase lag Δ.
Therefore, we conjecture that larger numbers of stimuli can be coded by the
network by generating different cluster solutions with larger numbers of
clusters.Moreover, eachCS solution is characterized by a specific frequency
f and phase lag Δ, which can be used to decode the stimulus. To check the
validity of this conjecture and thus verify that the plasticity rule allows
storing multiple memory items in the network, we performed a third test.

The memory items we consider are black and white images (size
200 × 200) of polygons inscribed in the same circumferencewith different
numbers of edges, as shown in Fig. 3a. Each polygon corresponds to a
different item to memorize and a different network stimulation pattern.
Each pixel of the image is univocally associated with a network node (i.e.,
we considered a network with N = 40000 nodes) where we stimulate the
N1 (N2) nodes corresponding to black (white) pixels with a higher (lower)
current pulse for 100 ms. TLEs are always negative (see Supplementary
Note 6) and we can analyze the network behavior by using the quotient
network. In this case, we observe the emergence of phase-locked oscil-
lations in the β-γ range with a constant phase-lag Δ among the two
population clusters. Indeed the situation is analogous to the one reported
in the previous experiment whenever N3 = 0. Figure 3b shows Δ for dif-
ferent values ofN1. In the intervalN1/N∈ [0.4, 0.6] we observe an almost
linear dependence of the phase-lag on the percentage of nodes in the
cluster C1. This dependence can be employed to encode the number of
edges of each polygon. Indeed this is possible as shown in Fig. 3b, where
the red circles and the number next to each of them show the phase
coding of the number of edges. Figure 3c and d show the time plots of the
state variables E1 (blue) and E2 (orange) for the two sets of parameters
corresponding to polygons with 8 (Fig. 3c) and 4 (Fig. 3d) edges.

The results of this third test can represent an example of population
coding, where the relevant quantity is the phase lag Δ among collective

Fig. 1 | Network of neuralmasses – test 1.The network is split into two clusters a by
stimulating N1 nodes with a current pulse with normalized height 0.2 and 100 ms
duration, and not stimulating the remaining N2 nodes. Depending on the values of
N1 and the synaptic coupling strength σ, the stimulated cluster can produce stable
brain oscillations (b) (blue region) or present persistent activity corresponding to a
constant population firing (b, green and dark blue regions). The dashed black lines

mark the edges between the three regions andhave been computed semi-analytically
(see Supplementary Note 5). c–eTime evolution of the state variables E1 (solid blue)
and E2 (dashed red) for the set of parameters corresponding to dots in panel (b).
f Frequency of the collective oscillations at the three values of σmarked by colored
vertical bars in (b). Each curve in (f) has the same coloring as the corresponding bar.
By varying N1, the network can produce oscillations in the β− γ range.
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oscillations, somehow resembling the frequency-band coupling observed in
the monkey visual cortex63.

All the results reported here are obtained with the methodology pre-
viously introduced. In particular, for the third experiment, this presents the
advantage that the number of equations that must be simulated can be
reduced fromNorig ≈ 1.6 ⋅ 109 toNred = 12, asm = 2, L = 1,Q = 2, andD = 1.
The diagonal structure of the terms ρ1, ρ2, ρ3 and ρ4 in Eq. (3b) (see Sup-
plementary Note 7) implies that (i) the stability of each cluster is indepen-
dent of the stability of any other clusters (i.e., the clusters are not one-way
dependent and not even intertwined39) and (ii) the dimension of the space
we have to explore to study the stability of the synchronous solution can be
strongly reduced. For this example, we notice that the term ρ2 in the var-
iational Eq. (3a) is zero. However, the same equations are influenced by
the quotient network state sp, whose behavior is affected by σ, as shown
in Eq. (2).

Propagation of tumor disease: a two-layer adaptive network model.
As a second example, we analyze an adaptive two-layer network of phase
oscillators with multiplex topology as a model for the emergence of
pathological states induced by tumors or infections57. In this simplified
scheme, the healthy state corresponds to a fully frequency-synchronized
regime of the network. By contrast, pathological nodes have ametabolism
that is faster than healthy nodes, and the pathological state is char-
acterized by the presence of multifrequency clusters: one with a normal
metabolism, containing healthy nodes, and one or more with a faster
metabolism, containing pathological nodes. The presence of multi-
frequency clusters leads to a decreased overall synchronization of the
network. In particular, the two-layer (L = 2) heterogeneous network is
composed ofN nodes (of two kinds) and represents a volume element of
tissue consisting of parenchyma (organ tissue), basal membrane, and
stroma (immune layer). This networkmimics the functional interactions
between parenchyma (N cells in the first layer) and stroma (N cells in the
immune layer), which lead to the propagation of tumor disease. The

communication through cytokines (which mediate the interaction
between the cells) is modeled by adaptive connections, as their timescale
is slow compared to the cell metabolism65,66.

