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1 Summary

In this document we give some insight about how Gibbs Sampling works and
how the JAGS modelling framework implements it. The hope is that, once
the reader will have understood these concepts, building a model to perform
Bayesian Inference with JAGS should be much easier or, at least, the reader
should be more aware of what happens behind the scenes. We assume the
reader to have basic knowledge about probability, sufficient to understand the
difference between a probability and a probability density.

This paper is organized as follows: Section 2, presents the basic principles
of Bayesian Inference. Section 3, introduces the JAGS software and its basic
modelling principles. Section 3.1, introduces the probabilistic graphical models
on which Gibbs Sampling and JAGS are based. Section 4 reports basic defini-
tions about Markov Chains. Section 5 explains Gibbs sampling on the basis of
the previously introduced concepts. It gives the rationale behind the method
and demonstrates its correctness. Furthermore, it shows how to apply Monte
Carlo Integration to the output of Gibbs sampling. Section 6 reports about how
JAGS is related to Gibbs sampling. Furthermore, it shows an example written
with the R programming language that uses JAGS. The example demonstrates
the effectiveness of the complete modelling process. Finally, Section 7 draws the
conclusions.

2 Bayesian Inference

In order to define Bayesian Inference we first clarify the concept of posterior
probability distribution (or posterior probability density). The posterior proba-
bility distribution of a random event is defined as the conditional probability
that is assigned to the event after relevant evidence has been taken into account.
In other words, if there is experimental evidence of a certain probabilistic phe-
nomenon, the posterior probability distribution relates such evidence with some
random variables. For example, in the case of a random variable x having a
Gaussian distribution Norm(u, o) (with g and ¢ being mean and standard de-
viation), the posterior probability distribution would be indicated as p(u, o|x).



Such distribution allows to calculate the probability of a pair (u,o) given a cer-
tain value of z. The analytical form of a posterior probability can be difficult to
obtain, and one of the scopes of this document is to show a method to simulate
its values.

Generally speaking, given a set of experimental evidences § = {y1, Y2, ., Yn }
linked to a set of random variables 6 = {61, 65, ..,0,,} by means of a probabilis-
tic relation, the posterior probability density is indicated as p(f|7). Another
important concept is the likelthood to the data, a dual concept with respect to
the posterior probability distribution. Likelihood is defined as the probability
density associated to the evidence § given the variables § and is indicated as

p(y19).
The two quantities are indeed related by the Bayes’ rule
- p(ylo)p(d
p(@ly) = PLC)
p(y)

where p(y) is the probability density associated to the sample data (marginal
density of sample data or marginal likelihood) without considering the random
variables. The term p(6) is called the prior probability and indicates an a priori
estimate of the distribution of the parameters 6 [4].

In this paper we will use P to denote probabilities and p for probability
densities. Bayes’ rule for probability densities is conceptually different from

Bayes’rule for probabilities. In the case of probabilities, the rule is

P(B|A)P(A)

PAIB) = =5 5

where A and B are two probabilistic phenomena. The rule for distributions is
derived from the definition of joint probability density and not from the axioms
of probability, as it happens in the case of probabilities.

From the above considerations, we can define Bayesian Inference as a
process, based on Bayes’ rule for probabilities distributions, that es-
timates the posterior probability density by using prior knowledge
about the parameters (priors) and updates the posterior probability
density estimate by means of likelihoods as long as new evidence (real
data) is acquired.

Thus, Bayesian Inference factorizes prior knowledge about the parameters
and likelihoods, using likelihoods as reference to relate the parameters to the real
data. Alternative methods address the simulation of the posterior probability
density directly or of the likelihood only [24, 10]. Usually, Bayesian Inference is
used to find the best parameters given the observed data, i.e. the parameters
that maximize the posterior probability distribution. The best choice for these
depend on the form of the distribution. Usually, parameters belonging to the
central tendency of the posterior probability density are taken, other times
the maximum is searched for (Maximum a Posteriori or MAP). The choice of
the ‘best’ parameters is part of a more general discussion about the search for
estimates that don’t involve outliers [11].

