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ABSTRACT

Mitigating the impact of variable inflow conditions is critical for a wide range of engineering systems such as drones or wind and tidal
turbines. Passive control systems are of increasing interest for their inherent reliability, but a mathematical framework to aid the design of
such systems is currently lacking. To this end, in this paper a two-dimensional rigid foil that passively pitches in response to changes in the
flow velocity is considered. Both an analytical quasi-steady model and a dynamic low-order model are developed to investigate the pivot point
position that maximizes unsteady load mitigation. The paper focuses on streamwise gusts, but the proposed methodology would apply equally
to any change in the inflow velocity (speed and/or direction). The quasi-steady model shows that the force component in any arbitrary direc-
tion can be kept constant if the pivot lies on a particular line, and that the line coordinates depend on the gust and the foil characteristics.
The dynamic model reveals that the optimum distance of the pivot location from the foil increases with decreasing inertia. For a foil at small
angles of incidence, the optimum pivot point is along the extended chord line. This knowledge provides a methodology to design optimum
passively pitching systems for a plethora of applications, including flying and swimming robotic vehicles, and provides new insights into the
underlying physics of gust mitigation.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0212626

I. INTRODUCTION

Unsteady load management is crucial across many engineering
disciplines, including the operation of small unmanned aerial vehicles
(UAVs), which are significantly affected by environmental factors,1–5

and in the mitigation of vibration and noise in aircraft and rotor-
craft,6–11 as well as in enhancing the efficiency and durability of wind
and hydrokinetic turbines.12–14 In comparison with larger aircraft,
small UAVs face unique challenges in terms of control, flight stability,
efficiency, and resilience, due to their lower inertia and thus increased
vulnerability to disturbances such as gusts and atmospheric turbu-
lence.15–20 The use of UAVs in urban areas and under extreme weather
conditions underscores the necessity for developing efficient systems
to handle unsteady load fluctuations.

Actively controlled lift surfaces, such as trailing edge flaps, are
standard,21 while passive load alleviation mechanisms are less com-
mon, although they are gaining attention due to their inherent reliabil-
ity and zero energy demand.22–25 The natural world offers exemplary
models of passive musculoskeletal adjustments, as seen in birds and
insects, whose flight stability in turbulent conditions far surpasses that
of human-made flyers. These creatures employ a mix of active and
passive mechanisms to maintain position and velocity and to counter-
act the effects of wind gusts and lulls.26–31 The kestrel’s (Falco tinnun-
culus) ability to stabilize its gaze relative to the earth while hovering
has intrigued both scientists and bird enthusiasts alike.32–35

Distinguishing between active and passive responses to unsteady loads
remains challenging, yet recent findings indicate a widespread reliance

Phys. Fluids 36, 067122 (2024); doi: 10.1063/5.0212626 36, 067122-1

VC Author(s) 2024

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 23 June 2024 10:14:58

https://doi.org/10.1063/5.0212626
https://doi.org/10.1063/5.0212626
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0212626
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0212626&domain=pdf&date_stamp=2024-06-18
https://orcid.org/0000-0002-0344-3961
https://orcid.org/0000-0001-9070-6901
https://orcid.org/0000-0002-0150-5671
https://orcid.org/0000-0002-3517-5850
https://orcid.org/0000-0001-9371-7120
https://orcid.org/0000-0002-2038-2929
https://orcid.org/0000-0002-3831-8423
mailto:i.m.viola@ed.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0212626
pubs.aip.org/aip/phf


on passive adaptations for this purpose.36–40 The degree to which engi-
neering systems can emulate these biological responses to mitigate load
fluctuations, given the complexity of factors involved, including diverse
wing shapes and gust profiles, is an ongoing area of investigation.

By analyzing a simplified two-dimensional foil model, free to
adjust passively to changes in flow velocity and direction, we can iso-
late the essential physics of passive load mitigation. This analysis sheds
light on the limits and potential of passive mechanisms for load allevia-
tion, guides the interpretation of biological adaptations in nature, and
informs the design of more effective and reliable engineering solutions
for unsteady load challenges. This paper deliberately abstains from
delving into specific application details, focusing instead on findings
with broad implications across various design scenarios.

The manuscript is structured to begin with a formal definition
of the passive pitch system (Sec. II) and a quasi-steady analysis of the
initial and final state of the system for an arbitrary change in the free-
stream speed and/or direction (Sec. III). It then progresses to the
description of the dynamic low-order model (Sec. IV) and its applica-
tion to streamwise gusts to investigate the optimal kinematics and
pivot point location (Sec. V). It concludes by summarizing key out-
comes and drawing conclusions (Sec. VI).

II. MODEL DEFINITION

Consider a two-dimensional rigid foil in an incompressible flow
that rotates in response to a change in the magnitude and direction of
the free-stream velocity (Fig. 1). The initial flow velocity is uniform
and constant and exerts a constant fluid force on the foil, which is a
function of the foil angle of attack. Then, the velocity varies over a
transitory period to a different uniform velocity, which is kept constant
until the foil position and fluid force converge to a new constant value.

For a constant free-stream velocity, the foil is held in position by
an externally applied torque around the center of rotation, point P on
Fig. 1, hereafter the pitching axis. The foil response is entirely passive:
the torque is not adjusted based on the state of the system. In a

biological system, the torque represents the musculoskeletal tension
exerted on a joint. In an engineering system, the torque could be pro-
vided by a torsional spring. For example, Gambuzza et al.41 considered
a tidal turbine blade free to pitch around its spanwise axis, with a tor-
sional spring around the axis. The large preload of the spring resulted
in approximately constant torque, and the system allowed mitigation
of the thrust and power fluctuations experienced by the turbine.

A bird wing is likely to both translate upward and backward and
rotate around, for instance, its spanwise axis in response to a gust. At
every instant, the combination of a rotation and a translation can be
defined as a single rotation around a center of rotation. Therefore,
while we consider some cases with centers of rotation that are far from
the wing, a real mechanism could be made more compact by combin-
ing a rotation about a closer pitching axis with an additional transla-
tion to generate the same overall motion.