Each node i of the network models a cell of both the organ tissue and
the immune layer; therefore, it is described by a 2-dimensional state vector
xi ¼ ½ϕð1Þi ; ϕð2Þi �T (see Methods), where ϕð1Þi and ϕð2Þi are phase variables
related to the metabolic activity of the i-th cell of the organ tissue (par-
enchyma) and of the immune layer, respectively. The model equations are
detailed in Methods.

Each parenchyma cell in isolation can be of two kinds, namely healthy
or pathological, depending on the value of the natural binary frequencyωð1Þ

i ,
which represents the metabolism velocity of an isolated cell. Accordingly,
the network is non-homogeneous, because the nodes are of two different
kinds. A higher (lower) natural frequency ωð1Þ

i is associated with patholo-
gical (healthy) cells, since a higher velocity corresponds to a faster meta-
bolism in the cell, usually associatedwith apathological state.However, once
connected within the network, the state of a cell, either healthy or patho-
logical, is influenced by its interactions with the other cells. Indeed, the state
of the cell is related to the rate _ϕ

ð1Þ
i of cytokineproduction,whichdepends on

both the natural frequency ωð1Þ
i and the adaptive coupling terms b‘ij. Once

coupled, healthy and tumor cells differ by theirmetabolic activity, i.e., tumor
cells are less energy-efficient and thus have a faster cellular metabolism,
corresponding to a higher rate _ϕ

ð1Þ
i of cytokine production.

As the adaptive interactionmediated by cytokines can involve any pair
of cells57, the cells of the organ tissue are initially linked through a fully
connected topology (a‘ij ¼ 1 in Eq. (1)), where the strength of the connec-
tions depends on the adaptation variables b‘ij.

The health state of the complete network depends on the rate values
f _ϕð1Þi g57 and it is monitored through the parameter �νð1Þ, which provides an
average measure (over different trials) of the standard deviation of the
angular frequencies _ϕ

ð1Þ
i (see Methods). A zero value of �νð1Þ means that all

the nodes are locked in frequency; in this case, thenetwork is healthy.On the
contrary, whenever �νð1Þ is non-zero, frequency clusters appear in the

Fig. 3 | Network of neural masses – test 3. The network is composed of N = 40000
nodes, each one univocally associated with a pixel of black and white images (size
200 × 200) representing regular polygons a. The network is split into 2 clusters, both
active, by stimulating theN1 nodes corresponding to black pixels with a current pulse
with height 0.25 and width 100 ms, and the N2 nodes corresponding to white pixels

with a current pulse with height 0.15 and width 100 ms. b Asymptotic phase lag
among the oscillations emerging in the two stimulated clusters, for different values of
N1. The red dots show the phase coding of the number of polygon edges. The time
plots (c, d) show the state variables E1 (blue) and E2 (orange) for the two sets of
parameters corresponding to polygons with 8 c and 4 d edges.

Fig. 2 | Network of neural masses – test 2. After setting σ = 20, the network is split
into 3 clusters a by stimulating two groups of nodes for 100 ms with stimulations of
different intensities (N1 nodes with a current pulse of normalized height 0.25 andN2

with a smaller pulse of height 0.15). The other N3 nodes are not stimulated. Color-

coded frequency (b) and phase lag Δ (c) of the nodes in the clusters C1 and C2 for
different values of N1 and N2. In the white regions, there are no asymptotic oscil-
lations. The time plots (d, e) show the state variablesE1 (blue) andE2 (orange) for the
two sets of parameters corresponding to the red and black dots in panels (b, c).
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network, meaning that some nodes evolve with a higher frequency, corre-
sponding to a pathological state. An equivalent parameter �νð2Þ measures the
standard deviation of the angular frequencies in the second layer, but its
value is not related to the onset of a pathological condition because in tumor
disease mutated cells are almost always located in the parenchymal layer57.

The parameter β governs the plasticity rule of the cytokines and it can
be associated with different adaptation rules. For instance, for β = π/2, a
symmetric rule is obtained where the coupling increases between any two
oscillators with close-by phases67; on the contrary, if β = 0, the coupling will
be strengthened if the oscillators have a phase shift of π/2. β mimics a
systemic sum parameterwhichmay account for different influences such as
physiological changes due to age in the extracellular matrix, inflammation,
systemic and local inflammatory baseline, etc. For tumor disease, it can
include the malignancy grade of tumor cells. For the sake of brevity, we call
this parameter the age parameter.

Using theMSF approach, we investigate how a small fraction r < 0.1 of
initially pathological nodes and the age parameter β influence the onset of
tumor disease in a network composed of N = 200 nodes. In particular, we
analyzed the network behavior for a grid of 11 × 11 values of the parameters
r∈ [0, 0.1] and β∈ [0.40π, 0.55π].

