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Abstract

The smoothed particle hydrodynamics (SPH) method is used in this paper to model micropolar fluids,

with emphasis on their dissipation mechanisms. To this aim, a dissipation function is defined at the particle

level which depends on the relative velocity between particles but also on an additional spin degree of

freedom, which modifies such relative velocity as well as introduces spin related intrinsic dissipation

mechanisms, comparable to those related to the rate of deformation tensor in Newtonian fluids. This

dissipation function is then incorporated within the Lagrangian formalism, leading to a set of SPH particle

equations to describe the dynamics. A continuous integral SPH version of the scheme is obtained with a

bottom-up derivation which guarantees the consistency of the SPH term. The model is then enriched with

two additional terms based exclusively on the spin derivatives, which grant it the maximal generality as an

isotropic model for micropolar fluids. Finally, numerical verification and validation tests are documented,

that show that SPH is capable of accurately modeling this type of dynamics.
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I. INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) is a numerical technique that can simulate

macroscopic flows through a Lagrangian description of the fluid dynamics [? ? ]. In regards

to the application of the method to different types of fluids, as expected due to their prevalence,

Newtonian fluids have received much attention (see e.g. [? ? ? ? ]). Beyond, there have been

successful attempts to model more complex fluids with SPH, such as e.g. Oldroyd type [? ? ? ? ],

Jaumann-Maxwell [? ] and inelastic non-Newtonian [? ]. Such attempts have been complemented

by the addition of thermal fluctuations to the SPH model to describe mesoscopic scales (known as

SDPD), which allowed to model polymer molecules in suspension [? ? ] and blood flow [? ]. As

the complexity of the fluid behavior increases, there is major concern about how the extensions of

the SPH method affect fundamental aspects of fluid motion, such as the conservation of linear and

angular momentum, and any other property inherited from the underlying microscopic physical

reality.

In [? ? ], the introduction of dissipation functions at the particle level, with the appropriate

symmetries related to Galilean invariance, rotational invariance and tensorial objectiveness [?

], allowed us to derive the SPH form of the Newtonian viscous terms from first principles of

conservation and thermodynamic consistency. This bottom-up approach is proven capable of

producing new force terms to model an arbitrary bulk viscosity, independent of the shear viscosity,

the latter modeled through the usual Monaghan and Gingold’s term [? ], for example. The

objective of present research is to apply this technique to derive SPH equations for more complex

fluids, in particular micropolar ones, with the maximal generality. The application of this method,

in addition, has allowed us to critically review some of the existent approaches within the SPH

framework, which is also of physical interest.

Micropolar fluids are fluids with microstructure, reflected in these fluids having an additional

local degree of freedom, the spin, for which a time evolution equation can be set, evolution which

affects the dissipation characteristics of the flow. The polarity refers to the fact that the spin

dynamics is connected to the presence of torques at the microscopic level. The reader is referred to

references [? ? ? ? ] for extensive descriptions of the physical models for these fluids. In regards

to their practical applications, a review is provided by Ariman et al.[? ]. Lubrication modelling

appears as an important area because the presence of additives and dirt in the lubricating fluids

deviates their physical behavior from the Newtonian model [? ]. More recently, even this kind of
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micro-rotation related diffusion processes has been investigated in the context of the transport of

coronavirus in body fluids [? ].

Even though the nature of micropolar fluids seems to intrinsically match with the basis of a

particle method such as SPH, they have scarcely been treated in the SPH literature. In the context

of computer graphics, a number of authors have recently incorporated a spin degree of freedom

to their SPH model, with the aim of tuning the intensity of turbulent structures [? ? ? ? ? ]. In

SDPD, analogous to SPH but with thermal fluctuations, Müller et al. [? ], inspired by previous

works in the Voronoi particle dynamics method [? ], incorporated a spin degree of freedom to

construct a model in which the angular momentum is conserved despite the fact that the forces

between particles are not central, i.e. torques are exerted on the particles. An example of non-

central forces is the type introduced by Morris [? ] for the translational motion of the particles

which, if no description of the rotational dynamics is introduced, leads to the non-conservation of

the total angular momentum. However, although the formulation of Müller et al. [? ] restores

the conservation of angular momentum, the dynamics of the particle spin is very restrictive, as is

applicable to Newtonian fluids only.

In this article we show, in the first place, that the spin inertia is of molecular size in the

continuum limit and, therefore, is negligible in most of the possible practical cases. This implies

the well known result for Newtonian fluids that the particle spin follows the local vorticity and

has no independent dynamics. As a consequence, the role of the spin in this SPH formulation

is scale-dependent, and its importance vanishes in the continuum limit. Secondly, we propose a

method to assign a moment of inertia to the model particles which reflects such scale-dependence.

With this prescription, we show that the fluid conserves angular momentum even if there are non-

central interparticle forces inducing net torques. Without the explicit description of the spin, such

tangential forces are forbidden if angular momentum is to be conserved, as we demonstrated [? ?

].

In the third place, we generalize the spin dynamics beyond Newtonian fluids, by introducing

new dissipation terms into the SPH bottom-up formulation that have not been modeled at the

discrete level and validated, so far. These new terms eventually induce spatial derivatives of the

spin variable in the continuum limit. Within this model, even though the moment of inertia is of

molecular size (vanishingly small from the SPH perspective), still the spin is not enslaved by the

vorticity, but it behaves as an independent field, coupled to the translational dynamics of the fluid.

Our scheme will, by construction, conserve angular momentum, a property which is desirable in
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any numerical scheme, particularly if free surfaces are involved (see e.g. [? ? ? ]), and which has

received particular attention in the SPH literature [? ? ? ]. We show that the new terms included

in the SPH description permit to model the general micropolar fluid described by the pioneering

work of Condiff & Dahler [? ] in the continuum limit. Therefore, the new SPH model presented

in this article can be considered as the most general particulate description for micropolar fluids.

The paper is organized as follows: in section 2 we introduce the SPH framework, and derive

the new contribution to the dissipation force for a general system with an additional spin degree of

freedom. The hydrodynamic limit of the model is derived in section 3 and is shown to be equivalent

to a particular micropolar fluid viscous term, which has no effect on steady-state solutions of

the problem for common macroscopic fluid conditions. The model is then enriched to account

for dissipation mechanisms based on spin variations that eventually lead to a general model for

micropolar fluid dynamics. Numerical verification and validation cases are proposed in sections 5

and 6. Some conclusions are enumerated and future work threads proposed to close the paper.

II. DERIVATION OF A SPH FORMULATION WITH SPIN.

A. The SPH approximation to the hydrodynamic fields

Let us consider an ensemble of N isotropic particles representing fluid elements located at

positions ri, i = 1, . . . ,N with velocities ui, masses mi, and volumes Vi. Since the particles are

considered as macroscopic objects, we can define the internal energy per unit of mass ei and the

particle entropy per unit of mass si. To model micropolar fluids, we assume that the particles are

isotropic but that they can rotate. The case of non-isotropic particles will be treated elsewhere.

In SPH, fields are associated to corresponding physical properties carried by particles, or defined

from the immediate neighborhood. The main example of the latter is the particle mass density [?

]:

ρi = mi

N∑
j=1

W(ri j; h), (II.1)

where W is a weight function referred to as kernel. Here, ri j = ri − r j and ri j = |ri j|. The particle

volume Vi is estimated as

Vi =
mi

ρi
. (II.2)
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The kernel W is a positive definite, monotonously decreasing, integrable function with a

characteristic length h (see [? ] for a recent discussion on the choice of kernels’ characteristic

length), which will be omitted in the notation where no confusion could occur. In this article, this

kernel is isotropic and its volume integral is normalized, i.e.∫
dr W(r) = 1. (II.3)

The spatial gradient of the kernel satisfies

∇iW(ri j) = ei j
dW
dri j
= −ri jF(ri j) = −∇ jW(ri j), (II.4)

where ei j = ri j/ri j is a unit vector, and F is defined from this equation, being a positively definite

function by construction.