In this paper, we limit our study to fixed centers of rotation over
the entire dynamic response period. Hence, for example, the foil can-
not first translate and then rotate. Furthermore, we note that any
in-plane translation of a rigid body is equivalent to a pure rotation
around a center infinitely far from the body. For example, a horizontal
translation is equivalent to a pure rotation around a center at an infi-
nite distance above or below the foil. Similarly, a vertical translation of
the foil is equivalent to a pure rotation around a center at an infinite
distance left or right of the foil. However, a pure translation is not a
physical solution because a rotation is necessary for the foil to change
its angle of attack and reach a final equilibrium position.

III. QUASI-STEADY ANALYSIS

Consider a foil subject to an instantaneous freestream velocity
having absolute value û at an angle a with the foil chord (Fig. 1). The
foil is hinged around a pivot P at position xp ¼ ðxp; ypÞ so that the
only motion that is allowed is a rigid rotation around P.

All dimensional quantities are overlined with a caret denoted as^
and are made non-dimensional by using the fluid density q̂, the foil
chord ĉ, and the freestream speed at the initial state û0, as characteris-
tic density, length, and velocity, respectively.

The foil chord forms an angle b with an arbitrary direction in the
plane (Fig. 1), which is positive if a counterclockwise rotation is neces-
sary to move from the arbitrary direction to the chord. We define, for
this foil, a frame of reference such that x is parallel to the chord of the
foil directed from the leading edge to the trailing edge, y is perpendicu-
lar to x and directed from the pressure side to the suction side, and the
origin is located on the quarter-chord.

In this frame of reference, the pivot P has coordinates xP; yP. The
flow generates a system of forces on the foil that can be decomposed
into two in-plane forces and one moment normal to the plane, which
are considered here to be applied at the quarter-chord of the foil.

The canonical decomposition is that of lift L and drag D, where
lift is orthogonal to the free-stream reference velocity vector u0 and
drag is parallel to it, and a moment M. The magnitudes of lift, drag,
and moment are defined as

L̂ � 1
2
q̂ û2 ĉ CLðaÞ; (1)

D̂ � 1
2
q̂ û2 ĉ CDðaÞ; (2)

M̂ � 1
2
q̂ û2 ĉ2 CMðaÞ; (3)

FIG. 1. Schematic diagram of the foil with relevant angles of attack (a), non-
dimensional moments (M) around the quarter chord, and chordwise (Fx) and chord
normal (Fy) forces, and the externally applied torque (T), all defined positive as in
the figure. The freestream speed and direction change from u0; a0 to u1; a1
¼ a0 þ a0 in the earth-fixed frame of reference. The foil rotates around the pivot P.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 067122 (2024); doi: 10.1063/5.0212626 36, 067122-2

VC Author(s) 2024

 23 June 2024 10:14:58

pubs.aip.org/aip/phf


and the non-dimensional lift, drag, and moment are defined as

L ¼ u2 CLðaÞ; (4)

D ¼ u2 CDðaÞ; (5)

M ¼ u2 CMðaÞ; (6)

which are assumed to be known and only a function of the foil geome-
try and the Reynolds number Re0 � û0 ĉ=�̂ , where � is the fluid kine-
matic viscosity. To simplify the notation used in the following
equations, we also define the projections Fx and Fy of L and D on the
foil-based frame of reference as

Fx
Fy

" #
¼ u2

Cx

Cy

" #
¼ cosðaÞ �sinðaÞ

sinðaÞ cosðaÞ

" #
D

L

" #
: (7)

Let us now assume that the foil is initially in equilibrium; that is, both
the sum of forces and moments acting on the foil are equal to zero.
This is always possible if, in addition to the aforementioned forces and
moments, an additional torque T̂ is applied to the foil to provide
moment equilibrium about P, so that

F̂ xðaÞ ŷp � F̂ yðaÞ x̂p þ M̂ðaÞ þ T̂ ¼ 0: (8)

This equation can be solved for all values of a and for any physical
source of opposing torque T̂ . It was noted above that T̂ can, for
instance, be generated by musculoskeletal tension or by a torsional
spring. Assume that T̂ is an arbitrary function of the rotation of the
foil in a fixed frame of reference, which we label b, and that

TðbÞ ¼ T̂ ðbÞ
1
2
q̂ û0

2 ĉ2
: (9)

Let us denote the initial equilibrium condition with the subscript
0, so that the initial free-stream speed is û0, the initial angle of attack is
a0, and the initial angular position of the foil is b0. Let us furthermore
assume that the freestream velocity changes in magnitude and direc-
tion, so that the final absolute value is û1 and the angle with respect to
the original location of the chord is a0 þ a0 (Fig. 1). The foil pitches
around the pivot P to accommodate for the changes in inflow; as this
is a solid rotation around P, the coordinates of P do not change in the
foil frame of reference. At the new steady state, the new angle of attack
is a1, and the new forces and moments are F̂ xða1Þ; F̂ yða1Þ, and
M̂ða1Þ, respectively, while the opposing torque is T̂ ðb1Þ.

Note that a0 6¼ a1 � a0, as a1 � a0 does not account for the
extent of the rigid rotation of the foil. In fact, one has

a0 þ b0 þ a0 ¼ a1 þ b1: (10)

All angles, forces, and moments, with the exception of T, are schemati-
cally represented in Fig. 1 for both the first steady state (in black) and
the second steady state (in red).