When the best estimate for the parameters has been found, it can be used
in many ways, for example to simulate a function (e.g. the best estimate of the
coefficients of a linear combination) or to make predictions on the distribution
of a new data point by means of the posterior probability density [1].



3 JAGS

JAGS (Just another Gibbs sampler) is a program developed by Martyn Plum-
mer [20, 21] that implements Bayesian inference using Markov Chain Monte
Carlo models (MCMC)!. It is based on a hierarchical models, a special case of
graphical models, which will be described later in this Section. JAGS relies on a
dialect of the BUGS programming language to define models. BUGS is a declar-
ative language where the programmer is requested only to specify the known
relationships among the variables. Thus, in the BUGS modelling language the
order in which the relations are specified is not important, they must be only
declared. The approach is different from imperative languages (e.g. R, C, For-
tran, Pascal etc.), in which an algorithm is built as a sequence of steps from
the computer point of view. The relations among the variables are specified
in terms of probabilistic or deterministic functions. Furthermore, likelihoods
are defined when real data must be taken into account. JAGS is responsible
for analysing the distributions definitions and applying the most appropriate
strategy to simulate the posterior probability density values.

The general approach is the one of Gibbs Sampling, described in the Section
4, but it is accompanied by several techniques that enforce (or in some cases sub-
stitute) the standard Gibbs Sampling. For example, the Metropolis—Hastings
algorithm [5], the Slice sampling [17] and the Adaptive Rejection sampling [8]
algorithms are included in JAGS. In Section 5 we explain how these may inter-
vene during the process. JAGS is an alternative to other wrappers for BUGS
modelling dialects, like WINBUGS [7, 19] and OpenBUGS [23]. The main aim
of JAGS is to provide a multi-platform open-source framework that is easily
expandable with new algorithms and is also open to criticize graphical models.
JAGS is endowed with a wrapper for the R language (rjags) [21] that is able
to run the BUGS model interpreter as an external program and to retrieve the
output as an R object, on which further processing can be applied [9].

One example of a BUGS model is the following, which represents a simple
linear regression

mu <- alpha + beta(x - x.bar);
Y © dnorm(mu, tau);

x.bar <- mean(x);

alpha ~ dnorm(0.0, 1.0E-4);
beta ~ dnorm(0.0, 1.0E-4);
tau ~ dgamma(1l.0E-3, 1.0E-3);

The code declares the dependencies among the variables in terms either of
stochastic or deterministic relations. As said before, unlike imperative languages
the order of the declarations is not important. They are treated by JAGS as
they were the hypotheses of a theorem to be demonstrated. JAGS autonomously
ensures that the model is coherent. The above R code means that the variable
mu is a linear combination of other variables. Y is a stochastic variable dis-
tributed like a Gaussian function, which depends also on other two variables,
mu and tau. Also alpha and beta are distributed like a Gaussian, while tau

IMCMC is a generic term indicating an algorithm that samples from probability distribu-
tions by constructing a Markov chain that has the desired probability density as its equilibrium
(or ergodic) distribution.



follows a Gamma distribution. In mathematical terms, the second relation in
the model means that the following distribution must be taken into account

1 7(Y7m,u)2tau
2

G(Y,mu,tau) = e
oV2m

(note that for JAGS tau = ).

JAGS is initialized by means of parameters which accompany the BUGS
model and that may include observed data. If a variable contains real data,
JAGS interprets its corresponding probability distribution as a likelihood. Re-
ferring to the example, if Y contains real observations then JAGS interprets
Y ~ dnorm(mu,tau) as a likelihood. The other distributions are treated either
as simple priors or as conditional probability distributions. The deterministic

functions act as definitions to simplify the syntax.

3.1 Graphical models

Graphical models are the basic concept under JAGS. The fundamental object
in a graphical model is a node, which represents a variable in the model (either
observed or unobserved). Nodes have children and parents, and a dimension
attribute [2]. JAGS allows to define nodes that represent stochastic parame-
ters (Stochastic nodes), deterministic parameters (Logical nodes) and constants
(Constant nodes). The relations among the nodes are automatically traced on
the basis of the names of the variables. Parameters depending on other pa-
rameters are seen as having these as ‘parents’. Furthermore, JAGS allows to
define Array nodes, representing containers of parameters entirely related to
other variables and Subset nodes, related to other nodes by subscripting. Gen-
erally speaking, a graphical model is a probabilistic model in which a graph
defines the conditional dependencies among the random variables. The graph
gives a compact representation from which the independent and the conditioned
variables are immediately evident. One example is in figure 1, where a graph
represents the relations between 4 variables {61,6s,03,604}. In this case, the

/!