In SPH, to reproduce smooth fields, insensitive to the underlying particulate nature of the

description, it is required that Vi ≪ hn, i.e. that the number of particles ν in a given particle

environment, determined by the range of the kernel h, must be large enough. Here n is

the dimensionality of the space. Otherwise, the local fields show large fluctuations at short

wavelengths of the fields, revealing the aforementioned particulate nature of the model. Moreover,

to recover the hydrodynamic behavior, as described by the Navier-Stokes equation, the so-called

hydrodynamic limit must be invoked [? ]. The latter states that the characteristic wavelengths of

the fields must be much larger than h so that spatial variations of the fields up toO(k2) are sufficient

to describe the dynamics, k being the field wave number. Hence, if L ∼ 1/k is the characteristic

length for the variation of a hydrodynamic field, the continuous limit description should be reached

when h/L ∼ kh→ 0 with Vi/hn → 0 [? ? ? ]. The latter limit will be discussed in next section.

Following the approach of [? ], the conservative dynamics of the system can be derived from

the Lagrangian

L[ṙi, ri, θ̇i,θi] =
∑

i

[
1
2

(
mi ṙ 2

i + mi Ii θ̇i
2)
− mi U(t, ri) − miV(t,θi) − mi e(ρi, si)

]
, (II.5)

where the first term on the right hand side of this equation is the kinetic energy of the particles,

which includes a translational and a rotational term. The rotational term is computed considering

an additional rotational degree of freedom, θi, with units of angular displacement, and the particle

inertia per unit mass, Ii. In equation II.5, U is a general external potential field such as gravity,V

is an external potential field leading to a body torque, ṙi = ui, and we denote Ωi = θ̇i, referring to

it as the spin, from now on. e is the internal energy, which is considered to be a function only on

the particle thermodynamic properties (density, ρi, and entropy, si) in the present model.
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particle i
particle j

FIG. 1: Schematic representation of two interacting particles, with internal rotation, including all the

variables necessary to define u∗i j.

To introduce the dissipative forces for rotating particles, let us first consider that the viscous

dissipation is generated due to friction at the contact point, defined as the mid point between the

centers of the two interacting particles i, and j. The composition of the translational velocity and

the velocity induced by the spin (see Fig. 1) at such contact point leads to the following velocity

difference at contact

u∗i j = ui j −Ωi j × ri j, (II.6)

with ui j = ui − u j and Ωi j := (Ωi +Ω j)/2.

The assumption that the contact point can be considered as the mid point is the result of

assuming that the boundaries between two adjacent particles are placed at the mid point, and

therefore there is where the friction is located. Other options could be considered but one expects

they would not significantly affect the long-wavelength behavior of the system.

Together with the Lagrangian, following [? ? ? ] we define the dissipation function, often

referred to as Rayleighian, summing all over the particles’ pairs, as

ΦD =
∑
i, j>i

u∗i j · �i j(ri j) · u∗i j , (II.7)

with a definite positive bilinear form:

�i j(ri j) = F(ri j) (ζ1 ei j ⊗ ei j + ζ2 I) ViV j, (II.8)

in which the coefficients ζ1, ζ2 have dimensions of dynamic viscosities.
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The introduction of the spin degree of freedom leads to major differences with respect to [? ?

], thus justifying the need for the derivations that follow next.

The right hand side of eq. (II.8) is the more general form for a second rank objective tensor,

constructed from particle coordinates [? ]. So defined, and considering the form of the u∗i j,

this dissipation function is as general as it can be in regards to being invariant to translations

and rigid rotations, a property which is crucial in numerical methods for inducing no spurious

dissipation. These imposed symmetries in the dissipation function are analogous to the symmetries

of the Lagrangian. Effectively, if the dissipation function is invariant under translations and solid

body rotations, the total momentum as well as the total angular momentum of the system will be

unaffected by the dissipative forces derived from the former.

Applied to u∗i j, it leads to:

ΦD =
ζ1
2

∑
i, j,i

F(ri j) (ei j · ui j)2 ViV j +
ζ2
2

∑
i, j,i

F(ri j)
(
ui j −Ωi j × ri j

)2
ViV j , (II.9)

where the summation takes now each pair twice, a convention which is possible due to the

symmetry of the interactions, and that facilitates some of the deductions later on. Since F(0) = 0

for common kernels, the restriction j , i in the summation in this equation, and in the ones that

follow in the rest of the paper, could ultimately be removed.

The second term in eq. (II.9) is the new contribution proposed, and represents the friction

between two particles due to the velocity difference in the mid point between the particles, induced

by the translational velocities and the spin induced ones.

Notice that in eqs. (II.5) and (II.9) we have made the distinction between the independent

variables in the Lagrangian ṙi, ri, θ̇i, θi and the ones in the Rayleighian ui, Ωi, although one

assumes that ṙi = ui and θ̇i = Ωi, at the end. Moreover, the dissipation function must be a

quadratic function of the velocities. Under these conditions, the dynamics of the system is given

by 
d
dt

(
∂L

∂ ṙi

)
−
∂L

∂ ri
= QV

i ,

d
dt

(
∂L

∂ θ̇i

)
−
∂L

∂θi
= T V

i ,

(II.10)

where QV
i , T V

i are, respectively, the generalized dissipative forces and torques acting among the

particles, which are obtained from differentiation of ΦD with respect to ui and Ωi, respectively,
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i.e.

QV
i = −

∂

∂ui
ΦD = − ζ1

∑
j

F(ri j)
(
ui j · ei j

)
ei jViV j − ζ2

∑
j

F(ri j)
(
ui j −Ωi j × ri j

)
ViV j, (II.11)

T V
i = −

∂

∂Ωi
ΦD =

ζ2
2

∑
j

F(ri j) ri j ×
(
ui j −Ωi j × ri j

)
ViV j. (II.12)

Eq (II.11) can be written as

QV
i = −

∂

∂ui
ΦD = − ζ1

∑
j

F(ri j)
(
ui j · ei j

)
ei jViV j

− ζ2
∑

j

F(ri j)ui jViV j

+ ζ2
∑

j

F(ri j) (Ωi j × ri j) ViV j,

(II.13)

With this notation, as discussed in [? ], the first contribution corresponds to the Monaghan and

Gingold’s viscous term [? ], and the second to the Morris et al. viscous term [? ]. However, the

first term conserves angular momentum while the second does not. As will be seen later in the

paper, the third term, the contribution due to the spin and the related spin derivative equation, will

allow to correct this matter.

The equation of motion for the roto-translational dynamics of the ensemble of particles obtained

from eq. (II.10) reads:
mi

dui

dt
= mi f

C
i + mi gi + mi f

V
i , mi f

V
i := QV

i ,

mi Ii
dΩi

dt
= mi t

C
i + mi Gi + mi t

V
i , mi t

V
i := T V

i ,

(II.14)

where mi f
C
i is the interparticle conservative force, gi the acceleration due to the conservative

body forces, i.e. gi = −∂U/∂ri, and fV
i are particle accelerations due to the considered dissipative

forces. The second equation of (II.14) governs the particle spin dynamics. In analogy with the

first equation, the terms on the right-hand side are: mi t
C
i , the interparticle conservative torque, Gi,

the angular acceleration due to the body torque field linked to the potentialV, i.e. Gi = −∂V/∂θi

and finally tV
i is torque per unit of particle mass due to the considered dissipative torques.

Making use of the properties of internal energy e and translational invariance, one can write

mi f
c
i in equation II.14 (see [? ] for details) as:

mi f
C
i ≡ −

∑
j

m j
∂e j

∂ri
= −

∑
j

m j
∂e j

∂ρ j

∣∣∣∣∣
s

∂ρ j

∂ri
=

∑
j

 p j V2
j + pi V2

i

Vi V j

 ri jF(ri j) ViV j, (II.15)

9



where we have used the fact that the particle pressure is linked to the internal energy: p =

ρ2 ∂e /∂ρ
∣∣∣
s
. In this derivation we have considered that the entropy s is intrinsically carried by

the particles and is not a function of the environment, as the local mass density ρ is. Considering

that the density field is affected by the particle positions and not by the spatial rotations, in the

present model tC
i is assumed equal to zero.