As the foil is in equilibrium both before and after the gust, the
balance of moments around P needs to be satisfied in both configura-
tions. Analytically, this is represented by the following system:

F̂ xða0Þ ŷp � F̂ yða0Þ x̂p þ M̂ða0Þ þ T̂ ðb0Þ ¼ 0;

F̂ xða1Þ ŷp � F̂ yða1Þ x̂p þ M̂ða1Þ þ T̂ ðb1Þ ¼ 0:

8<
: (11)

Nondimensionally, this system can be rewritten as

Cxða0Þ yP � Cyða0Þ xP þ CMða0Þ þ Tðb0Þ ¼ 0;

u21ðCxða1Þ yP � Cyða1Þ xP þ CMða1ÞÞ þ Tðb1Þ ¼ 0;

(
(12)

as u0 ¼ 1 by definition. Subtracting the two equations, one can reduce
this system to

Cxða0Þ yP � Cyða0Þ xP þ CMða0Þ þ Tðb0Þ
¼ u21ðCxða1Þ yP � Cyða1Þ xP þ CMða1ÞÞ þ Tðb1Þ: (13)

With prior knowledge of a0, and if the position of the pivot
ðxP; yPÞ is known, then this equation can be solved to obtain the final
angle of attack a1. This equation is, however, non-linear in a1 as the
forces depend on CL, CD, and CM, which are themselves not necessarily
linear with a, and thus, the solution of Eq. (13) requires numerical
root-finding.

Alternatively, the problem can be reframed as follows: given an
initial state described by a0, a gust described by a0 and u1, and a desired
final angle of attack a1, define the locus on which P needs to lie to sat-
isfy this condition. With knowledge of a1, then Cxða1Þ; Cyða1Þ, and
CMða1Þ are known by their definition, b1 is known from Eq. (10), and
the only unknowns are xP and yP. Equation (13) can thus be rewritten
as

ax xP þ ay yP þ a0 ¼ 0; (14)

where

ax ¼ �ðCyða0Þ � u21 Cyða1ÞÞ; (15a)

ay ¼ ðCxða0Þ � u21 Cxða1ÞÞ; (15b)

a0 ¼ �ðCMða0Þ � u21 CMða1ÞÞ þ Tðb1Þ � Tðb0Þ: (15c)

On this line, a1 is constant by definition and b1 is constant due to Eq.
(10); therefore, all coefficients are constant with xP and yP, and this
equation describes a straight line.

These results demonstrate that, for any arbitrary change in the
onset flow speed and direction, pivots placed along the same line
defined by Eq. (14) result in the same final angular position b1 of the
foil.

A. Minimum load change

By the inspection of the coefficients of lift, drag, and moment of a
generic foil, it is trivial to show that, in general, there is no rotation or
translation of the foil that would allow the same resultant force for
both the initial and final flow velocity (see the Appendix for details).
As the free-stream velocity changes, the foil passively rotates up to a
position where the final moment equals the initial moment, but the
initial and final resultant forces differ. We conclude that for a generic
flow velocity fluctuation, a complete unsteady load mitigation is
impossible by a passive rotation or translation.

However, we observe that for most natural flyers and engineering
technologies, there is a direction along which it is more important to
keep the force constant. For example, for a bird gliding near and paral-
lel to the sea surface, maintaining a constant altitude and, therefore,
upward force is critical, while accelerations in the direction parallel to
the sea surface are not such a concern. We thus wonder whether
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complete mitigation of the load fluctuations in a selected direction is
possible by a passive rotation or translation.

As described in the discussion following Eq. (15), Eq. (14)
describes a line where both a1 and b1 are constant. As a1 is constant,
so are Cxða1Þ and Cyða1Þ as these only depend on a, and so are Fx1
and Fy1 following Eq. (7), and following that, the ratios Fx1=Fx0 and
Fy1=Fy0 are also constant. This implies that for any generic direction n
with respect to an earth-fixed frame, the ratio between the final and
the initial force component Fn1=Fn0 is also constant along the line. For
example, consider a bird flying near the sea surface experiencing a
streamwise gust. If the wings can passively pitch around a point P, the
relative change of the force in the vertical direction depends only on
the line on which P lies and not on the position of P along the line [Eq.
(14)]. Furthermore, there is a line for which the latter relative change is
zero, and thus, the force along the vertical direction remains constant.

As an example, Fig. 2 shows the lines of Eq. (14) for a set of forces
computed with the coupled Euler-boundary layer solver XFOIL

42 for a
NACA 0012 foil. The initial Reynolds number is Re0 � u0c=� ¼ 103,
where c is the chord length and � is the kinematic viscosity of the fluid;
the initial angle of attack is a0 ¼ 5�; the torque T is constant; and the
gust ratio is u1=u0 ¼ 2. In this example, n is the lift direction. Here, we
assume u0 to be the mean flow velocity, and u1 the perturbation, and
thus, we define lift the force in the direction orthogonal to u0 also after
the velocity has changed from u0 to u1. The colors show the ratio
between the final and initial force along n, i.e., the lift ratio L1=L0.
Therefore, by passively pitching around an axis that intersects the line
L1=L0 ¼ 1 in Fig. 2, the lift remains constant despite the flow speed
doubling.

These results reveal that the quasi-steady variations of an arbi-
trary chosen force component due to a gust ratio can be entirely can-
celed by passively pitching the foil around a specific pitching axis.

Note that an optimal center of rotation at xP < 0 and yP � 0 as sug-
gested in Fig. 2, is equivalent to an upward and backward translation,
and a nose-down rotation around the center of mass, which is consis-
tent with the expected gust response of natural flyers.27,30

We now consider a free-stream velocity that varies in direction
but not in magnitude. As we noted before, for a given flow speed, there
is only one angle of incidence at which the fluid torque is in equilib-
rium with the externally applied constant torque T. Therefore, for any
change a0 of the angle of attack, the foil will rotate exactly by an angle
a0, resulting in the same initial and final resultant force vector with
respect to a frame fixed with the foil. The projection of the resultant
force vector F along any earth-fixed direction n would change by
cos a0.