Due to the multiplex topology of the network, many different cluster
patterns are admitted (see Supplementary Note 8). Nodes within a cluster
are phase-synchronized (and therefore frequency-synchronized) and
represent a group of cells in the tissue that produce cytokine with the same
metabolism velocity. Depending on the evolution of the quotient network,
clusters can evolve either with the same frequency (whichmeans that all the
cells in the tissueproduce cytokine at the same rate and therefore the tissue is
healthy) or with different frequencies (which means that some cells in the
tissue produce cytokine with a faster metabolism and therefore the tissue is
pathological). Therefore, to investigate if a stable cluster pattern is healthy/
pathological, we evaluate if the parameter �νð1Þ in the quotient network is
close to zero. In this paper, we perform two tests. The first test is to analyze
the presence of multi-stability by varying β and r. In the second test, we
investigate how different cluster patterns influence the onset of the
pathological state.

In the first test, we focus on the simplest pattern shown in Figs. 3 and 4
of ref. 57, where the nodes of the network split into two groups of phase-
synchronized nodes. To analyze the stability of this pattern for different
values of β and r, we initially divide the network into two phase clusters, one
with r ⋅ 200 pathological nodes and the other one with (1− r) ⋅ 200 healthy
nodes. All the nodes within a cluster have the same initial phase, i.e., si ¼
½ϕð1Þi ; ϕð2Þi �T ¼ sj if i, j∈Cp, where si is the state ofwhichwe are analyzing the
stability. The initial phases of each cluster are randomly selected from a
uniform distribution in the range [0, 2π], whereas the initial coupling
weights fb1p;qg and fb2p;qg between clusters are randomly selected from
uniform distributions defined in the ranges [0, 2] and [− 1, 1], respectively.
In the Supplementary Note 9, we show that this 2-cluster solution syn-
chronized in phase (and thus in frequency) exists and is stable for any
considered value of β and r. Moreover, the parameter �νð1Þ is always close to
zero (see Supplementary Note 9). Therefore, we found that a stable healthy
state is possible in the whole considered range of the parameters. This result
can hardly be obtained via the analysis performed in57, which was based on
extensive network simulationswith different random initial conditions, and
therefore led to a focus onlyon thepatternwith the largest basinof attraction
for each (β,r) pair. Our analysis suggests that there should be a coexistence
amongdifferent healthy andpathological states in thewhole bi-dimensional
parameter plane (β,r). Therefore, a deeper analysis of the multiple stable
cluster patterns admitted by the network is required.

As a second test, we extended the result obtained in57 by analyzing the
network multi-stability, to see (i) how the fragmentation of the network in
multiple clusters affects the overall health of the network, in terms of the
parameter �νð1Þ, and (ii) how many healthy and pathological states can
coexist. To this aim, we divided initially the (1− r) ⋅ 200 healthy nodes into
Na phase clusters, each one containing (1− r) ⋅ 200/Na nodes. The analyzed
network structure is shown in Fig. 4a: 200 ⋅ r nodes (corresponding to the

red node of the quotient network in Fig. 4a) are set as pathological nodes
(ωð1Þ

i = 1), whereas 200 ⋅ (1− r) nodes (corresponding to the green nodes of
the quotient network in Fig. 4a) are set as healthy nodes (ωð1Þ

i = 0) and split
into Na phase clusters. Each cluster corresponds to a different initial phase,
selected randomly, as in the first test. To study the effect of clustering on the
network evolution, we considered three values of Na, namely 6, 10, and 15,
meaning that we have initially 6 (or 10 or 15) clusters of healthy nodes and
we analyzed whether these clusters and the pathological nodes synchronize
in frequency thus either yielding a healthy state or not.

For each parameter set, we analyze the quotient network and compute
the average indicator �νð1Þ (see Methods) to discriminate between patholo-
gical (�νð1Þ>0) and healthy (�νð1Þ ¼ 0) conditions.We take an average overN
trials with different random selections of the initial conditions for each
cluster to make this indicator robust. The results are shown in Fig. 4b. For
each value of Na, a colored line marks the boundary between healthy
(leftmost areas) and pathological (rightmost areas) states of the network.
This implies that, for a given parameter set (r and β fixed), we can reach a
healthy or pathological state depending on the initial conditions, i.e., onNa.

The variability of tumor disease results from the initial genetic state of
the tumor cells, their subsequent mutations, epithelial-mesenchymal tran-
sitions, and interactions with the innate immune system68. Therefore,
starting from different initial conditions allows monitoring of different
possible evolutions. The model predicts that the tissue can fall into a
pathological state with a high number of tumor cells when the fraction r of
initially pathological cells or the age of the patient (β) increases. Moreover,
the number Na of healthy clusters influences the onset of the tumor; the
higher Na, the wider the parameter region that corresponds to the patho-
logical state. Therefore, in the presence of smaller groups of initially healthy
nodes synchronized at different phases, the network will become patholo-
gicalmore easily. By contrast, a single larger phase cluster of initially healthy
nodes is more robust to the propagation of the tumor.