Equations (II.14) are integrated in time to describe the dynamics of the system, including the

formulated dissipative forces and torques.

B. Conservation of angular momentum

As discussed after introducing Eq. (II.13), the terms in Eq. (II.9) lead to two distinct

contributions to the viscous force considered. The first one is the Monaghan and Gingold’s force:

mi f
MG
i = −ζ1

∑
j

F(ri j)
(
ui j · ei j

)
ei jViV j. (II.16)

The second contribution is the Morris et al. [? ] one, but applied to the spin corrected velocity

difference (II.6):

mi f
Ω
i = −ζ2

∑
j

F(ri j)
(
ui j −Ωi j × ri j

)
ViV j, (II.17)

This contribution results from the mutual influence between the spin dynamics and the particle

translational motion.

According to eqs. (II.16) and (II.17), by permuting the indices we arrive to the conclusion that

the contribution of particle j to the force applied to particle i, mi f
v
i j, and vice-versa, verify:

mi f
v
i j = −m j f

v
ji. (II.18)

Thus, the total force on the center of mass of the pair is zero and, therefore, the total linear

momentum of the system will be a conserved quantity under the action of this force.

Conversely, the torque induced by this force over the pair is not zero, indeed:

ri × mi f
v
i j + r j × m j f

v
ji = ri j × mi f

v
i j = ri j × mi (fMG

i j + f
Ω
i j ) = ri j × mi f

Ω
i j , 0 , (II.19)

which indicates that the forces involved induce a net change in angular momentum. However, it

can be easily checked that the torque contributions (mi t
v
i j +m j t

v
ji) in eq. (II.14) cancel those in eq.

(II.19), thus implying that angular momentum is globally conserved.
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C. Entropy production.

Some energy considerations are necessary in order to compute the dissipation rate of the model as

well as to set reasonable limits to the model’s parameters ζ1, ζ2.

The total energy of the system of particles is defined through the following contributions:

E =
∑

i

[
1
2

(
mi u

2
i + mi Ii Ω

2
i

)
+ mi U(t, ri) + miV(t,θi) + mi e(ρi, si)

]
, (II.20)

Assuming the system is isolated, differentiating Eq. (II.20) with respect to the time and considering

the conservation of E we get:

Ė =
∑

i

[
mi ui ·

dui

dt
+ mi Ii Ωi ·

dΩi

dt
− mi ui · gi − mi Ωi ·Gi + mi

dei

dt

]
= 0. (II.21)

As discussed when deducing Eq. (II.15):

pi = ρ
2
i
∂ei

∂ρi

∣∣∣∣∣
s
. (II.22)

In addition, in accordance with the second law, the temperature Ti of a particle is obtained as the

variation of the specific internal energy as a consequence of variations of the entropy field:

Ti =
∂ei

∂si

∣∣∣∣∣
V
. (II.23)

Considering this and the continuity equation,

dρi

dt
=

∑
j

[
∂ρi

∂r j
· u j

]
, (II.24)

the time derivative of the internal energy can be expressed as:

dei

dt
=
∂ei

∂ρi

∣∣∣∣∣
s

dρi

dt
+
∂ei

∂si

∣∣∣∣∣
V

dsi

dt
=

pi

ρ2
i

∑
j

[
∂ρi

∂r j
· u j

]
+ Ti

dsi

dt
. (II.25)

Multiplying the first eq. of (II.14) by ui and the second equation by Ωi, substituting both and

dei/dt in (II.21), one finally gets:∑
i

[
mi f

v
i · ui + mi t

v
i ·Ωi + mi Ti

dsi

dt

]
= 0 . (II.26)

If the forces and torques in eq. (II.26) are dissipative, by the Second Law of Thermodynamics the

entropy production of the system must be positive, i.e.,∑
i

[
mi Ti

dsi

dt

]
= −

∑
i

[
mi f

v
i · ui + mi t

v
i ·Ωi

]
≥ 0 . (II.27)
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If the RHS is expanded in its various terms, one gets:

−
∑

i

[
mi f

v
i · ui + mi t

v
i ·Ωi

]
=

∑
i

ζ1 ui ·
∑

j

F(ri j)
(
ui j · ei j

)
ei jViV j

+ζ2 ui ·
∑

j

F(ri j)
(
ui j −Ωi j × ri j

)
ViV j

−
ζ2
2
Ωi ·

∑
j

F(ri j) ri j ×
(
ui j −Ωi j × ri j

)
ViV j

 .
(II.28)

It can be seen (see appendix A ) that the RHS of eq. II.28 is equal to dissipation function Φd.

Therefore, eq. (II.27) implies that:

ΦD ≥ 0. (II.29)

From the entropy production we can derive important conclusions about the restrictions on the

values of the dissipative coefficients in the present model. To do so, let us rewrite the right-hand

side of eq. (II.28) as:

ΦD =
1
2

∑
i, j

ViV jFi j

[
ζ1

(
ui j · ei j

)2
+ ζ2

(
ui j −Ωi j × ri j

)2
]
, (II.30)

and introduce the unit vector τi j normal to ei j, such that the velocity field ui j is decomposed as

follows:

ui j =
(
ui j · ei j

)
ei j +

(
ui j · τi j

)
τi j . (II.31)

Substituting the expression above inside the formula for ΦD we find:

ΦD =
1
2

∑
i, j

ViV jFi j

{
ζ1

(
ui j · ei j

)2
+ ζ2

[(
ui j · ei j

)
ei j − hi j

]2
}
.

where:

hi j :=
(
ui j · τi j

)
τi j − Ωi j × ri j (II.32)

We observe that hi j · ei j = 0, since ei j is parallel to ri j and τi j · ei j = 0 by definition. Then,

expanding the second term inside the summation and rearranging, we find:

ΦD =
1
2

∑
i, j

ViV jFi j

[
(ζ1 + ζ2)

(
ui j · ei j

)2
+ ζ2 ∥hi j∥

2
]

To guarantee the positiveness of ΦD, it is sufficient to require:

ζ2 ≥ 0 , and ζ1 ≥ −ζ2 . (II.33)
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III. FROM THE DISCRETE TO THE CONTINUUM

A. Momentum equation

As demonstrated by the authors in [? ], the continuous equivalent of the integral form (the limit

in which the volume of each particle goes to zero) of the force fMG, eq. (II.16), is, written in the

continuum as a force per unit volume ρfMG:

ρfMG(r) =
ζ1

2(n + 2)
∇2u(r) +

ζ1
n + 2

∇ (∇ · u)(r) + O(h2) , (III.34)

where n is the spatial dimensionality of the problem.

As for the other contribution to the dissipative force, fΩ, eq. (II.17), let’s split it in two parts:

ρi f
Ω′
i = −ζ2

∑
j

F(ri j)ui j V j, (III.35)

ρi f
Ω′′
i = ζ2

∑
j

F(ri j) (Ωi j × ri j) V j, (III.36)

Regarding fΩ′i , also in [? ] it is shown that the continuous equivalent of equation (III.35) is:

ρfΩ′(r) =
ζ2
2
∇2u(r) + O(h2) . (III.37)

Regarding fΩ′′i , using the definition of Ωi j × ri j in Eq. (II.6), Eq. (III.36) can be rewritten as:

ρi f
Ω′′
i =

ζ2
2
Ωi ×

∑
j

F(ri j) ri j V j

 + ζ22 ∑
j

F(ri j)
(
Ω j × ri j

)
V j, (III.38)

The first term is zero in the continuum, as it is an approximation of the integral of the kernel

derivative in a system considered isotropic, while the second one is a discretization of ∇ ×Ω (see

e.g. [? ]). Both are of order h2 in their integral form. Therefore:

ρfΩ(r) =
ζ2
2
∇2u(r) +

ζ2
2
∇ ×Ω + O(h2) . (III.39)

Collecting back the terms together and taking the limit when the smoothing length, h, goes to zero,

one gets:

ρf v(r) =
(
ζ1

2(n + 2)
+
ζ2
2

)
∇2u(r) +

ζ1
n + 2

∇ (∇ · u)(r) +
ζ2
2
∇ ×Ω . (III.40)

The viscous force in Eq. (III.40) has the structure of the Newtonian one plus a rotational term.