This reveals that, for a generic variation of the angle of attack, the
force on the foil in a specific direction cannot be kept constant by a
passive rotation or translation. However, for moderate angle of attack
variations (a0), the force in any generic direction n changes only by a
small amount (1-cos a0), which depends only on the amplitude of the
angle of attack variation and not on, for example, the pitching axis
location. For example, variations of 10� and 20� result in Fn changes of
1.5% and 6%, respectively.

Overall, these results reveal that (1) the fluctuations in an arbi-
trary chosen force component due to due to quasi-steady variations in
flow speed can be entirely canceled by passive pitch; (2) the optimum
pitching axis is at any arbitrary position along a line that depends only
on the geometry of the foil [via its ClðaÞ; CdðaÞ, and CmðaÞ curves],
the initial and final Reynolds number; and (3) force fluctuations due to
quasi-steady changes in the flow direction cannot be canceled, but sub-
stantial mitigation will be provided by pitching about any pitching
axis.

B. Calculation of optimal pitching axis location

Given the previous findings, one can determine where to place
the pitching axis with respect to the foil so as to keep one component
of the force generated by the foil constant before and after a given gust.

To avoid overloading the notation, we assume that the arbitrary
direction, along which we desire to keep the forces constant, is the
same as that which has been used to define the angles b in Fig. 1; as
this direction is arbitrary, this choice does not affect the generality of
our conclusions.

We therefore define Q as the component of the force directed in
the desired direction, which is related to the forces in the foil-fixed
frame of reference by

Q̂ ¼ F̂ yðaÞsinðbÞ � F̂ xðaÞcosðbÞ: (16)

Operating the same non-dimensionalization previously used, the
equations that define the problem are the following:

Cxða0Þ yP � Cyða0Þ xP þ CMða0Þ þ Tðb0Þ
¼ u21ðCxða1Þ yP � Cyða1Þ xP þ CMða1ÞÞ þ Tðb1Þ; (17a)

Cyða0Þsinðb0Þ � Cxða0Þcosðb0Þ
¼ u21ðCyða1Þsinðb1Þ � Cxða1Þcosðb1ÞÞ; (17b)

a1 þ b1 ¼ a0 þ b0 þ a0: (17c)

In this system, Eq. (17a) represents the balance of moments
previously presented as Eq. (13); Eq. (17b) states that Q1¼Q0; and

FIG. 2. Contours of lift ratio for different coordinates of the pitching axis of a NACA
0012 where the free-stream speed doubles (u1 ¼ 2) starting from Re ¼ 103 at
a0 ¼ 5�. The solid red line shows the locus of the pitching axis for which the lift
remains unchanged.
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Eq. (17c) is the geometric relationship between the angles involved
previously presented as Eq. (10). One can see that the only dependence
of the solution on P ðxP; yPÞ is in Eq. (17a), and this system can be
solved via substitution. Substituting

b1 ¼ a0 þ b0 þ a0
� �� a1 ¼ c0 � a1 (18)

in Eq. (17b), one has

Cyða1Þsinðc0 � a1Þ � Cxða1Þcosðc0 � a1Þ

¼ Cyða0Þsinðb0Þ � Cxða0Þcosðb0Þ
u21

; (19)

where c0 ¼ a0 þ b0 þ a0 is known a priori and the only unknown in
Eq. (19) is a1. Equation (19) can then be solved numerically to yield
the value of the angle of attack a1 that satisfies the requirement of con-
stant force component.

Once a1 is found, this can be used in Eq. (14) and following to
determine where the pivot should lie.

As all solutions of this system require that a1 be constant, the set
of values of ðxP; yPÞ for which this is satisfied define an iso-line of a1 in
the xP � yP space and therefore represent a straight line.

C. Stability of the equilibrium conditions

The previous analysis has only assumed that both the initial and
the final steady state are equilibrium conditions, that is, they both indi-
vidually satisfy the equalities in Eq. (12); no assumption on the stability
of these solutions is made. For the foil at the initial steady state, equilib-
rium is given by Eq. (8); however, for non-equilibrium positions, one
has to account for the angular acceleration of the foil so that in non-
dimensional form,

J€b ¼ u2ðCxðaÞ yP � CyðaÞ xP þ CMðaÞÞ þ T; (20)

where J is the non-dimensional inertia of the foil,

J � Ĵ
1
2
q̂ĉ5

; (21)

and Ĵ is the dimensional inertia.
Assume that a small perturbation changes the geometrical pitch

of the foil so that it rotates around the pivot P increasing b by db and
decreasing the angle of attack by da ¼ � db. The equilibrium position
is stable if this induces a moment on the foil so that €b < 0 to oppose
db > 0 and vice versa for db < 0. Linearizing around the initial posi-
tion, and, moreover, knowing that db ¼ �da, one has

J€b ¼ u2
dCx

db
yP db� dCy

db
xP dbþ dCM

db
db

� �
þ dT

db
db (22)

¼ u2 � dCx

da
yP þ

dCy

da
xP � dCM

da

� �
þ dT

db

 !
db: (23)

As J is positive by definition, one has a stable equilibrium if the term in
parenthesis is less than zero, which is given by

u2
dCx

da
yP �

dCy

da
xP þ dCM

da

� �
> � dT

db
; (24)

which must be satisfied both at the initial and the final steady state.
Note that, from Eq. (13), a1 is only a function of u1=u0; xP, and yP: if
the gust ratio is fixed, the coordinates of PðxP; yPÞ for which the equi-
librium is stable both before and after the gust can be readily found.
For the case of a NACA 0012 foil, subject to a gust having u1 ¼ 2 and
with initial a0 ¼ 5�, one has the stability regions presented in Fig. 3 for
a constant externally applied torque (dT=db ¼ 0). In this case, all sta-
ble pivot points are forward of the foil quarter-chord.

While in Fig. 2 we showed an example where T is constant, T can
be any function of b (Sec. III). It is interesting to note that any pivot
position results in stable equilibrium if dT=db is sufficiently small.
Finally, it is noted that the modeled foil has only one degree of freedom
in pitch, and thus, flutter is inhibited. Real wings, however, have multi-
ple degrees of freedom and flutter instabilities might arise.