Figure 1: A probabilistic graphical model for 4 variables.

joint probability distribution for the variables is

p(01,02,03,04) = p(61)p(02)p(04]61,02)p(63]02,04)



This formula multiplies all the conditional distributions. As yet said, JAGS
knows which ones must be interpreted as likelihoods and which as priors or
conditional distributions. In Section 5 we show that Gibbs Sampling just starts
from this joint distribution to sample the posterior probability density. By ab-
stracting the graphical model in the example, we can define the joint distribution
associated to a graphical model representing the variables {61, 6-,...,60,}, as

n

p(ah 02) ceey en) = Hp(ei‘pari)

i=1

where par; is the set of parents of the node #;. From the above formula the
factorized representation coming from the usage of the graph is evident. Hier-
archical models are a special case of graphical models, for which the edges have
a causal interpretation, established by the hierarchical dependencies among the
nodes [6]. In hierarchical models, conditional independence relations are im-
posed by the hierarchy. JAGS models are indeed hierarchical models.

Figure 2 reports the hierarchical model of the linear regression reported at
the beginning of this Section, where the squares indicate deterministic functions,
while the circles indicate probabilistic distributions.
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Figure 2: A probabilistic hierarchical model for the linear regression example of
Section 3.

4 Markov Chains

A Markov chain is a model for a sequence of random variables, that is suitable
to a class of stochastic processes that require to reduce the used amount of
memory. Markov chains are often used to model sequences of observations in
time, especially when the time variable is discrete.

Let’s consider a sequence of random variables 61,605, ...,6, that can take
values from the same finite alphabet O = {01, 02,...,0,,}. This could be the



case, for example, of the Dow-Jones Industrial average. The trend for this
quantity can be modelled supposing that, at several discrete time instants, a
different random variable 6; took a value among O = {Up, Down, Unchanged}.

Generally speaking, for a sequence of discrete random variables the joint
probability is the following

n

P(61,02,...,0,) = P(61) [ [ P(6:]6:-10i—2...61)

i=1

which models the fact that a variable 8; depends on all the preceding variables
in the sequence. For example, in the case of a sequence of 3 variables

P(61,02,03) = P(61)P(02|02)P(03|6261)

A sequence of random variables is said to form a first—order Markov chain if the
probability of a variable in the sequence is conditioned only by the preceding
variable. This means that

P(9i|0i_191_2 A 91) = P(Gi\Gi_l)

and the formula for the joint probability becomes

n

P(61,62,...,0,) :P(al)HP(eiwz'—l)

i=1

this equation is also known as the Markov assumption. Markov models are
particularly indicated to model phenomena characterized by a sequence of ob-
servations in time, where each observation depends on the preceding one. Often,
it is necessary to model relations with the m preceding variables instead of the
first, which requires to use mth—order Markov chains, whose definition is easily
deducible from the first—order one. In Gibbs sampling the first—order Markov
assumption is sufficient. The probabilities P(6;]0;_1) are called transition prob-
abilities. We can suppose that the variables 0; are not distinct, thus the chain is
made up of a sequence of variables taken from a finite set {s1, s2,...,s4}. The
s; variables are usually said the states of the Markov chain.

Thus, we can calculate the probability of state s; to be the state at time ¢
in the sequence. It is the overall probability to pass from a preceding state s;
to s;. Note that s; could be s; itself, because the Markov chain could present
consecutive repetitions of the same state in the sequence

Pi(si) =Y Pio1(s;) Pi(sils;)

j=1

The above formula ‘says’ that the probability that s; is at time ¢ in the sequence
is given by all the possible ways to reach s; from any preceding s; state. The
formula also accounts for the probability that s; was the previous state in the
sequence. Note that the transition probability to pass from s; to s; can be
different depending on the time instant. In order to understand the relationship
between Gibbs sampling and Markov chains explained in the next Section, we
need to introduce some definitions.