Together with the pressure term and the body force, they lead to the continuous momentum

equation:

ρ
du
dt
= −∇p + ρf v + ρg. (III.41)
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It is germane to mention that Müller et al. [? ] proposed, for their model, this same dissipative

term (III.40) with however three degrees of freedom: a shear, a second and a rotational viscosity,

postulating a-posteriori restrictions in their values. In present paper, it has been shown that by

deriving this force with a bottom-up approach from the particle level, only two coefficients are

actually necessary to set the intensity of the dissipation mechanisms involved due to the restrictions

imposed by the required symmetry of the dissipation function in eq. (II.9).

B. Spin equation

Let us recall the second eq. in (II.14), making explicit its RHS:

mi Ii
dΩi

dt
= mi Gi +

ζ2
2

∑
j

F(ri j) ri j ×
(
ui j −Ωi j × ri j

)
ViV j . (III.42)

To move to the continuum, let us divide eq. (III.42) by the particle volume Vi and split the second

term in the RHS in eq. III.42 in its two summands:

ρi Ii
dΩi

dt
= ρi Gi +

ζ2
2

∑
j

F(ri j)(ri j × ui j) V j −
∑

j

F(ri j) ri j ×
(
Ωi j × ri j

)
V j

 . (III.43)

The first term is a second order approximation to ∇ × u (see e.g. [? ]) in the integral form, while

for the second term (see appendix B):∑
j

F(ri j) ri j ×
(
Ωi j × ri j

)
V j = 2Ωi + O(h2) . (III.44)

Combining both, and taking the limit when the smoothing length, h, goes to zero, one gets the

continuum analog of eq. (III.42)

ρI
dΩ
dt
= ρG −

ζ2
2

(2Ω − ∇ × u) . (III.45)

In appendix C a discussion on the physical meaning of the moment of inertia per unit of mass I

is provided. A proposal for assigning it a specific value in the numerical simulations is also there

included.

C. Identification of the present model with a continuous micropolar model

The micropolar viscous force per unit volume in the momentum equation has the form (see [?

], ch.3):

ρfmp = (µ + µr) ∇2u + (µ + λ − µr)∇ (∇ · u) + 2µr∇ ×Ω, (III.46)
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where µ, λ and µr are the shear, second and microrotation viscosities, respectively.

Comparing Eq. (III.46) with the force derived in present work (Eq. (III.40)) one gets the

following dependence of these parameters with the two independent coefficients of present model

ζ1, ζ2:

µ =
ζ1

2(n + 2)
+
ζ2
4
,

λ =
ζ1

2(n + 2)
,

µr =
ζ2
4
.

⇒ µr = µ − λ, (III.47)

Since, as shown in section II C, ζ1 ≥ −ζ2, ζ2 ≥ 0, the following limits apply to µ, µr and λ:

µ ≥ 0,

µr ≥ 0,

−
2µ
n
≤ λ ≤ µ, ⇒ 0 ≤ µr ≤ µ

(
1 +

2
n

)
.

(III.48)

As for the bulk viscosity κB, defined as (see [? ]):

κB = λ +
2µ
n
, (III.49)

the following limits apply for κB in the micropolar fluid model developed herein, as a consequence

of those of µ and λ:

0 ≤ κB ≤ µ
(
1 +

2
n

)
. (III.50)

The lower limit, κB = 0, corresponds to fluids which verify the Stokes’ hypothesis. Contrary to

the standard SPH viscous terms, which, as shown in our previous work [? ], do not allow to model

such fluids, the proposed model certainly allows to reach that lower limit for the bulk viscosity.

Regarding the upper limit, it implies that with the present fluid model, if a large bulk viscosity

is necessary, then a large shear viscosity, µ, will have to be considered too. Summarizing, the bulk

and shear viscosity are independent, but the range of admissible bulk viscosities is a function of

the shear one. To overcome this limitation, the bulk viscosity model and associated dissipation

function, developed by the authors [? ], should be added to the present model, which is an

alternative that presents no additional difficulty, and remains in the same theoretical framework.
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It is interesting to point out at this stage that if equation III.46 is reshaped using that

∇2u = ∇ (∇ · u) − ∇ × (∇ × u) , (III.51)

one gets:

ρfmp = µ ∇2u + (µ + λ)∇ (∇ · u) + µr∇ × (2Ω − ∇ × u) (III.52)

If the spin is equal to half the vorticity, eq. (III.52) becomes the standard Navier-Stokes momentum

equation for Newtonian fluids. Indeed, as discussed in section C, by inspecting the spin evolution

equation, eq. (III.45), one can see that, in the present model, the spin is equal to half the vorticity

if the inertial term on its left-hand side is zero, provided the external body torque is zero. Under

these conditions, the model developed so far reduces to that of a Newtonian fluid.

Also, under these conditions, the momentum equation (III.52) gets decoupled from the spin

evolution one, eq. (III.45). A general isotropic micropolar fluid model, in which the dissipation

function is enriched with terms depending on the spatial derivatives of the spin, can be developed.

For this model, the referred uncoupling does not occur. This general isotropic micropolar fluid

model will be obtained and validated next.

It is important to note that the momentum equation for micropolar viscous flows (III.46)

adopted in this section is the one proposed by Condiff& Dahler [? ] and later used by Lukaszewicz

in his book [? ]. However, authors like Eringen [? ] proposed alternative constitutive laws by

redefining the viscosity coefficients. Indeed, in [? ] the following equation, equivalent to Eq.

(III.46), was proposed:

ρfmp = (µ + κ) ∇2u + (µ + λ)∇ (∇ · u) + κ∇ ×Ω, (III.53)

with the corresponding, also equivalent, spin equation:

ρI
dΩ
dt
= ρG − κ (2Ω − ∇ × u) (III.54)

In this latter formulation the rotational viscosity is referred to as κ. When this alternative

formulation is used, the dependence of its coefficients (µ, κ, λ) with ζ1 and ζ2 needs to be

consistently readjusted, changing Eqs. (III.47) accordingly. This Eringen’s [? ] alternative

formulation is used in one of the reference solutions considered in section V.
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IV. A GENERAL ISOTROPIC MICROPOLAR FLUID MODEL IN SPH.

Inspired by Condiff & Dahler [? ], the following dissipation function Φ′D is now proposed,

extendingΦD defined in Eq. (II.7) to account for dissipation mechanisms based on spin derivatives:

Φ′D = ΦD + Φ
Ω
D, (IV.55)

with

ΦΩD =
∑
i, j>i

Ωi j · �i j(ri j) ·Ωi j , (IV.56)

where Ωi j := Ωi −Ω j, and where � is an objective tensor of second rank, with the same structure

like �, as defined in Eq. (II.8):

�i j(ri j) = F(ri j) ( ξ1 ei j ⊗ ei j + ξ2 I) ViV j. (IV.57)

This is the most general form that preserves translational and solid-body rotational invariance of

the dissipation function in eq. (IV.56). It is noted that the dimensions of the viscosity coefficients

ζ1, ζ2, and ξ1, ξ2 are different.