IV. UNSTEADY LOW-ORDER MODEL

To investigate the transient from the initial to the final equilib-
rium position, we employ a low-order model based on Kirchhoff’s
equations.43 We consider the quasi-steady circulatory forces and added
mass forces, but neglect the unsteady circulatory forces, which
depend on the history of the flow field. This methodology has been val-
idated against several experiments of free-falling bodies at Re ¼ 103

to 104.44–47

Euler’s second law of motion can be written for a frame of refer-
ence centered at the center of mass and with the x-axis along the
chord, in vectorial notation, as

ðIOþ IAM þm22x2MÞ _x ¼ TþMQSþ xQ �FQS� xP �ðFQSþFAMÞ;
(25)

FIG. 3. Stable (green) and unstable (red) regions for the coordinates of the pivot P
of a NACA 0012 where the free-stream speed doubles starting from Re ¼ 103 at
a0 ¼ 5�.
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where IO is the moment of inertia of the foil at the center of mass;
IAQ is the added moment of inertia at the mid-chord (Fig. 4); this is
translated to the center of mass through the parallel axis theorem
through m22, which is the second principal component of the added
mass, and xM is the coordinate of the mid-chord; _x is the angular
acceleration of the foil; T ¼ jb is the externally applied torque, here
considered proportional to the angular position of the foil b, with
constant of proportionality j; MQS is the quasi-steady fluid moment
when the quasi-steady force FQS is applied at the quarter chord Q,
whose position vector from the center of mass is xQ; FAM is the
added mass force applied at the mid chord M, whose position vector
from the center of mass is xM; and finally, the last term is the torque
due to the reacting forces �FQS � FAM at the pivot point P with
position vector xP. Because an analytical formulation for the added
moment (IA) and added mass force (FAM) is not available for a
NACA foil, we consider those of an ellipse with the same chord and
thickness48 as described in Sec. IVA. The quasi-steady moment
(MQS) and force (FQS) are computed from CFD simulations using
the approach described in Sec. IVB. Equation (25) is solved in
MATLAB with the ode15i function, which is a variable-step, vari-
able-order solver based on the backward differentiation formulas of
orders one to five.

A. Added-mass force

Figure 4 shows the vectors corresponding to the forces and
moments considered in Eq. (25). The fluid force is modeled as the sum
of the quasi-steady circulatory force FQS applied at the quarter-chord
point Q with position vector, xQ from the center of mass O, and the
added-mass force FAM acting at the mid-chord M with position vector
xM. The quasi-steady fluid moment isMQS, and the externally applied
torque is T. The foil’s angular velocity is x. Added mass forces are
computed as follows.

The exact solution of the added moment of inertia, the second
principal component of the added mass, and added-mass force on an
ellipse48 are, respectively,

IAQ ¼ p
128

qðc2 � b2Þ2; (26)

m22 ¼ pqc2

4
; (27)

FAM
x ¼ � p

4
qc2 _auy þ b2

c2
_ux

� �
; (28)

FAM
y ¼ p

4
qc2

b2

c2
_aux � _uy

� �
; (29)

where b is the thickness (short axis); a is the angle of attack, and the
dot denotes the time derivative (e.g., _a ¼ da=dt); and ux and uy are
the chordwise and chord normal components of the relative velocity of
the foil’s mid-chord point M with respect to the free-stream velocity,
such that u ¼ ðux; uyÞ ¼ uM � u1.

B. Quasi-steady circulatory force

Apart from the added-mass force, the remainder of the lift, drag,
and moment during the gust encounter are modeled in a quasi-steady
manner based on tabulated CFD data. These data are generated by
solving the two-dimensional Navier–Stokes equations for incompress-
ible flows and Newtonian fluids with OpenFOAM v2106. The equa-
tions are solved in an inertial frame where the X and Y coordinates are
parallel and orthogonal to u0, respectively. The computational domain
consists of a rectangle 34c long (in the X direction) and 20c wide (in
the Y direction), discretized by a structured grid (Fig. 5) generated
using ICEM-CFD. Uniform velocity and pressure boundary conditions
are Dirichlet conditions at the domain’s upstream and downstream
boundaries, respectively, while a slip condition is applied at the side
boundaries.

Simulations are performed for Re ¼ 103 and Re ¼ 2� 103, for a
range of angles of attack from 0� to 12�. The computed CS

L; C
S
D, and

CS
M are shown in Fig. 6. Here, we set the Reynolds number of Oð103Þ

first because we are interested in the gust response of natural flyers
(insects and small birds), nano air vehicles, and micro flyers. Second,
Re¼ 1000 is sufficiently high to ensure the vorticity diffusion is negli-
gible compared to advection, and sufficiently low to suppress lift fluc-
tuations for a constant onset flow and angle of attack (e.g., due to wake
instabilities and vortex shedding). For a higher Reynolds number, say
Re > Oð104Þ, one can use XFOIL,42 which provides sufficiently accu-
rate prediction of forces.

These data are tabulated and interpolated at every time step to
compute the quasi-steady forces and moment for the low-order model.
Specifically, the quasi-steady circulatory lift, drag, and moment coeffi-
cients are computed as

FIG. 4. Schematic diagram of the quasi-steady force (FQS) acting at the quarter
chord (Q) and the quasi-steady fluid moment (MQS), the added mass force (FAM)
acting at the mid chord (M), the externally applied torque (T), and the angular veloc-
ity (x) of the foil, all defined positive as in the figure. The figure also shows the
reacting forces at the pivot P of the quasi-steady and added mass forces.