Figure 4c1 and c2 show �νð‘Þ versus β for r = 0.07 and different values of
Na. As already shown in Fig. 4b, when Na increases, the pathological con-
dition (�νð1Þ>0) is obtained in a wider range of β. At the same time, the value
of the indicator�νð2Þ concerning the immune layer seemsnot tobe influenced
by Na and reveals that this layer is usually not frequency-locked for
β > 0.438π. Moreover, for the same set of parameters (β,r) the network
exhibits different behaviors, depending on the chosen value ofNa, i.e., on the
initial conditions, thus clearly showing multi-stability. Once again, this
shows that knowledge of β and r is not sufficient to determine the onset of a
pathological state and that the initial conditions of the network should also
be taken into account.

The network dynamics is more deeply analyzed in some specific cases,
by considering r = 0.07 and β = 0.55π for Na = 6 (Fig. 4d) and Na = 15
(Fig. 4e). Inparticular, the raster plots (seeMethods) reported in the leftmost
panels show the time evolution of the network. Notice that Na = 6 corre-
sponds to green nodes starting from 6 sets of different initial conditions
(Fig. 4d1 andd2),whereasNa = 15 corresponds to greennodes starting from
15different sets of close initial conditions (Fig. 4e1 and e2), as better detailed
inMethods. In Fig. 4d3 and d4, this leads to synchronization between green
and red nodes and therefore to a healthy state. Indeed, although the
pathological nodes in the parenchymal layer have different natural velocity
ωð1Þ
i , they synchronize theirmetabolic rate _ϕ

ð1Þ
i with thehealthynodes due to

the coupling. The same information can be extracted from Fig. 4d3, which
shows _ϕ

ðlÞ
i in the parenchymal layer. We remark that the metabolic rates in

the parenchymal and immune layers are different due to the different
coupling terms at regime, as pointed out in Fig. 4d5 and d6, which show the
coupling matrix B1 and B2 once the asymptotic state is reached.

When the number of different sets of close initial conditions increases,
multi-frequency clusters appear and the network falls into a pathological
state (Fig. 4e1 and e2), where the pathological (red) nodes in the par-
enchyma layer evolve with a higher metabolic rate (Fig. 4e3). A corre-
sponding cluster of lower frequencies is observed in the immune layer
(Fig. 4e4). This indicates an essential change in the dynamical state of the
immune layer, where all nodes have a velocity close to their velocity when
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isolated ωð2Þ
i ¼ 0 (Fig. 4e4). Figure 4e5 and e6 confirm that the asymptotic

coupling is weaker than in Fig. 4d5 and d6.
To check the robustness to heterogeneity (which is a common fea-

ture in natural networks) of the results obtained in this case study, we
selected one parameter of each node randomly (similarly to what was
done in refs. 69,70), thus considering a fully heterogeneous network and
preventing the possibility of perfect CS. In particular, the natural fre-
quency of the isolated nodes in the first layer is selected as ωð1Þ

i ¼
jZð0;ΣÞj for healthy nodes and ωð1Þ

i ¼ 1þ Zð0;ΣÞ for pathological
nodes, where Zð0;ΣÞ is a random variable with mean 0 and standard
deviation Σ. Therefore, each node is associated with a different value of
the parameter ωð1Þ

i and no exact CS is admitted by the network for any
Σ ≠ 0. This implies that to analyze the network we have to simulate its
whole dynamics and we cannot employ the quotient network. The
obtained results for Σ 2 10�3; 10�2; 10�1

� �
are compared to the case

Σ = 0 (solid curves in Fig. 5). For each value of Σ, the network behavior is
analyzed for N ¼ 30 different realizations of Zð0;ΣÞ. The mean para-
meter �νð1Þ averaged across the N trials is shown in Fig. 5 for Na = 6
(Fig. 5a), Na = 10 (Fig. 5b), Na = 15 (Fig. 5c).

We remark that the specific value �νð1Þ is relatively relevant, what is
important is the threshold value of β from which �νð1Þ≠0, corresponding to
the onset of a pathological state. With this caveat in mind, for all the con-
sidered values ofNa, the results obtained with the proposedmethod remain
valid for Σ≤10−2. The results shown in Figs. 4b and c have been obtained
through the analysis method introduced in this paper, which reduced the
computation times by two orders of magnitude with respect to simulations
of the whole network required to obtain Fig. 5. Indeed, the number of
equations that must be simulated is reduced from Norig = 80400 to
Nred= 128 for Na = 6, as m = 2, L = 2,Q = 7, and D = 1. Moreover, the
reduction of the dimensionality of the state space obtained by using the
quotient network enables an accurate analysis of the multi-stable solutions
displayed by the model.