From eqs. (IV.56) and (IV.57), the following expression for ΦΩD is obtained:

ΦΩD =
ξ1
2

∑
i, j,i

F(ri j) (ei j ·Ωi j)2 ViV j +
ξ2
2

∑
i, j,i

F(ri j)Ω2
i j ViV j , (IV.58)

Since ΦΩD depends only on the spin derivatives, it impacts only on the viscous torque mi t
v
i , as

computed with eq. (II.14), redefined now as:

mi t
v
i = −

∂

∂Ωi
ΦD −

∂

∂Ωi
ΦΩD =

ζ2
2

∑
j

F(ri j) ri j ×
(
ui j −Ωi j × ri j

)
ViV j

− ξ1
∑

j F(ri j) (ei j ·Ωi j) ei j ViV j − ξ2
∑

i F(ri j)Ωi j ViV j .

(IV.59)

This viscous torque modifies the RHS in eq. (II.14) to get a general micropolar model. The first

term in eq. (IV.59) comes from ΦD and was already presented in eq. (II.12). The second and the

third derive from ΦΩD.

It is important to highlight that the two additional terms on ξ1 and ξ2 in eq. (IV.59) are

antisymmetric for two generic particles i and j. Therefore, they do not change the angular

momentum of the system, thus keeping the property of the whole scheme of being angular

momentum conservative.
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To take the torque in eq. (IV.59) back to the continuum, the same principles of section III A are

used, to which the result for the torque in section III B is added, leading to a modified equation for

the spin evolution at the continuous level:

ρI
dΩ
dt
= ρG − 2µr (2Ω − ∇ × u) + γ1 ∇

2Ω + (γ1 + γ2)∇ (∇ ·Ω) (IV.60)

where the additional spin-viscosity coefficients γ1 and γ2 are linked to the parameters ξ1 and ξ2

through:

γ1 =

[
ξ1

2(n + 2)
+
ξ2
2

]
, γ2 =

[
ξ1

2(n + 2)
−
ξ2
2

]
, (IV.61)

and where we have implicitly assumed that n ≥ 3. For n = 2, namely, in the case that two-

dimensional simulations are performed (not to be confused with two dimensional flows studied

through three-dimensional simulations), vorticity and spin are transported as scalars. Then, in eq.

(IV.59) the term proportional to ξ1 is exactly zero and should be ignored. In terms of viscosity

coefficients, this implies that γ2 = −γ1. Hence, the transport coefficients given in (IV.61), for two

dimensions correspond to the ones of eq. (IV.59) with ξ1 = 0. In what follows, ξ1 should be set

equal to zero or ignored if two-dimensional simulations are to be considered.

The evolution equation for the spin derivative (IV.60) includes the same additional terms (spin

Laplacian and gradient of spin divergence) like the corresponding one in the referred seminal paper

by Condiff & Dahler [? ] (eq. 13 there).

The entropy production is increased by these additional terms (the procedure is similar to the

one followed in section II C), with analogous restrictions for ξ1 and ξ2 as the ones for ζ1 and ζ2,

expressed in eq. (II.33). Therefore, ξ2 ≥ 0 and ξ1 ≥ −ξ2. It is worth noting that for planar flows

(∇ ·Ω) is zero.

An important conclusion of this general model, as given in eq. (IV.60), is that the micropolar

effects can exist even if the rotational inertia of the system is negligible in the continuum

description provided an external body torque is absent. Effectively, for a fluid of small physical

particles with no relevant moment of inertia, I is vanishingly small. However, when equating the

left-hand side of eq. (IV.60) to zero, due to the presence of the new dissipative terms still the spin

field Ω is not equal to the vorticity but satisfies a spatial differential equation. It is thus expected

that this general micropolar model can find application to the modelling of non-Newtonian fluids,

in which the microscopic structure of the molecules can introduce this type of dissipative processes

given in eq. (IV.58). The general micropolar isotropic model proposed in this section will be the

one used in the verification and validation cases that follow next.
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V. NUMERICAL VERIFICATION AND VALIDATION

A. SPH scheme for micropolar fluid

The SPH equations described in the previous sections are implemented numerically and

validated against analytical and numerical solutions available in the literature. For the sake of

clearness, the final SPH equations read:

ρi
dui

dt
= −

∑
j

 p j V2
j + pi V2

i

Vi V j

 ri jF(ri j) V j + ρi gi +

−(µ − µr) 2(n + 2)
∑

j

F(ri j)
(
ui j · ei j

)
ei jV j − 4µr

∑
j

F(ri j) (ui j − Ωi j × ri j) V j

ρi Ii
dΩi

dt
= ρi Gi + 2µr

∑
j

F(ri j) ri j ×
(
ui j −Ωi j × ri j

)
V j

− (γ1 + γ2) (n + 2)
∑

j

F(ri j) (ei j ·Ωi j) ei j V j − (γ1 − γ2)
∑

i

F(ri j)Ωi j V j .

(V.62)

These correspond to the following continuous equations:
ρ

du
dt
= −∇p + ρ g + µ ∇2u + (µ + λ)∇ (∇ · u) + µr∇ × (2Ω − ∇ × u)

ρI
dΩ
dt
= ρG + γ1 ∇

2Ω + (γ1 + γ2)∇ (∇ ·Ω) − 2µr (2Ω − ∇ × u)

(V.63)

where λ = (µ − µr), as implied by the SPH model (see the discussion in the section §III C).

Moreover, we recall that an additional constraint, namely γ2 = −γ1, needs to be imposed when the

flow is planar (see the section §IV).

In this latter case, some authors, as for example Venkatadri et al. [? ], provide the numerical

solution of eq. (V.63) by using a vorticity-spin formulation. The vorticity equation is obtained by

performing the curl of the momentum equation (V.63) and, for an incompressible fluid in a two

dimensional framework, the vorticity-spin formulation reads as follows:
ρ

dω
dt
= µ ∇2ω− µr∇

2(2Ω − ω)

ρI
dΩ
dt
= γ1 ∇

2Ω− 2µr (2Ω − ω) + ρG

(V.64)

where ω is the scalar vorticity field. Incidentally, Venkatadri et al. [? ] set

γ1 = µI, (V.65)
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which allows to combine the two equations above in the following compact form:

ρ
dS
dt
= (µ + µr) ∆S −

4 µr

I
S +

2 ρ
I

G , (V.66)

where S = 2Ω − ω. In this form, S can be independently evolved in time.

Moreover, as pointed out by Ahmadi [? ], if the relationship (V.65) holds (and assuming that

G = 0), then the spin, Ω, would fulfill the vorticity evolution equation in Eq. (V.64), provided the

initial and boundary conditions for both flow fields are the same. However, such an assumption,

(V.65), is unnecessarily restrictive, preventing the model from covering all the phenomenology it

encompasses.

Before proceeding to the description of the test cases, we address some aspects that are

important for the numerical implementation. In all the simulations µr/µ = O(1) is considered and,

according to the constraint in the equation (III.48), µr/µ = 2 is selected as limiting case (zero bulk

viscosity). The chosen Reynolds numbers, namely Re = ρUL/µ and ReΩ = ρUI/(2µrL) where U

and L are the reference velocity and length scales, correspond to moderate regimes. For confined

flows (as for the selected test cases), these regimes represent troublesome simulations for the SPH

scheme.

Indeed, the particle spatial disorder generally increases during the time evolution and induces

large errors. It has to be borne in mind that in the initial condition the particles are placed in a

lattice and that, due the Lagrangian nature of the solver, they are transported by the flow, therefore

breaking that initial lattice. Under these conditions, the accuracy of the differential operators

degrades [? ].

Furthermore, the development of the so-called tensile-instability[? ], which leads to

nonphysical clustering of particles, may even impede the attainment of an accurate numerical

solution. For the above reasons, the δ-ALE-SPH scheme [? ] has been adopted for integrating

the SPH equations. In this model a Particle Shifting Technique (PST) is used to regularize the

particle positions during the time evolution, thus improving the robustness and the accuracy of the

numerical scheme.

A Wendland C-2 kernel [? ] has been used in all simulations.