FIG. 5. Mesh of the CFD simulations used to compute the quasi-steady aerody-
namic coefficients in Fig. 6.
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CQS
L ¼ CS

Lðaeff ;ReÞ
uX
u0

� �2

;

CQS
D ¼ CS

Dðaeff ;ReÞ
uX
u0

� �2

;

CQS
M ¼ CS

Mðaeff ;ReÞ
uX
u0

� �2

;

(30)

where uX ¼ u1 � uX;3qc is the instantaneous streamwise velocity
experienced by the foil; uX;3qc is the foil velocity in the streamwise
X-axis direction (Fig. 4) at the three-quarter chord due to the passive
pitching motion; and the effective angle of attack aeff is the sum of the
geometric angle of attack and the angle induced by the vertical motion
of the foil,

aeff ¼ a� arctan
uY ;3qc
uX;3qc

� �
; (31)

where uY ;3qc is the foil velocity in the Y-direction at the three-
quarter chord from the leading edge due to the passive pitch
motion.

C. Gust profile

We consider a sharp change of the onset flow speed u1ðtÞ, which
increases from u0 to 2u0 in one convective time c=u0 (Fig. 7).
Specifically, the gust profile is given by

u1ðtÞ ¼

u0; t � c
u0

;

u0
2
ð3þ tanh sÞ; c

u0
< t < 2

c
u0

;

2u0; t � 2
c
u0

;

8>>>>>><
>>>>>>:

(32)

where

s ¼ g
tu0
c

� 3
2

� �
; (33)

and g¼ 10 is a gust sharpening factor.
It is important to note that this change in the flow speed occurs

over a short time frame compared to the advection timescale of the
flow, and the kinematics of the pitching foil would have changed mar-
ginally if the speed had increased over an even shorter time frame. In
fact, as the gust period tG over which the velocity changes from u0 to
2u0 vanishes, the added mass force tends to infinity, while its duration
tends to zero, and thus, the resultant added mass impulse would pla-
teau to a finite value. The effect of the added mass is to generate vortic-
ity (with net zero circulation) on the surface of the foil that is
proportional to the added mass impulse. Hence, as tG ! 0, the
amount of added mass vorticity generated on the foil tends to a finite
value. Therefore, the vorticity field at the start of the kinematics would
not change significantly if tG 	 c=u0.

V. DYNAMIC ANALYSIS

The low order model described in Sec. IV is used to investigate
the effect of the pitching axis location on the unsteady load mitigation,
and specifically on the maximum amplitude of the lift fluctuation dur-
ing the transient phase. Consider a change in the onset flow speed as
detailed in Eq. (32). The initial condition is a0 ¼ 5�, and the Reynolds
number increases from Re0 ¼ 103 to Re1 ¼ 2� 103 in one convective
time. The initial angle of attack a0 ¼ 5� is chosen because it is an inter-
mediate angle between the zero-lift condition for a symmetric foil and
the stall angle, which is typically of the order of 10�. The time history

FIG. 6. Static lift and drag (a) and moment (b) coefficients vs angle of attack for
Re ¼ 103 and Re ¼ 2� 103 obtained from CFD. Values within the shaded region
are found by linear interpolation.

FIG. 7. Streamwise gust profiles.
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of the lift L(t) non-dimensionalized by the initial lift L0 is shown in
Fig. 8, for an example case with a pitching location at
xP ¼ ð�1:5; 0:25Þ. The first sharp peak at 1 < tu0=c < 2 is due to
added mass and, for the fixed foil, is proportional to the onset flow
acceleration [i.e., the time derivative of Eq. (32)]. This first peak is sub-
stantially mitigated by the pitching foil, as it passively pitches in
response to the load change. However, the pitching foil experiences a
damped oscillation before reaching its final equilibrium position.
Therefore, unlike for the fixed foil, the minimum lift is not necessarily
the initial lift L0: for some pitching locations, there is a lower minimum
reached during the oscillation. In the example shown in Fig. 8, the
minimum lift is achieved after the end of the gust at t � 2c=u0:

A. Effect of pitching axis location on unsteady load
mitigation

The model described in Sec. IV was used to investigate the effect
of pitching axis location on the efficacy of unsteady load mitigation,
within the stability constraints uncovered in Sec. III. We quantify the
unsteady load mitigation as the ratio between the amplitude of the lift
variations for the passively pitching foil and the fixed foil as

eDY ¼
CL;max � CL;minð Þpitch
CL;max � CL;minð Þfix

: (34)

The load mitigation ratio eDY for the passively pitching foil expe-
riencing increasing free-stream speed at a constant angle of 5� is
shown in Fig. 9(a) for different pivot locations. Figure 9(b) shows the
sensitivity of the ratio of dynamic lift fluctuation to the location of the
pitching axes, jjreDYjj, under the same streamwise gust. jjreDYjj is
the modulus ofreDY, where

reDY ¼ @eDY=@XP; @eDY@YPð Þ: (35)

The sensitivity increases with increasing XP and YP [Fig. 9(b)], where
the stability analysis (Sec. IIIC) showed an unstable region.

The map of eDY (Fig. 9) suggests that the maximum unsteady
load alleviation is achieved for a pitching axis located along the
extended chord line (indicated with a white dotted line in Fig. 9). This
is consistent with the results shown for a quasi-steady analysis in
Fig. 2. Furthermore, the sensitivity of eDY to the exact location
decreases as the pitching axis approaches the extended chord line.
Hence, these results suggest that the optimum location of the pitching
axis is along the extended chord line. While the quasi-steady analysis
showed that the unsteady load alleviation depends on the line on
which the pitching axis lies and not on its distance from the foil (see
Fig. 2), the dynamic analysis, in contrast, suggests that the position
along the extended chord line is important. We will discuss the opti-
mal position along the extended chord line in Sec. VB.