A Markov chain is said to be homogeneous or stationary if the transition
probability does not depend on time. This means that P;(s;|s;) is simply
P(s;|s;) and depends only on the pair of states.

A Markov chain is said to have reached an invariant probability I'(s;) over
the states when this persists forever. In other words

D(si) = Y T(s;)Pi(sils;)

j=1

If the chain is also homogeneous then we can substitute P; with P. A finite
Markov chain always has at least one invariant distribution.

A Markov chain is ergodic if Py(s;) converges to an invariant distribution
for t — oco. Furthermore, this is required to happen regardless of the choice of
initial probabilities Py(s;). An ergodic Markov chain can have only one invariant
distribution, called equilibrium distribution. In Gibbs sampling we search for
ergodic Markov chains that converge to an invariant distribution, which is just
the posterior probability distribution.

A Markov chain is aperiodic if the return to a state can occur at irregular
times.

The chain is irreducible if it is possible to go from any state to any other
state (not necessarily in one step).

A Markov chain is recurrent if for any given state 4, if the chain starts at 1,
it will eventually return to ¢ with probability 1.

The chain is positive recurrent if the expected return time to state ¢ is finite,
otherwise it is null recurrent.

The ergodic theorem states that if a Markov chain is aperiodic, irreducible
and positive recurrent then it is ergodic [16]. This theorem is used to demon-
strate that Gibbs sampling can be ergodic under some conditions. The extension
of this explanation to the case of continuous variables is quite easy and the given
definitions apply also to probability distributions. We leave other details about
Markov chains to more specific documents [18, 25, 10].

5 Gibbs Sampling

In this Section we use the concepts defined so far in order to explain the Gibbs
Sampling algorithm. The main aim of this method is to sample the posterior
probability distribution

5 P(l0)p(d)
p(0ly) = o0

The idea is that, having samples from the posterior, we can use them for making
predictions or for understanding which is the best choice for the 6 parameters
given the real data. The main issue around posterior probability distribution
is that it can be very difficult to draw samples from such density function,
especially when it is not a standard statistical distribution. For standard dis-
tributions, in fact, there are several techniques to generate samples because the
shape is well known [16, 14, 4].

Gibbs sampling uses Markov chains to draw samples from posterior densities
[3, 22]. The aim is not to directly sample from the complete function, but from



the conditional distributions of the 6; variables with respect to all the other
variables (full conditionals): p(6;|61,...,0; — 1,0, +1,...,6,,7).

The justification for this will be more clear later. The procedure is iterative
and it can be demonstrated that the higher is the number of iterations, the closer
are the samples to the ones from the posterior density. This comes from the
usage of Markov chains of samples, drawn from the full conditional probabilities.
Usually, these chains are ergodically convergent to the posterior density values.

5.1 Gibbs sampling rationale

In order to understand how Gibbs sampling works, we first explain (i) how
the samples from the full conditionals are linked to those from the posterior
probability density, (ii) how to build the analytical form of a full conditional,
(iii) how to build a Markov chain to sample the full conditionals.

The posterior probability density can be written in the following way, which
comes from the Bayes’ rule

p(01,02,. ... 0n1y) = p(01]02, ..., 0n, y)p(02, . .., Ony)

the same rule is valid also for the other variables. This means that sampling
each full conditional in turn, gives values that are proportional to the posterior
distribution. Gibbs sampling uses this relation to suggest to sample iteratively
each variable, leaving the other variables at their preceding state in time. When
a full conditional is sampled in this way, a new value for the conditioned variable
is picked and then immediately used to sample the other variables that have
not been sampled yet. Each full conditional is usually easier to sample than
the complete posterior density. Furthermore, it can hopefully have the form of
a standard distribution, which is unlikely to happen for the complete posterior
density.

Gibbs sampling is divided in two parts: the first aims at obtaining analytical
forms for each full conditional. The second generates samples iteratively with a
Markov approach, in which the samples tend towards the posterior density ones
[12].