B. Poiseiulle flow with a micropolar fluid

In the literature on micropolar fluid flows there are a number of exact solutions that may be used

for verification of the generalized numerical scheme developed in present paper. An extensive
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review is contained in Ariman et al. [? ] and some of these solutions are discussed in detail

by Stokes [? ]. In particular, in Chapter 6, steady-state 2D flows between parallel plates in the

absence of gravity were presented. Among them we select a Poiseuille flow to be treated from the

practical point of view as a periodic flow in x. The flow fields have the form:

u = ( u(y), 0 ) , Ω = Ω(y). (V.67)

The steady-state form of the motion equations (V.63) reads:

−
dp
dx
+ (µ + µr)

d2u
dy2 + 2µr

dΩ
dy
= 0, (V.68)

γ1
d2Ω

dy2 − 2 µr
du
dy
− 4µr Ω = 0. (V.69)

Let’s denote the distance between the plates as 2H. The boundary conditions read:

u(±H) = 0, Ω(±H) = 0. (V.70)

The general solution of (V.68) and (V.69) is (see [? ]):

U(ξ) =
u(ξ)
u0
= 1 − ξ2 −

(
2µr

µ + µr

)
cosh a

a sinh a

[
1 −

cosh(a ξ)
cosh a

]
, (V.71)

ω(ξ) =
u0

H

[
2 ξ −

(
2µr

µ + µr

)
sinh(a ξ)

sinh a

]
, (V.72)

Ω(ξ) =
u0

H

[
ξ −

sinh(a ξ)
sinh a

]
, (V.73)

with

ξ =
y
H
, u0 = −

H2

2µ
dp
dx
, a =

H
l
, l2 =

γ1

4µ

[
1 + µr/µ

µr/µ

]
. (V.74)

Incidentally, we observe that the analytical solution depends on the choice of two parameters,

namely µ/µr and a (or, equivalently, γ1/µ).

The Reynolds number adopted for the numerical simulations is Re = ρ u0 H/µ = 1000. The

fluid starts from rest conditions and, after a certain transient, reaches a steady state condition.

The computational fluid domain is depicted in the left panel of Figure 2 at the steady state for

(µr = 0; a = ∞) while the right panel of the same figure shows the velocity profiles recorded at

the center of the fluid domain during the transient for three choices of the parameters (µr, a). The
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FIG. 2: Micropolar Poiseuille flow. Left: snapshot of the velocity field in the fluid domain (µr = 0; a = ∞).

Right: time histories of the horizontal velocity recorded at the center of the fluid domain for three cases:

(µr = 0; a = ∞), (µr = µ; a = 5) and (µr = 2µ; a = 2). The spatial resolution is N = H/∆r = 50.

µr = 0; a = ∞ µr = µ; a = 5 µr = 2µ; a = 2

N ϵU(%) ϵK(%) N ϵU(%) ϵK(%) N ϵU(%) ϵK(%)

25 0.21 0.52 25 1.28 2.60 25 0.41 0.54

50 0.12 0.27 50 0.75 1.51 50 0.22 0.12

100 0.09 0.18 100 0.42 0.83 100 0.55 0.47

TABLE I: Micropolar Poiseuille flow: Convergence toward the analytical solution for the three test-cases

simulated. Here ϵU is the relative error on velocity recorded at the center of the fluid domain and ϵK is the

relative error on the global kinetic energy. The spatial resolution is N = H/∆r where ∆r is the initial particle

distance.

case (µr = 0; a = ∞) corresponds to the classic Poiseuille flow with a parabolic profile for the

velocity field. As can be expected, an increase of the viscous parameter µr leads to a decrease of

the steady-state velocity.

Figure 3 displays the profiles of the velocity, vorticity and spin during the transient and at the

steady state for the cases (µr/µ = 1, a = 5) (top panels) and (µr/µ = 2, a = 2) (bottom panels).

The comparisons with the analytical solution are good in all the cases. In comparison with the

classic Poiseuille flow, the velocity profile remains similar to a parabola and only minor changes
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FIG. 3: Micropolar Poiseuille flow: Profiles of the velocity (left), vorticity (middle) and spin (right) during

the transient (red/orange dots, time instants tU/H = 0, 100, 200, 400, 1000, 2500) and the steady-state

(green dots, tU/H = 3000) for (µr/µ = 1, a = 5) (top panels) and (µr/µ = 2, a = 2) (bottom panels).

Black-diamond dots indicate the analytical solution.

are observed close to the walls. However, the vorticity deviates significantly from the Newtonian

solution linear profile close to the solid boundaries (see the right panel of figure 3).

Despite the steady-state numerical solutions are not affected by the value of the micro-polar

inertia, this plays an important role during the time integration. In all the simulations we adopted

I/H2 = 2 which corresponds to a relaxation time τU/H = ReΩ = ρU I/(2µr H) = 1000 for the

test case (µr/µ = 1) and τU/H = 500 for the second test case (µr/µ = 2) (see the appendix C for

details).

Table I shows a convergence analysis for the chosen cases. Specifically, it displays the relative

errors for the velocity recorded at the center of the domain:

ϵU =
|UN

C − Uana
C |

Uana
C
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and the relative errors for the kinetic energy on the whole domain:

ϵK =
|EN

K − E
ana
K |

Eana
K

The spatial resolution is indicated through N = H/∆r where ∆r is the initial particle distance.

Apart from the case with (µr/µ = 2, a = 2), the SPH model predicts a convergence rate between

1 and 2, in agreement with the usual convergence rate observed in standard fluid simulations. For

(µr/µ = 2, a = 2) both relative errors increase for the finest resolution but remain below 1%.

C. Lid-driven cavity with a micropolar fluid

The lid-driven cavity is a well-known benchmark case for validating numerical solvers on viscous

flows. Its physical characteristics resemble those typical of lubrication processes, a field in which

micropolar fluids have received great attention in the literature (see e.g. [? ? ? ]).

In 2012 Chen et al. [? ] showed numerical simulations of a lid-driven cavity with a micropolar

fluid. Since they did simulations for a limited range of parameters and since no velocity profiles

were provided, their study is not suitable for validation purposes. More recently, Venkatadri et

al. [? ] studied the same problem providing the velocity profiles, which makes their study adequate

for a 2D validation of the present SPH scheme.

Venkatadri et al. [? ] adopted the momentum Eq. (III.53) for modeling this problem. They

studied the influence of selecting different values of K = κ/µ on the lid-driven cavity flow. Here,

for the sake of brevity the cases K = 0 (that is standard Newtonian fluid) and K = 3 are treated

with the proposed SPH model.

In the left panel of Fig. 4 the setup of the problem is shown along with the conditions on the

walls. The Reynolds number is Re = ρU L/µ = 400 and the spatial resolution is N = L/∆r = 400

where ∆r is the initial particle distance. The right panel of the same figure displays the time history

of the kinetic energy for K = 0 and K = 3. In this latter case, we observe a decrease of the kinetic

energy at the steady state, as a consequence of an increase of dissipation due to the spin.

In Fig. 5 the streamlines for the two selected cases are shown. For K = 3, a positive vertical

displacement of the central vortex is visible, as well as a mitigation of the recirculation vortex at

the bottom right corner.

Finally, Fig. 6 shows the comparison between the mid-section velocity profiles as predicted by

the present SPH model, by the finite difference schemes in Venkatadri et al. [? ] and by the classic
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FIG. 4: Lid-driven cavity. Left: Sketch of the problem and of the boundary conditions. Right: time histories

of the kinetic energy for K = 0 and K = 3. The spatial resolution is N = L/∆r = 400.

FIG. 5: Lid-driven steady-state streamlines for Re = 400, µr/µ = 0 (left), and µr/µ = 2 (right).

reference of Ghia et al [? ] for the Newtonian case. As can be appreciated, the SPH simulation is

in qualitative fair agreement with the reference results of the referred Eulerian schemes.
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FIG. 6: Lid-driven cavity. Steady-state mid-section velocity profiles for Re = 400. Left: horizontal velocity

component. Right: vertical velocity component.