To further understand the underlying physics resulting in the
optimum pitching axis, we study the effect of pitching axis on the max-
imum and minimum lift peaks separately. The maximum lift CLmax is
only marginally affected by pitching axis location [Fig. 10(a)], and the
maximum alleviation of CLmax is achieved with a pitching axis at
approximately XP ¼ ð�1; 0:5Þ. On the other hand, the minimum lift
CLmin, which is due to the oscillations of the foil as it approaches the
new equilibrium position, is highly dependent on the pitching axis
location [Fig. 10(a)], and thus, the optimum pitching position is gov-
erned by CLmin [cf. Figs. 9(a) and 10(b)]. Specifically, the maximum
alleviation of the negative lift peak is achieved for pitching axes along
the extended chord line of the foil. Moreover, similarly to eDY; CLmin

decreases with increasing X/c.
We further dissect the contribution of the added mass and quasi-

steady lifts to the maximum and minimum lift. While the position
of the pitching axis minimizing the positive lift peak CLmax is

FIG. 8. Lift ratio vs non-dimensional time for a fixed and a passively pitching foil
around a pivot at the foil-fixed coordinates xP ¼ ð�1:5; 0:25Þ.

FIG. 9. Contours of the dynamic unsteady load mitigation index (a) and of its spatial
gradient (b) for different coordinates of the pitching axis location. The dashed line
shows the extended chord line.
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approximately at XP ¼ ð�1; 0:5Þ, the pitching axis would need to be
further away from the foil to minimize the sole added mass lift peak,
and closer to the foil to minimize the quasi-steady lift peak [Figs. 11(a)
and 11(b)]. This result reveals that the optimal distance of the pitching
axis to mitigate the maximum lift is a compromise between added
mass and quasi-steady force, even if the maximum lift plays a minor
part in the overall lift fluctuation, which, instead, is governed by the
minimum lift. Conversely, placing the pitching axis along the extended
chord line contributes to increasing both the minimum lift due to
added mass and quasi-steady force [Figs. 11(c) and 11(d)].

B. Pitching axis on the extended chord line

To understand what determines the optimal distance of the pitch-
ing axis and the balance between added mass and quasi-steady forces,
we consider the pitching axis on the extended chord line (i.e., on the
white dotted line in Fig. 9), and we plot the trend of eDY vs the X coor-
dinates of the pitching axis (Fig. 12). We observe that eDY is minimum
at X=c ¼ �0:83, which is also where the maximum lift has the lowest
value [Fig. 12(b)]. Around Xp=c ¼ �0:73; CLmin increases with
decreasing distance from the foil, and at Xp=c ¼ �0:73, it has the
same value as the initial lift value, CL0 ¼ 0:248 [Fig. 12(c)].

We will show now that this optimum pitching axis coordinate,
Xp=c ¼ �0:73, depends on the inertia of the system. For an increased
distance of the pitching axis from the foil, the inertia increases, and the
overshoot generating the minimum lift decreases [Fig. 12(c)].
Therefore, eDY initially decreases with the distance of the pitching axis
from the foil. However, for a further increased inertia, the foil is slow
to accelerate at the beginning of the gust, and thus, the maximum lift

increases [Fig. 12(b)]. Therefore, there is an optimal system inertia
such that the minimum lift peak due to the overshoot is not lower
than the initial lift. Specifically, the higher the inertia, the closer the
optimal pitching axis will be to the wing.

To demonstrate this, we consider the time history of lift CL for
three selected cases [identified as case 1, 2, and 3 in Fig. 12(a)]. Case 1
has the pitching axis at Xp=c ¼ �0:5, case 2 at Xp=c ¼ �0:73 (the
optimal pitching axis location), and case 3 at Xp=c ¼ �722. In case 1

FIG. 10. Contours of the maximum (a) and minimum (b) value of the lift coefficient
for different coordinates of the pitching axis location. The dashed line shows the
extended chord line.

FIG. 11. Contours of the maximum (a) and (b) and minimum (c) and (d) value of
the lift coefficient due to the added mass (a) and (c) and quasi-steady force (b) and
(d) for different coordinates of the pitching axis location. The dashed line shows the
extended chord line.
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[Fig. 13(a)], the minimum lift is the initial lift, CLmin ¼ CL0 and the lift
after the peak is always higher than CL0. In case 2 [Fig. 13(b)], which is
the maximum lift alleviation case, the lift after the peak becomes as low
as the initial lift at tu0=c � 2. Finally, in case 3 [Fig. 13(c)], the lift after
the peak is smaller than the initial lift CL0. These results explain why
the minimum eDY is minimum for the same Xp for which CL;max is
minimum, even if before (Fig. 10) we concluded that the optimum
pitching axis location is governed by CL;min and not CL;max.

The kinematics of the three cases (Fig. 14) reveal the underlying
physics for the time series of the lift observed in Fig. 13. The angle of

attack decreases in response to the change in the free-stream speed to
reach the new equilibrium position [Fig. 13(a)]. The higher the inertia,
the lower the magnitude of the rate of change of the angle of attack
[Fig. 13(b)]. Consistently, the acceleration of the angle of attack shows
a negative peak corresponding to the foil angular velocity becoming
negative, and a positive peak corresponding to the vanishing angular
velocity as the foil approaches the new equilibrium position.

Noting that b 	 c, the dominant added mass force component is
proportional to the acceleration _uy [Eq. (29)], which is correlated with
the acceleration of the angle of attack through rmc€a ¼ _u2

x þ _u2
y , where

FIG. 12. Unsteady load mitigation index (a), maximum lift (b), and minimum lift (c)
for pitching axis on the extended chord line and different streamwise coordinates.
For better visibility of the trends, 0.3 and 0.35 are added to the maximum and mini-
mum added-mass lift coefficients, respectively. Three cases (case 1, case 2, and
case 3) are marked for the following analysis.