Network of Lorenz systems with non-global coupling
To further investigate the potentiality of the method we analyze a synthetic
network with non-global coupling. In particular, we consider a small
symmetric network with one layer, no delay, N = 10 nodes, whose initial
topology is of Erdős-Rényi kind (i.e., dense, but not global), with an edge
removal probability of 0.1. This is a single-layer network, therefore we omit
the index ℓ. Each oscillator is a Lorenz system, with coupling in the first
variable (see Methods). When isolated, each node evolves toward a chaotic
attractor. The adaptation law is the classical Hebb’s rule. By using the col-
oring method proposed in refs. 38,39, we can split the network into Q = 3
clusters: nodes from1 to 6 belong to cluster C1 (see Fig. 6a, dark blue nodes),
nodes 7 and 8 belong to cluster C2 (light blue nodes), and the other (yellow)
nodes belong to cluster C3. The second and third clusters are intertwined
because their perturbations are associated with the same block ofmatrix B̂?
(see Supplementary Note 10) and therefore share the same TLEs.

Figure 6b andc showtheTLEs for a regular gridof 100 × 100values ofσ
and ϵ for cluster C1 and C2 (the same result holds for cluster C3, due to the
intertwining mentioned above), respectively.

TLEs lower than zero correspond to parameter sets where all the nodes
within the clusterCi are synchronized.A similar analysis canbe carriedoutby
simulating thewhole network and by computing the synchronization errorE
(see Methods) between the nodes of each cluster. Figures 6d-f show the
corresponding results. As expected, the two methods manifest an excellent
agreement, but the proposed MSF-based method allows for reducing the
computational time of one order of magnitude. Indeed, the entries of the
matrices ρ1,…, ρ4 are organized into M = 6 diagonal blocks (see Supple-
mentary Note 10) and the number of equations that must be simulated is
reduced from Norig = 130 to Nred = 36, asm = 3, L= 1,Q= 3, and D = 3.

Discussion
As stated in the Introduction, a generalmethodology to treat CS in adaptive
networks has not been developed yet. In this article, we have proposed a

Fig. 4 | Propagation of tumor diseases.The volume
element of tissue is modeled as a 2-layer hetero-
geneous network composed of N = 200 nodes with
adaptive connections. The network is split into
Na+ 1 clusters (a) by properly selecting the initial
conditions: 200 ⋅ r nodes are set as pathological (red
circle), 200 ⋅ (1− r) as healthy (green circles); heal-
thy nodes are split into Na phase clusters. b Two-
dimensional phase-diagram in the plane (β, r) dis-
playing the boundary between healthy (leftmost
areas) and pathological states (rightmost areas) for
different values of Na. c Average parameter �νð‘Þ vs β
for r = 0.07 and the three values of Na examined in
panel (b). The behaviour of the network for r = 0.07
and β = 0.55π is reported in (d1-d6) for Na = 6 and
in (e1-e6) for Na = 15: raster plots showing the time
evolution of the network (d1, d2, e1, e2), phase
velocity of the nodes (d3, d4, e3, e4), and snapshots
of the entries of the matrix Bl (d5,d6, e5, e6). The
panels (d1,d3,d5) and (e1,e3,e5) are related to the
parenchyma layer. The panels (d2,d4,d6) and
(e2,e4,e6) are related to the immune layer.
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method to analyze the multi-stability of CS patterns in multi-layer adaptive
networks of heterogeneous oscillators with delays. This method exploits an
implementation of the MSF approach, which can considerably reduce the
dimensionality of the stability analysis. This reduction lowers the compu-
tational effort required for the numerical analysis, thusmaking it suitable for
studying multiple coexisting stable solutions. We remark that in the case of
complete synchronization (only one cluster), ourmethod can be reduced to
the one developed in ref. 26.

Thanks to this approach, we have been able to extend the study of
cluster synchronization27,39,45,71–73 to the case of networks with adaptive
connections of different types, heterogeneous nodes, and node-to-node
communication delays. We were also able to show which CS patterns were
selected by the chosen adaptation rule. Our results can find application in
neural dynamics and machine learning since CS plays a key role in fun-
damental neural processes, such as coordination and cognition, and plas-
ticity can provide amechanism to embed in the network a learning strategy
to encode specific patterns28,29,74.