VI. CONCLUSIONS

In this paper we have extended the previous bottom-up approaches [? ? ] to construct a

smoothed particle hydrodynamics (SPH) model to describe the hydrodynamic behavior of general

micropolar fluids, with emphasis on their dissipation mechanisms. To this aim, a dissipation

function has been defined at the particle level which depends on the relative velocity between

particles but also on an additional spin degree of freedom, which modifies such relative velocity

and introduces spin related intrinsic dissipation mechanisms, comparable to those related to the

rate of deformation tensor in Newtonian fluids. This dissipation function is invariant under

translations and solid-body rotations, which ensures that the resulting forces and torques will

respect the conservation of the total momentum and angular momentum of the system. The

dissipative forces derived from the dissipation function have been then incorporated to balance

the expression obtained from the minimization of the Lagrangian of the system, leading to a set of

SPH particle equations to describe the dynamics. The bottom-up approach has also allowed us to

discuss in depth the nature of the moment of inertia per unit of mass of the SPH particles.

The obtained discrete model has been taken to the continuum and compared with micropolar

models from the literature, establishing the corresponding relationships between their coefficients

and the ones of the dissipative terms considered at the particle level.

The developed discrete model has been enriched with additional terms based exclusively on the
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spin derivatives that were not present in previous SPH models, and that have been obtained with

the same bottom-up approach.

Finally, numerical verification (micropolar Poiseuille flow) and validation (micropolar lid-

driven cavity) tests have been documented that show that SPH is capable of accurately modeling

this type of dynamics.

Future work will include using the developed scheme for problems dealing with micropolar

fluids in which the SPH method can be competitive, such as those involving free-surface flows

and/or complex physics.
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APPENDIX A: CONTRIBUTIONS TO THE ENTROPY PRODUCTION

The terms in eq. (II.28) can be expanded to give:

−
∑

i

[
f v

i · ui + qv
i ·Ωi

]
= ζ1

∑
i, j,i

F(ri j)
(
ui j · ei j

) (
ei j · ui

)
ViV j

+ζ2
∑
i, j,i

F(ri j)
(
ui j · ui

)
ViV j − ζ2

∑
i, j,i

F(ri j)
(
Ωi j × ri j

)
· ui ViV j

−
ζ2
2

∑
i, j,i

F(ri j)Ωi ·
(
ri j × ui j

)
+
ζ2
2

∑
i, j,i

F(ri j)Ωi ·
[
ri j ×

(
Ωi j × ri j

) ]
ViV j.

(A.1)

Let’s analyze each one of them:

{1} = ζ1
∑
i, j,i

F(ri j)
(
ui j · ei j

) (
ei j · ui

)
ViV j = ζ1

∑
i, j<i

(·) + ζ1
∑
i, j>i

(·) = ζ1
∑
i, j<i

(·) + ζ1
∑
j,i< j

(·).(A.2)
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We can rename the indices in the second summation:

{1} = ζ1
∑
i, j<i

F(ri j)
(
ui j · ei j

) (
ei j · ui

)
ViV j + ζ1

∑
i, j<i

F(r ji)
(
u ji · e ji

) (
e ji · u j

)
V jVi (A.3)

Since F(r ji) = F(ri j), ui j = ui − u j = −u ji, and ei j = −e ji, one can write:

{1} = ζ1
∑
i, j<i

F(ri j)
(
ui j · ei j

)2
ViV j. (A.4)

As for the second term, a similar arrangement leads to:

{2} = ζ2
∑
i, j<i

F(ri j)
(
ui j

)2
ViV j (A.5)

The third term is a crossed one between spin and velocity:

{3} = −ζ2
∑
i, j,i

F(ri j)
(
Ωi j × ri j

)
· ui ViV j = ζ2

∑
i, j<i

(·) + ζ2
∑
j,i< j

(·). (A.6)

Renaming indices in the second summand:

{3} = −ζ2
∑
i, j<i

F(ri j)
(
Ωi j × ri j

)
· ui ViV j − ζ2

∑
i, j<i

F(r ji)
(
Ω ji × r ji

)
· u j ViV j, (A.7)

and taking into account that Ωi j = Ω ji, one gets:

{3} = −ζ2
∑
i, j<i

F(ri j)
(
Ωi j × ri j

)
· ui j ViV j. (A.8)

Term {4} is also crossed:

{4} = −
ζ2
2

∑
i, j,i

F(ri j)Ωi ·
(
ri j × ui j

)
=
ζ2
2

∑
i, j<i

(·) +
ζ2
2

∑
j,i< j

(·). (A.9)

Renaming indices in the second summand:

{4} = −
ζ2
2

∑
i, j<i

F(ri j)Ωi ·
(
ri j × ui j

)
−
ζ2
2

∑
i, j<i

F(r ji)Ω j ·
(
r ji × u ji

)
, (A.10)

and due to the anti-symmetry of ri j and ui j, one gets:

{4} = −ζ2
∑
i, j<i

F(ri j)Ωi j ·
(
ri j × ui j

)
= −ζ2

∑
i, j<i

F(ri j)
(
Ωi j × ri j

)
· ui j ViV j = {3} . (A.11)

Therefore

{3} + {4} = −2ζ2
∑
i, j<i

F(ri j)
(
Ωi j × ri j

)
· ui j ViV j. (A.12)

Term {5} is only on spin:

{5} =
ζ2
2

∑
i, j,i

F(ri j)Ωi ·
[
ri j ×

(
Ωi j × ri j

) ]
ViV j. =

ζ2
2

∑
i, j<i

(·) +
ζ2
2

∑
j,i< j

(·). (A.13)
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Renaming indices in the second summand:

{5} =
ζ2
2

∑
i, j<i

F(ri j)Ωi ·
[
ri j ×

(
Ωi j × ri j

) ]
ViV j +

ζ2
2

∑
i, j<i

F(r ji)Ω j ·
[
r ji ×

(
Ω ji × r ji

) ]
ViV j.(A.14)

Taking into account the symmetry properties already used in previous terms, one gets:

{5} = ζ2
∑
i, j<i

F(ri j)Ωi j ·
[
ri j ×

(
Ωi j × ri j

) ]
ViV j. (A.15)

Using the properties of the mixed product, one gets:

{5} = ζ2
∑
i, j<i

F(ri j)
(
Ωi j × ri j

)2
ViV j. (A.16)

Collecting terms 2-5 together, one gets:

{2} + {3} + {4} + {5} = ζ2
∑
i, j<i

F(ri j)
(
ui j −Ωi j × ri j

)2
ViV j. (A.17)

Adding them all:

−
∑

i

[
f v

i · ui + qv
i ·Ωi

]
=ζ1

∑
i, j<i

F(ri j)
(
ui j · ei j

)2
ViV j + ζ2

∑
i, j<i

F(ri j)
(
ui j −Ωi j × ri j

)2
ViV j

=
ζ1
2

∑
i, j,i

F(ri j)
(
ui j · ei j

)2
ViV j +

ζ2
2

∑
i, j,i

F(ri j)
(
ui j −Ωi j × ri j

)2
ViV j

=ΦD,

(A.18)

as defined in eq. (II.9).

APPENDIX B: SPIN EQUATION: RHS FROM DISCRETE TO CONTINUUM

The term in eq. (B.1) can be approximated by an integral, as Vi ∼ dr, i.e.∑
j

F(ri j) ri j×
(
Ωi j × ri j

)
V j ≈

∫
F(

∣∣∣r − r′
∣∣∣) (

r − r′)×[Ω(r) +Ω(r′)
2

×
(
r − r′)] dr′.(B.1)

Let’s define ∆r′ := r′ − r. Then, one can propose a multipolar expansion of the fields around the

point r:

Ω(r′) = Ω(r) + ∇Ω · ∆r′ +
1
2
∇∇Ω : ∆r′∆r′ + . . . . (B.2)

Due to the fact that the range of the function F within the integral is of O(h) every ∆r′ in the

integrand brings a contribution of this order. Therefore, we only have to retain up to first order in
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the gradient in the expansion in eq. (B.2). Moreover, due to translational invariance, we can write

dr′ → d∆r′. With this, eq. (B.1) can be written as∫
F(

∣∣∣∆r′
∣∣∣)∆r′×

[(
Ω(r) +

1
2
∇Ω · ∆r′ + . . .