5.2 Obtaining analytical forms for full conditionals

The algorithm for obtaining the analytical forms for the full conditionals pro-
ceeds with the following steps

1. write the complete formula of the posterior probability;
2. pick one parameter 6;;

3. from the formula of the posterior probability, drop all the factors that do
not depend on 6;. At this point, if we suppose that the other parameters
are fixed, then we have obtained a formula for the full conditional of 6;;

4. use automatic simplification procedures to figure out if the conditional
probability can be reduced to a known distribution;

5. repeat from step 2 for all the parameters.



Remember that, in the case the relations among the variables had been ex-
pressed as a hierarchical model, the formula of the posterior probability density
would be the one reported in Section 3.1. For example, in the case of 4 variables

p(01,02,03,04) = p(01)p(02)p(04]01, 02)p(05]02, 0.)

where some of the terms can be interpreted as likelihoods (the ones in which
real data are involved) and other ones as conditionals or priors.

For example, suppose that the analytical formula of the complete posterior
probability was

2
p()‘b )‘27 5'?’ Z) = H A’Eyiil)e_(trh@))\iﬁge_QOB
=1

where  and t are real observations and {\1, A2, 3} are random variables. It is
evident that the formula cannot be reduced to a standard distribution. But, if
we drop in turn the factors that depend either on the A\; or on [ we obtain

p()‘l|)‘27 67 g7 ﬂ = Agyiil)e_(tr‘rﬁ))\l = Gamma(yi, tl + ﬂ)
which holds also for A2, and
p(BIA1, Aa, 7, ) = 827 20P = Gamma(10,20)

Thus, in this case the conditional distributions are much more easy to be sam-
pled, because their distribution is well known. We will mention techniques to
sample from the posterior distribution also in the cases in which this reduction
is not possible.

5.3 Gibbs sampling algorithm

To illustrate the Gibbs sampling algorithm, let’s address the case of 3 random
variables {61,02,603} and some real observations . The posterior probability
distribution is p(61, 02, 05|7) and we want to sample from it having the formulae
for priors and likelihoods [26].

The steps of the Gibbs sampling algorithm (Gibbs sampler) are

1. pick a vector of starting values for the random variables from the prior
distributions of the variables;

0 = {01,605, 05}

2. select 6; and draw a sample 951) from the conditional probability of this
variable, fixing the values of the other variables to 0&0) and 9:())0). In other
words, draw a sample from p(91|9§0)7 9:(30), 9);

3. select #> and draw a sample from p(92|9§1),9§0) ¥), using the updated
value of 0;

4. select 03 and draw a sample from p(63 |0§1), 951)7 J), using both the previous
updated values;



5. define the vector (1) = {9%1)7 951), 9:(31)}

6. build a sequence of vectors (0, (V) 92 . 9®) by using the above sam-
pling procedure, stopping at a certain t* = M.

After a certain number of iterations, we will have M samples of the variables,
where the last ones are the most reliable if the M value is ‘big’ enough. The
above algorithm can be easily adapted to the case of more than 3 variables.

5.4 Gibbs sampling correctness

The Gibbs sampler produces a Markov chain, because at each step it consid-
ers each variable with respect to the others either at the previous time instant
or at the current time instant. In other words, if the variables to sample are
{61,...,0,}, then we can say that the Gibbs sampler builds the following tran-
sition probabilities distributions
0161, 010160516 )

which are compliant with the definition of transition probability distribution
of a Markov chain. The chain is also invariant, because for each variable the
transition probability distribution fixes the other variables and forces the con-
ditional distribution of 91@ to account for the likelihood to the data. In other
words, the new sample is constrained to follow the conditional probability den-
sity (less than a normalization factor), because the full conditionals are factors
of the expected posterior density. In fact the procedure starts from the ‘de-
sired’ posterior density to obtain the full conditionals and this ensures that the
samples will follow more and more the posterior, as far as new samples are it-
eratively produced. Furthermore, if the transition probabilities are all non-zero
(i.e. the chain is irreducible), then the probability of remaining in the same
state is non-zero. From this, It can be demonstrated that the hypotheses of
the ergodic theorem are satisfied, thus in this case the chain is also ergodic and
tends towards the posterior distribution for construction [16].