As a proof of concept, we applied our method to three networks of
oscillators with different dynamical evolution and adaptation rules. In
these examples, we identified multi-stable CS patterns displaying differ-
ent (i.e., stationary or oscillatory) coherent dynamical regimes. The
analysis of oscillatory patterns of synchronized clusters can be relevant in
biology, where periodic fluctuations play key roles in many processes,
including the cell cycle, circadian regulation, metabolism, embryo
development, neuronal activity, and cardiac rhythms75. In many biolo-
gical systems, other key features are adaptation and multi-stability.
Therefore, the proposedmethod is suited to analyze the behavior of these
systems, at least in conditions of small heterogeneity, as in the second case
study. The main limitations of the proposed approach are two: the
required symmetries of both coupling and its strength, which can be hard
to fulfill in some adaptive systems, and the fact that if the number of
different oscillators is high (i.e., we consider many different fi’s) the
dimensional reduction advantages are less evident. Despite this, even by
reasoning on simplified models we can gain insight into the behavior of

real networks with a higher degree of heterogeneity. An a posteriori
robustness analysis can verify if a simplified model can capture the main
synchronization features of a less idealized network.

In the first considered example (a plastic single-layer network of neural
masses), we used the proposed method to analyze the network encoding/
decoding capabilities, and we report the possibility of employing phase
differences among population oscillations in the β-γ bands to store visual
information. The frequency bands at which we observe the oscillations are
usually evoked by visual stimulation: β-bursting is believed to be correlated
to visual attention76, whereas γ-rhythms are at the basis of visual coding77.
Furthermore, phase coupling and coding play a fundamental role in brain
activity63,78. Recently, evidence of θ-phase dependent neuronal coding
during sequence learning of pictures has been reported also in the human
temporal lobe79.

In the second example (a two-layer adaptive network model for the
propagation of tumor disease), we used ourmethod to investigate the role of
multi-stability at the onset of tumor disease. From the analysis of thismodel,
it emerges that the parameter β in the model (related to the age) is funda-
mental in controlling the onset of the pathology. The percentage of
pathological states increaseswithβ, and thereforewith age80,81. Furthermore,
the initial number of clusters present in the healthy state has a strong
influenceon the state of themodel: themore clusters are initially present, the
more probable it is that the disease will develop. Therefore, a healthy state
displaying a high degree of phase and frequency synchronization is more
resilient to tumor development. An a posteriori robustness analysis shows
that, even resorting to a simplified model with two different kinds of nodes
(onewithωi = 1 and onewithωi = 0), can capture themain synchronization
features of a less idealized network, with a much higher degree of
heterogeneity.

In the third example, the main distinctive feature is the non-all-to-all
initial topology.

In all cases, our method allowed us to obtain valuable dimensional
reductions and consequent numerical advantages. In general, the extent of
the dimensional reduction depends on the network features (initial

Fig. 6 | Synthetic network. Structure and analyzed
clustering pattern (a). Transverse Lyapunov Espo-
nents (TLEs) for cluster C1 b and C2 � C3 c. Syn-
chronization errors between the nodes of cluster C1
(d), C2 (e), C3 f. The blue areas in (b, c) correspond to
a stable clustering pattern (a) and to a low syn-
chronization error (purple regions) in (d-f).

Fig. 5 | Propagation of tumor diseases – check of robustness. Average parameter
�νð1Þ vs β for a heterogeneous network with r = 0.07,Na = 6 (a), 10 (b), and 15 (c) and
natural frequency of the isolated nodes in the first layer set to ωð1Þ

i ¼ jZð0;ΣÞj for

healthy nodes and ωð1Þ
i ¼ 1þ Zð0;ΣÞ for pathological nodes. Solid lines (orange in

(a), yellow in (b), purple in (c)): benchmark solution, obtained with our method for
Σ = 0. Crosses: Σ = 10−3. Squares: Σ = 10−2. Triangles: Σ = 10−1.
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topology, number of different types of nodes, etc.). Nonetheless, the analysis
method is general and can be applied to many examples in various fields.
Even if themethod is focused on exact CS and has a local validity due to the
linearization at the basis of theMSF approach, it can be a useful tool to get a
first idea of the possible stable solutions admitted by an adaptive network
that canbedescribedby the formalismofEq. (1). If necessary, the robustness
of the analysis against the high heterogeneity that characterizes many of
these systems can be checked a posteriori through direct simulations, as we
did in the second example.

