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Abstract

Models of human migration provide powerful tools to forecast the flow of migrants, measure

the impact of a policy, determine the cost of physical and political frictions and more. Here,

we analyse the migration of individuals from and to cities in the US, finding that city to city

migration follows scaling laws, so that the city size is a significant factor in determining

whether, or not, an individual decides to migrate and the city size of both the origin and desti-

nation play key roles in the selection of the destination. We observe that individuals from

small cities tend to migrate more frequently, tending to move to similar-sized cities, whereas

individuals from large cities do not migrate so often, but when they do, they tend to move to

other large cities. Building upon these findings we develop a scaling model which describes

internal migration as a two-step decision process, demonstrating that it can partially explain

migration fluxes based solely on city size. We then consider the impact of distance and con-

struct a gravity-scaling model by combining the observed scaling patterns with the gravity

law of migration. Results show that the scaling laws are a significant feature of human migra-

tion and that the inclusion of scaling can overcome the limits of the gravity and the radiation

models of human migration.

Introduction and background

Today, human migration is one of the most debated concerns to the general public, govern-

ments and international agencies, due to the importance of integration policies, socioeco-

nomic development and well-being. On the one hand, migrants contribute to the prosperity of

their destination, to which they provide new skills, norms and community activities, as well as

easing the pressures of an ageing population [1] and can enhance conditions in their place of

origin by either reducing unemployment, improving conditions by sending remittances which

reduces poverty and increases the resilience in the case of disasters [2, 3]. On the other hand,

human migration creates the political challenge of designing integration policies to allow new-

comers to settle in unfamiliar environments, as well as prompting the need for improvement

of social support systems [4, 5]. Understanding, modelling and predicting human migration is
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thus of fundamental importance for the formulation, planning and implementation of bal-

anced policy programmes.

It is therefore not surprising that the study of human migration has attracted the interest of

scientists from many disciplines. Some studies investigate the dynamics of specific types of

migration, such as international migration [6, 7], migration from rural to urban areas [8, 9],

mobility in urban areas [10–12], or disaster-, climate change- and conflict-induced migration

[13–18]. Other studies focus on different models of migration, such as models based on a Mar-

kov process [19–21] or the cumulative inertia model, according to which an individual is less

likely to migrate if they spend more time in the same place [22]. Two prominent migration

models are the gravity model, which considers both the population size of the places of origin

and destination and the distance between them [6, 23], and the radiation model, which addi-

tionally takes into account job opportunities in the vicinity of the place of origin [24].

Migration between cities, as well as from the countryside to the cities, has attracted particu-

lar interest in recent years. Internal migration is indeed the main reason for urban growth [1]

and the reason why most of the world’s population now live in urban areas. A city’s population

size strongly affects the well-being of its inhabitants [12, 25, 26], as large cities provide more

efficient resources for their inhabitants [27], who tend to develop more social contacts [28],

move in a more diversified way [12, 26] and create more patents and bank deposits [27]. On

the negative side however, large cities suffer more infectious diseases [27] as well as more

crime [29, 30]. Migration is the main driver of city changes [31] and the reason why some cities

grow faster than others, providing a positive feedback leading to even more changes and fur-

ther population growth [32]. An important challenge is to understand, quantify and predict

the impact of city size on human migration: are individuals in large cities more likely to

migrate than individuals who live in small towns? Are individuals more likely to migrate to a

city larger than their current one, or does population size not matter? Can we quantify the

attractiveness of a city for internal and international migrants based on its population size?

Here, we study human migration in the context of cities and its population [33]. We analyse

migration dynamics considering individuals as the inhabitants of a city (or potential movers to

them) [34] but ignoring other individual aspects, such as age, income, education or gender.

We consider a migrant as an individual who permanently moves from one location to another,

so not considering movements within the same urban area, regardless of their legal status and

without positive or negative connotation. Starting from official census data, we analyse the

migration fluxes from and to US cities and investigate how these fluxes are influenced by the

cities’ population size. Our main finding is that migrants preserve city size, i.e., they prefer to

migrate to cities with a similar size to the city of their origin. Moreover, we observe a phase

transition where the exponent in our model changes from sublinear to superlinear at a specific

population size. Building upon these findings we develop a data-driven scaling model which

describes human migration as a two-step decision process, demonstrating that it can partially

explain migration fluxes only on the basis of city size. We then consider the impact of distance

on a gravity-scaling model of human migration, showing that it performs better than the scal-

ing, gravity and radiation model of human migration. The code of the models is available

online: https://github.com/rafaelprietocuriel/Migration.