5.5 Producing optimal estimations from the samples

The expected value of a function of a random variable that can range between
two numbers a and b is defined as

where p(z) is the probability distribution of x. Monte Carlo Integration is a
technique to approximate this integral by means of the samples of x [25, 15]. The
technique estimates the expected value of a random variable with an average on
the samples of « drawn from p(x). Note that p(z) could also indicate a posterior
density. More formally

Ela@)] ~ ~ 3 a(a,)
1

where {z1,...,2,} are n samples of x drawn from p(z).
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In the same way, the expected value of x after the sampling can be approx-
imated in this way

b n
1 -
Elz] = /a xp(z)dr ~ szz =[

The variance of z is defined as V[z] = E[(x — E[z])?]. Thus, it easy to demon-
strate that we can approximate it as

Vig) % —— 3@ — )?

n—1 T

The rationale under Monte Carlo Integration is that as the number of samples
increases the approximation becomes more accurate. This statement is a direct
consequence of the Strong Law of Large Numbers [13] if the samples are in-
dependent. Unfortunately, Gibbs sampling generates samples that are slightly
dependent, but there are some good practices that allow to reduce this bias.
As we have explained, the Markov chain produced by the Gibbs sampler possi-
bly begins to converge after the generation of many samples. Thus, it is good
practice to discard the first k& produced values, where k& depends on the speed
of convergence of the chain. These are usually referred to as burn—in itera-
tions. Furthermore, in order to break the dependency between the draws in the
Markov chain, usually one draw every d is kept, where d is heuristically chosen.
This practice is known as thinning. Finally, another good practice is to avoid
sensitivity to the starting point of the chain. This is achieved by producing
several Markov chains that start from different initial values and by sampling
from all of them (multiple chains). Burn—in, thinning and multiple chains are
standard initialization parameters for JAGS.

Monte Carlo integration can be applied to the Gibbs sampling output. In
this case we take samples from the posterior probability distribution and the
expected value for each variable is the average of the samples. This is a good
practice if the sampling covers areas where most of the probability is concen-
trated. On the other side, when the distribution is strongly skewed or if it has a
complex shape, it can be difficult to find such areas and the simple average on
the samples cannot be appropriate. In such cases percentiles or mode are more
appealing.

6 JAGS approach to Gibbs Sampling

JAGS applies Gibbs sampling in a transparent way to the user. The user is
only asked to setup the probability density functions for priors, conditionals
and likelihoods. As yet said, JAGS autonomously recognizes which are the like-
lihoods among the defined probability densities and the model is mapped onto a
hierarchical model. After this phase, JAGS writes the formula for the posterior
distribution and applies a simplification process to write the full conditionals
for all the variables. Gibbs sampler is then applied, which sometimes combines
other complex strategies to sample the full conditionals (e.g. Slice sampling or
Adaptive Rejection sampling). Alternatively, JAGS could use the Metropolis—
Hastings algorithm instead of the standard Gibbs sampling, in order to directly
sample the posterior density.

11



Important input parameters to JAGS are (i) the number of Markov chains
to produce (in order to possibly avoid non—ergodic behaviour), (ii) the burn—in
iterations (to reduce the unreliability of the first samples), (iii) the thinning pa-
rameter (to enhance samples independency), (iv) indication on real observations
(to enable likelihoods detection). JAGS produces the samples, then the user can
apply Monte Carlo Integration to calculate the optimal values for the param-
eters, otherwise the user can calculate percentiles or other quantities. In the
following, we propose a complete example of an R program, with comments in
line, that uses JAGS with Monte Carlo Integration to get the optimal estimates
for the parameters.

#True parameters

a =10
b =20
slope = b/a

#Build of the Theoretical Hockey-Stick function

numberOfRealdata = 100

#samples on the x axis

xsamples<-seq(length=numberOfRealdata, from=1, to=numberOfRealdata)
#samples of the theoretical H-S
theoretical_hockeyStick<-ifelse(xsamples < a, xsamples * slope, b)

#Let’s add noise to the Theoretical Hockey-Stick function

noisy_hockeyStickSamples<-theoretical_hockeyStick+runif (numberOfRealdata,
-1, 1);

#We now forget the theoretical Hockey-Stick and use the noisy samples to
reconstruct it back