Methods
Variational equations for the transverse perturbations
Asdetailed in theSupplementaryNote 2, for the transverse perturbationswe
obtain (for q = 1,…,Q),

_η?ðtÞ ¼
XQ

p¼1
Ep? � D~f pðspðtÞÞ

h i
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where the block-diagonal matrices marked with ⊥ are minors of the
complete matrices, In is the identity matrix of size n, B̂ ¼ TBT�1 and
Â ¼ TAT�1 contain only the blocks related to the transverse perturbations.
In the above expression,

D~f pðspðtÞÞ ¼Df pðspðtÞÞ

þ DS1 spðtÞ;
XL
‘¼1

σ‘
XQ
q¼1

r‘pqk
‘
pqðtÞg‘ðsqðt � τÞÞ

 !
ð5Þ

and

D~Sp ¼ DS2 spðtÞ;
XL
‘¼1

σ‘
XQ
q¼1

r‘pqk
‘
pqðtÞg‘ðsqðt � τÞÞ

 !
; ð6Þ

where Df is the m ×m Jacobian of the nodes’ vector field and the m-
dimensional matrix DS1 (DS2) is the derivative of S with respect to its first
(second) argument.

Plastic network of Wilson-Cowan neural masses
This is a single-layer network, therefore we omit the index ℓ. Each node is a
neural mass model of the type introduced by Wilson and Cowan82,83, each
composed of an excitatory and an inhibitory population. The dynamics of
each population is described in terms of the variable Ei (Ii) representing the
firing rate of the i-th excitatory (inhibitory) population. The two popula-
tions within each node are cross-coupled via a sigmoid functionmimicking
an effective synaptic coupling with coupling strengths ωξχ with ξ, χ∈ [E, I],

whereE (I) denotes the excitatory (inhibitory) population.Theparameter τE
(τI) is the refractory period of the excitatory (inhibitory) population after a
trigger and θE (θI) determines the firing rate of the excitatory (inhibitory)
population when isolated. Furthermore, all the neural mass models (nodes)
are globally coupled (aij = 1) via excitatory population activities through
Hebbian-like adaptive connections (see Eq. (8) below). The strength of the
global recurrent coupling is controlled by the parameter σ. The dynamical
evolution of the i-th neural mass obeys the following equations:

τ̂
_Ei

_Ii

" #
|fflffl{zfflffl}

_xi

¼ �Ei
�Ii þ ð1� IiÞΓIðwIEEi � wIIIi þ θIÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FiðxiÞ

þ ð1� EiÞΓEðwEEEi � wEIIi þ σ
P

j aijbijEjðt � τÞ þ θEÞ
0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sðxi;σ
P

j
aijbijgðxjðt�τÞÞÞ

ð7Þ

_bij ¼ �ϵ bijðtÞ�EiEj|fflffl{zfflffl}
Hðxi;xjÞ

0
BB@

1
CCA ð8Þ

where the sigmoid functions ΓI and ΓE in Eq. (7) have the following
expressions

ΓξðXÞ ¼
1

1þ e�γξ ðX�θξ Þ with ξ ¼ E; I ð9Þ

and range between 0 and 1. The parameters entering in Eqs (7) and (8) are
fixed as follows τ̂ ¼ 8 ms, γE = 1.3, γI = 2, θE = 2.2, θI = 3.7, wEE = 16,
wEI = 12, wIE = 15, wII = 3 and ϵ = 0.01Hz. The transmission delay is set to
τ = 10ms. The time constants τE and τI and parameter θE are chosen so that
(i) the isolated node is quiescent and (ii) the brain waves that the network
can generate are in the β− γ range.

Multi-layer adaptive network for tumor disease propagation
Wemodel the organic tissue as a two-layer adaptive network. The network
layer of parenchymal cells (super-script (1)) is composed of N phase
oscillators ϕð1Þi , i = 1,…,N, of two kinds, whereas the network layer of
immune cells (super-script (2)) is composed of N adaptively coupled
homogeneous phase oscillatorsϕð2Þi . The communication through cytokines
that mediate the interaction between the parenchymal cells is modeled by
the coupling weights b1ij, and those between the immune cells by coupling
weights b2ij

57 (To employ our formalism, we have substituted the coupling
weights k1ij defined in

57 with b1ij ¼ 1þ k1ij.).
To tailor themodel to the formalism of Eq. (1), the network ismodeled

as aN-node network, where the i-th node contains the i-th oscillator of both
the parenchymal and the immune layer. The state equations of the network
are:

_ϕ
ð1Þ
i

_ϕ
ð2Þ
i

" #
|fflfflffl{zfflfflffl}

_xi

¼
ωð1Þ
i � γ ϕð1Þi � ϕð2Þi

� �
ωð2Þ � γ ϕð2Þi � ϕð1Þi

� �
2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FiðxiÞ

þ

�1=N
P

j a
1
ijb

1
ij sin ϕð1Þi � ϕð1Þj þ α

� �
�1=N

P
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2
ijb

2
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� �
2
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3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S xi;

P
‘
σ‘
P

j
a‘ijb

‘
ijg

‘ðxjÞ
� �

ð10Þ
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_b
1
ij ¼ �ϵ b1ijðtÞ þ sin ϕð1Þi � ϕð1Þj � β

� �
� 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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0
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_b
2
ij ¼ �ϵ b2ijðtÞ þ sin ϕð2Þi � ϕð2Þj � β

� �
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Hð2Þðxi;xjÞ

0
BBB@

1
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ð11Þ

where γ = 0.3, α = 0.28π, ϵ = 0.3,ω(2) = 0. The other parameters are specified
in the Results.