FIG. 13. Time history of the lift coefficient and its contributions due to added mass
and quasi-steady force for case 1 (a), case 2 (b), and case 3 (c).
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rmc is the distance between the pivot and the center of mass (jPOj).
For a pitching axis along the extended chord line and small initial
angle of attack, the rotation along the pivot corresponds to a chord
normal velocity, i.e., rmc€a � _u2

y . The velocity rmc _a and the acceleration
rmc€a are shown in nondimensional form in Fig. 15. As one would
expect, the higher the inertia (from cases 1 to 3), the later the maxi-
mum velocity is reached [Fig. 15(a)] and the slower the velocity
decreases after the peak. Therefore, while the positive acceleration
peak increases with inertia (case 3), the magnitude of the deceleration
peak decreases with inertia. These results reveal why the maximum
added mass lift peak is better mitigated by pitching axes far from the

foil [Fig. 11(a)], while the minimum added mass lift peak is better miti-
gated by pitching axes closer to the foil [Fig. 11(c)].

The quasi-steady force, instead, depends on the effective angle of
attack aeff [Fig. 16(a)], which is the angle between the chord and the
relative velocity experienced by the foil u1 þ uM. The time histories of
aeff are similar for the three cases [Fig. 16(a)]. However, when these
are scaled with the square of the instantaneous free-stream velocity
[Fig. 16(b)], the amplitude of both the maximum and the minimum
peak increases with increasing inertia. This reveals why both the maxi-
mum [Fig. 11(b)] and minimum [Fig. 11(d)] quasi-steady lift are better
mitigated by pitching closer to the foil.

VI. CONCLUSIONS

In this paper, a general approach for the design of efficient passive
pitch systems has been developed. Their capabilities and limitations in
mitigating unsteady loads have been investigated. We considered a foil
in a uniform free stream, which is free to rotate around a pitching axis
and is held in position by an externally applied torque. The system is
passive because the applied torque is either constant or varies linearly
with the angular position of the foil. Such a system can be achieved, for
example, by a linear torsional spring. We developed a mathematical
framework to compute how a generic force component varies when
the onset flow velocity changes, in a quasi-steady manner, to a new
uniform speed and direction. We showed that any force component
can be kept constant if the locus of the pivot is a line that depends on

FIG. 14. Time history of the angle of attack, and thus of the angular position of the
foil (a), and of its nondimensional first (b) and second (c) time derivatives.

FIG. 15. Time history of the nondimensional tangential velocity (a) and acceleration
(b) of the foil.
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the initial and final flow velocity and the aerodynamic polars (lift,
drag, and moment coefficients) of the foil.

Furthermore, we developed a dynamic model that includes ana-
lytical formulations of the added mass forces and tabulated quasi-
steady aerodynamic polars. The model enables estimation of the
dynamic response of the foil in the transient between the initial and
final equilibrium state. We applied the model for the lift generated by a
foil at a small angle of incidence (5�), experiencing a rapid twofold
increase in freestream velocity. More than 2/3 of the lift fluctuation
can be canceled by placing the pivot point along the extended chord
line at a distance from the foil that increases with decreasing inertia.
The foil first experiences a lift increase and thus pitches reducing the
angle of incidence, and then, it oscillates until it reaches the final equi-
librium position. The optimum pivot position is such that the mini-
mum lift during the transient is equal to the initial lift. While the
optimal positioning of the pitching axis may vary with gust parame-
ters, the efficacy of load mitigation shows minimal sensitivity to the
precise location within the vicinity of the optimal locus.

The present study focuses on the passive pitch system at relatively
low Reynolds numbers, Re ¼ Oð103Þ, but yet the pressure forces dom-
inate the viscous forces. As long as this remains true, such as at higher
Reynolds numbers, the present results are expected to stand. For situa-
tions where the viscous forces dominate, such as very low Reynolds
numbers or non-Newtonian flows, the results should be reviewed.

In the present work, the pivot point is fixed during the transient.
Therefore, this work may potentially underestimate the efficacy of

advanced systems such as adjustable musculoskeletal tension, dynamic
pitching axes or joints, and temporary modifications in foil positioning
through dihedral angle adjustments, among others. Additionally, the
passive mechanism examined here is inadequate for handling stall con-
ditions, which necessitate active stabilization methods.

Overall, this work provides a new methodology for studying dif-
ferent gust types and designing optimal passive pitch systems. It also
provides new insights into the underlying physics of gust mitigation
through passive pitching. As such, it may also enrich our understand-
ing of complex biological passive systems observed in nature.
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APPENDIX: UNIQUENESS OF L AND D FOR EACH A

The forces generated by a foil exposed to an incoming flow are
customarily decomposed in a component normal to the incoming
velocity, i.e., the lift L, and one parallel to it, i.e., the drag D. In non-
dimensional form, these are the lift CL and drag CD coefficients,

CL � L
1
2
qu21c

; (A1)

FIG. 16. Time history of the effective angle of attack (a) and of the effective angle
of attack scaled with the instantaneous free-stream speed (b).
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CD � D
1
2
qu21c

: (A2)

These coefficients are functions of the chord-based Reynolds num-
ber Re,

Re � u1 c
�

: (A3)

For a generic foil shape generating a lift and drag coefficient CL

and CD, respectively, at a given value of Re and angle of attack a, there
is at most one value of a for which that lift and drag are attained. This
can be graphically observed by plotting the parametric curve,

CL ¼ CLðaÞ;
CD ¼ CDðaÞ;

(
(A4)

on the CL � CD space and observing that this curve does not
self-intersect.

Figure 17 reports the polars for four different foils at four dif-
ferent values of chord-based Reynolds number Re, spanning from
103 to 106. These are the NACA 0012 presented in this work; a flat
plate operating at Re ¼ 1:1� 104 representative of a dragonfly
wing;49 a NACA 2414 operating at Re ¼ 105 representative of a
small horizontal-axis wind turbine;50 and a NACA 63-618 for use in
larger-scale wind turbines.51 The NACA 0012 data are computed
with direct numerical simulations, while all other polars come from
experimental measurements in wind tunnels. It can be seen that the
polar curves do not self-intersect in any case, demonstrating that, in
general, there is at most one value of a for each pair of CL and CD.
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