#We suppose that a, b and slope are indicative values for the best
estimates

#We admit a high uncertainty around these indicative values

SD.a = 5

SD.b = 5

SD.slope = 10 #making the slope a random variable is not mandatory

#We initialize JAGS by stating which are the real data
jags.data <- list("N","a","b","slope","SD.a","SD.b","SD.slope",
"xsamples","noisy_hockeyStickSamples")
#We state that we are interested into obtaining estimates for a,b and
slope given the real data
jags.params <- c("random_a","random_b","random_slope")

#Let’s build the BUGS model (the order of the following declarations is
not important)

Model = "

model {

#static definitions

random_slopetau<-pow(SD.slope,-2)

random_a_tau <- pow(SD.a, -2)

random_b_tau <- pow(SD.b, -2)

#prior probabilities
random_slope ~ dnorm(slope, random_slopetau) #BUGS wants tau instead of

12



sd directly
random_a ~ dnorm(a,random_a_tau)
random_b ~ dnorm(b,random_b_tau)

#likelihoods - JAGS will understand their nature from the fact that real
data are available for them

#we state that each sample comes from a normal distribution around the
random parameters values

for (j in 1:M){
#definition
y[j] <- ifelse(xsamples[j] < random_a, xsamples[j] * random_slope,

random_b)
#likelihood
noisy_hockeyStickSamples[j] ~ dnorm (y[j], random_b_tau)
}
}

# Write the BUGS model into a file
JAGSFILE="r2ssb.bug"
cat (Model, file=JAGSFILE)

#setup the Gibbs sampling

Nchains = 2 #number of Markov chains - to account for non ergodic
convergence

Nburnin = 100#burn-in iterations - n. of iterations to discard

Niter = 1000#total n. of iterations

Nthin = 10#thinning - take every 10 samples to lower the dependency
among the samples

#run the Gibbs sampling
jagsfit <- jags(data=jags.data, working.directory=NULL, inits=NULL,
jags.params,
model.file=JAGSFILE, n.chains=Nchains, n.thin=Nthin,
n.iter=Niter, n.burnin=Nburnin)

#recover the outputs

random_a_samples<-jagsfit$BUGSoutput$sims.list$random_a
random_b_samples<-jagsfit$BUGSoutput$sims.list$random_b
random_slope<-jagsfit$BUGSoutput$sims.list$random_slope

#Perform Monte Carlo Integration to recover the best estimates for a and
b

a_best<- mean(random_a_samples)

SD.a_best<- apply(as.matrix(a_best),2,sd)

b_best<- mean(random_b_samples)

SD.b_best<- apply(as.matrix(random_b_samples),2,sd)

cat("Best estimate for a :",a_best, "\n")
cat("Best estimate for b :",b_best, "\n")

#plot the real values and the results

plot (xsamples,noisy_hockeyStickSamples,col="blue")
#plot the true value of a

abline(v=a, 1lty=3, col="red",lwd=1.5)
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text (x=a+10, y=9,"True value of a")

#plot the re-estimated Hockey-Stick function
lines(x=c(0,a_best,number0fRealdata), y=c(0,b_best,b_best),col="green")
text (x=a+40, y=17,"Re-estimated Hockey-Stick Function (line)")

The output of the above code is the following, along with the charts displayed
in figure 3

>Best estimate for a : 9.74
>Best estimate for b : 19.9

By running the code several times it becomes evident that the re—estimated
values are always very similar, even if the uncertainty on the prior expectations
was high. This means that the produced Markov chain is ergodic.
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Figure 3: Output of the R example. The noisy observations, the true value of
a and the re—estimated hockey-stick function are displayed.

7 Conclusions

In this document we have shown the basic principles of Gibbs sampling and its
realization by means of the JAGS software. We have described the basic princi-
ples of Bayesian Inference and an approach that uses Markov chains and Monte
Carlo Integration to estimate the expected values of the model parameters. The
main aim has been to give some insight of these principles in order to make a
JAGS user more aware of what happens behind the scenes. In the end of the
document we have presented a complete R—code that uses JAGS to estimate a
hockey—stick function. We suppose that the way the reader understands it is
enriched with theoretical information about the underlying calculation mecha-
nisms.
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