To quantitatively characterize the collective dynamics of the network
we use the indicator

νð‘Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
j

< _ϕ
ð‘Þ
j > � �ωð‘Þ

� �2s
ð12Þ

where < _ϕ
ð1Þ
j > ¼ 1

T

R tþT
t

_ϕ
ð1Þ
j ðt0Þdt0 and �ωð‘Þ ¼ 1

N

P
j< _ϕ

ð‘Þ
j > are the mean

phase velocity and the corresponding spatial (population) average for the
oscillators in the first layer. In practice, the parameter ν(ℓ) measures the
standard deviation of the average phase velocities. A finite value of ν(ℓ) indi-
cates the formation ofmultifrequency clusters in layer ℓ, while a zero value of
ν(ℓ) is associated with a fully synchronized state. The network splitting into
clusters with different frequencies in layer ℓ = 1 is taken as an indication of a
pathological state, whereas the fully synchronous situation of the same layer
denotes a healthy state. Indeed, (i) tumor cells are less energy-efficient and
thus have a faster cellular metabolism (i.e., multifrequency clusters appear in
pathological conditions) and (ii) in tumor disease mutant cells are almost
always parenchymal cells, i.e., only ν(1) determines the onset of the pathology.

The parameter ν(ℓ) can be computed efficiently by simulating only the

quotient network, as xi ¼ ½ϕð1Þi ; ϕð2Þi �T ¼ sp if node i 2 Cp.
To analyze multi-stability, we perform N ¼ 100 simulations of the

quotient network, starting from different random initial conditions and we
compute the parameter �νð‘Þ as the average value of ν(ℓ) across theN trials. As
for parameter ν(1), a positive value of �νð1Þ indicates a pathological state.

Phase lag computation
The definition of the phase lag Δ assumes that isolated or coupled nodes
(neural masses) maintain relatively close temporal characteristics and
each one evolves on a structurally stable periodic orbit in the state space
of the corresponding model. The phase variable, defined modulo 1,
indicates the position of the node j on its periodic orbit. Consequently,
the phase lag in a network of two neural masses can be described by Δ,
which is the difference between the corresponding phase variables. The
time evolution of Δ, being quite complex due to nonlinear interactions,
can be determined through numerical simulations. Following84, we first
compute all the crossing times ti(k) (indexed by k) for which the variable
Ei passes a threshold Eth = 0.2. The phase lag Δmeasures the normalized
delay between the crossing times of nodes i and j corresponding to the k-

th event: ΔðkÞ ¼ 2π
tjðkÞ�tiðkÞ

tiðkÞ�tiðk�1ÞModð2πÞ. Δ is the asymptotic value

of Δ(k).

Raster plots
The raster plots in Fig. 4 were obtained as follows. We consider a specific
clusterization with Q =Na+ 1 clusters. We randomly select the initial
condition sq(0) of the q-th clusterCq. All the nodes within this cluster are set
with close initial conditions, i.e., xi(0) = sq(0)+ ζ if i∈Cq, where ζ is a
random variable distributed normally withmean value 0 and variance 10−2.
Then, we simulate the network for 660 units of time. We compute the time
instants tðjÞi ; i ¼ 1; . . . ;N when the i-th phase ϕð‘Þi overcomes π, where ℓ

denotes the layer. All these time instants are marked in the raster plots with
green (red) dots for healthy (pathological) nodes.

Synthetic network with non-global coupling
This is a single-layer network, therefore we omit the index ℓ. Each node is
described by a Lorenz system coupled through Hebbian-like adaptive
connections on the x variable:

_xi
_yi
_zi

2
64

3
75

|fflffl{zfflffl}
_xi

¼
~σðyi � xiÞ

~ρxi � xizi � yi
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þσ
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2
64

3
75
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Sðxi;σ

P
j
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ð13Þ

_bij ¼ �ϵ

�
bijðtÞ þ xixj|{z}

Hðxi ;xjÞ

�
ð14Þ

where ~σ ¼ 10, ~ρ ¼ 28 and ~β ¼ 8=3.
The synchronization error among theNinodes in cluster i is computed

as:

E ¼ 1
Ni

X
j2Ci

jjxj � �xijj ð15Þ

where �xi is the mean state among the nodes in cluster i:

�xi ¼
1
Ni

X
j2Ci

xj ð16Þ

Data availability
All data generated or analyzed during this study are included in this pub-
lished article (and its supplementary information files).

Code availability
The source code for the numerical simulations presented in the paperwill be
made available upon request.
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