)
× ∆r′

]
d∆r′ =

=

∫
F(

∣∣∣∆r′
∣∣∣)∆r′ ×

[
Ω(r) × ∆r′] d∆r′ + O(h2).

(B.3)

The linear term in the gradient of the spin vanishes because we integrate an odd-rank tensor with

respect to ∆r′ isotropically. Then, to the lowest order in h we have only the term on the right

hand side of eq. (B.3). Due to the fact that F is of the order of 1/h3 (see eq. (II.3) and (II.4)) the

remaining integral is overall of O(h0) and the neglected corrections are O(h2).

To carry on the remaining integral, we introduce here the cartesian components of the tensor and

index them with Greek letters. Furthermore, we will assume the Einstein convention of implicit

summation over repeated indices. Hence, we can write, for the α- component:∫
F(

∣∣∣∆r′
∣∣∣) (
∆r′ ×

[
Ω(r) × ∆r′])

α d∆r′ =

=

∫
F(

∣∣∣∆r′
∣∣∣) εαβγ ∆rβ

[
εγµνΩµ∆rν

]
d∆r′ =

=

∫
F(

∣∣∣∆r′
∣∣∣) (
δαµδβν − δανδβµ

)
∆rβΩµ∆rν d∆r′ =

=
(
δαµδβν − δανδβµ

)
δβνΩµ = 2Ωα,

(B.4)

where we have used the fact that the remaining isotropic integral is the identity tensor 1, due to

the normalization of the kernel W and the definition of F, namely,∫
d∆r′F(∆r′)∆r′∆r′ =

4π
3
1

∫ ∞

0
d∆r′ F(∆r′)(∆r′)4 =

= −
4π
3
1

∫ ∞

0
d∆r′ (∆r′)3 dW(∆r′)

d∆r′
= 1.

(B.5)

Therefore, in the continuous integral limit we have∑
j

F(ri j) ri j ×
(
Ωi j × ri j

)
V j ≈ 2Ω + O(h2) (B.6)

q.e.d.

APPENDIX C: PHYSICAL MEANING OF THE MOMENT OF INERTIA PER UNIT OF MASS

I

A discussion with regards to the physical meaning of the left-hand side of eq. (III.45), as well

as on the value of the moment of inertia per unit of mass I is in order. To address this problem, we
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have to consider that the SPH particles are in fact coarse-grained lumps of Nα physical particles,

the movement of which is summarized into its overall linear and angular momenta. Let us then

take all particles in one of these lumps of characteristic size ∆ri ∼ V1/3
i and index them with Greek

letters. The total momentum is then pi =
∑
α pα, while the total mass is mi =

∑
αmα. The velocity

of the lump is then defined from the relation ui = pi/mi. This ratio remains finite in the limit

∆ri → 0, provided that there are always many particles inside the lump for the hydrodynamic

limit to make physical sense. For the rotational motion we have that the cell angular momentum

contains two terms:

li =

Nα∑
α

((rα − ri) × pα + lα) , (C.1)

where lα is the angular momentum of the physical molecules or particles of microscopic size.

The first term on the right-hand side of eq. (C.1) is the contribution to the angular momentum of

the SPH particle due to the motion around the lump center, while the second term stands for the

angular momentum due to the rotation of the constituent particles around their own center of mass.

In analogy with the case of linear momentum, we can define the tensor of inertia per unit of mass

of the isotropic, homogeneous lump, Ii, to be such that

miIi =

Nα∑
α

[mα(rα − ri) ⊗ (rα − ri) + mαIα], (C.2)

where Iα is the intrinsic tensor of inertia of the molecules, per unit of mass. In homogeneous

isotropic systems, the tensor of inertia is proportional to the identity matrix I, miIi = mi Ii I, with

miIi =

Nα∑
α

[mα(xα − xi)2 + mαIα], (C.3)

and the same symmetry is considered for Iα, i.e. Iα = I I, where we have assumed that all the

molecules are equal and thus dropped α. Again, the rotational velocity of the lump is given by the

ratio Ωi = li/(miIi), which remains finite in the limit ∆ri → 0. To develop it further, assuming that

the lump is large (it contains many molecules), let us approximate the summation by an integral,

i.e. ∑
α

mα · · · ≃
∫

Vi

dr ρ . . . (C.4)

Then, the right-hand side of eq. (C.3) can be written as

miIi ≃

∫
Vi

dr ρ
[
|r − ri|

2 + I
]
, (C.5)
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Then, dividing both sides of eq. (C.5) by the volume Vi and assuming that the density is nearly

constant inside the particle, we have that

ρIi ≃ cρV2/3
i + ρI (C.6)

where

c ≡

∫
Vi

dr |r − ri|
2

V5/3
i

(C.7)

is a geometric dimensionless factor of the order of 1 that depends on the geometrical shape of the

SPH particle. For example if we consider homogeneous spheres c ≃ 2/13 while for cube particles

c = 1/6. In the general case of a n-dimension fluid, the proper scaling should be of the form

Ii = cV2/n
i + I (C.8)

For example in a bidimensional context with particles having a disc shape we got c = 1/(2π) while

for squared particles c = 1/6. Because of these small differences from the point of view of the

simulation the choice of the constant c is not critical, but it can be chosen to better suit the system

under scrutiny.

Eq. (C.8) indicates that the moment of inertia of a SPH simulation of a micropolar fluid depends

on the degree of coarse-graining used, due to the fact that the property Ii depends on the volume

Vi of the SPH particle. However, as far as the continuum limit leading to equation eq. (III.45) is

concerned, we should take the limit Vi → 0 in eq. (C.8) i.e. Ii ∼ I. What eq. (C.8) indicates is

that, in taking the continuous limit what remains as moment of inertia is molecular in nature or,

in other words, is proportional to molecular dimensions. Notice that the same limit taken for the

mass, produces a macroscopic property, the mass density, which is independent of such molecular

dimensions. Therefore, the ultimate value I will be vanishingly small in normal fluids and typical

applications. For the this reason I is called micro-inertia. As pointed-out in [? ], I is in general

of order l2, being l a hidden length scale, which can be a molecular scale or, in other contexts, the

Kolmogorov micro scale or the Taylor micro scale.

Moreover, it is also interesting to investigate under which conditions the spin inertia is

physically relevant for the phenomenology that we aim at describing. From equation eq. (III.45)

and eq. (III.47) , we can estimate the relaxation time of the spin by a dominating balance between

the inertia, on the left-hand side, and the second term on the right-hand side, i.e. τ = ρI/2µr.
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If L is a characteristic dimension of the system and U a characteristic velocity of the fluid, the

rotational inertia will be relevant if τU/L ≫ 1. We can rewrite this condition as:

τ
U
L
= ReΩ ≫ 1 , ReΩ :=

ρU I
2µr L

(C.9)

where we defined the Reynolds number ReΩ linked to the spin dynamics. This condition is favored

in systems of small size with small µr and large ratio I/L2, e.g. fluids having large particles with

a significant I. In this condition it is expected that the rotational relaxation cannot be ignored.

Conversely for flow conditions where τ is small, for the explicit time integration of eq. (III.43),

we need to ensure that the time step ∆t is always enough smaller than τ.

To end this analysis, let us consider again eq. (III.45). If I depends on molecular dimensions, it

implies that the continuum limit of the micropolar model presented so far has negligible rotational

inertia for all these flows with no extreme conditions as the ones expressed in eq. (C.9), in which

IdΩ/dt is not negligible. For the rest of the cases where such extreme situations do not occur, we

can neglect the inertia term in the left-hand side of eq. (III.45). Under the latter circumstances the

spin of the fluid is enslaved by the vorticity, in the absence of external torques, i.e.

Ω =
1
2
∇ × u , (C.10)

We discuss the implications of this statement in the subsection III C.
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