Migration data

Our data source is a census which stores the number of migrants from one metropolitan area

to another in the US [35], where a metropolitan area or city is considered here as a high popu-

lation density area with strong economic ties and with a population larger than 50,000 inhabi-

tants. It is based on the metropolitan statistical areas (MSAs) defined by the U.S. Department
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of Commerce. This gives 385 cities for which the internal migration process is quantifiable

(the area of Los Angeles was merged from the original data source with other three metropoli-

tan areas: Riverside-San Bernardino, Oxnard-Thousand Oaks-Ventura and Bakersfield).

These cities are collectively formed by approximately 268 million inhabitants, so more than

80% of US population. The population size of individual US cities varies broadly from just

above 50,000 inhabitants (e.g., Carson City) to nearly 20 million inhabitants (New York City

and Los Angeles) while individuals living in towns or rural areas with less than 50,000 inhabi-

tants are considered to be part of the countryside. Using the available data, we analyse the fol-

lowing aspects of city to city migration:

1. the probability that an individual chooses to migrate (Section To migrate or not);

2. the destination picked by migrants according to the size of their city of origin (Section

Migration to and from other cities);

3. the probability that an individual moves to the countryside (Section Migration to and from
the countryside);

4. the destination picked by international migrants (Section Migration to cities from another
country).

Scaling of migration

We assume that there are n cities and in the following we define Xij as the number of individu-

als migrating from city i to city j. We define Xi� as the (total) outflow migration from i and X�j
as the (total) inflow migration to j, such that ∑j Xij = Xi�; and ∑i Xij = X�j, and Pi denotes the

size of the population living in city i, with i and j = 1, 2,. . .,n.

To migrate or not

We estimate that the probability of an individual deciding to migrate from city i as Xi�/Pi,
which is the frequency of a resident leaving city i. We investigate how this probability depends

on city size by fitting a power law equation:

Xi� ¼ aPb

i ; ð1Þ

where α and β are parameters to be determined from the data (and then expressed as â and b̂,

respectively). Eq 1 is a functional form that does not assume that the probability of migrating

either increases or decreases with city size. Rather, this is a data-driven model so that the data

provides evidence supporting whether the probability of migrating increases with city size, if

b̂ > 1, referred to as superlinear [25], decreases, if b̂ < 1, referred to as sublinear, or if it is

independent, if b̂ is close to one.

We fit the exponent b̂ from the dataset and find a sublinear behaviour of the probability of

migrating, with b̂ ¼ 0:8829� 0:0147, i.e., the probability that an individual moves away from

their city decreases as the size of the city increases. Moreover, we observe a coefficient of

â ¼ 0:1676, indicating that the probability of migrating from a city ranges between 0.023 (as

for New York City or Los Angeles) and 0.047 (for instance, in Carson City in Nevada or Victo-

ria in Texas). Our results indicate that individuals from the smallest cities (say, with less than

100,000 inhabitants) are twice as likely to migrate than individuals from cities with more than

10 million inhabitants.

Gravity and scaling laws of city to city migration
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Patterns of human migration are quite variable among cities of different sizes and so noise

is a relevant issue. One of the key aspects to consider is that 73% of the cities in the US have a

population smaller than 500,000 inhabitants, and 50% of the cities have a population smaller

than 250,000 inhabitants. Therefore, most of the observations are actually small cities, for

which a large variation is expected, as we are comparing, for instance, the number of individ-

uals who move into Yuma, Arizona, a city located in the border between the US and Mexico

with the number of individuals who move into Rochester, Minnesota, a city in which the

Mayo Clinic forms its core economy. Both cities have approximately the same population but

their migration patterns might have different push and pull factors. However, by observing

the average small city and comparing its migration patterns to medium-sized or large-sized

cities, a different average pattern is observed, and these differences are, in most cases, statisti-

cally significant. The scaling equation detects a generalised pattern but it does not mean that

all individuals from smaller cities have a higher probability of migrating than individuals

from large cities. When Eq 1 is fitted, the adjusted R2 is 0.9033, meaning that there are other

aspects which determine the individual probability of migrating (for instance, age) which in

turn determine the collective frequency of migrating from each city. However, a general pat-

tern in which individuals from smaller cities are more likely to migrate is, nonetheless,

detected.

Migration to and from other cities

Having decided whether or not to migrate, the decision to migrate to a particular city of a

given size is also affected by the population size of the origin city. For instance, if we select

only individuals who used to live in a small city (say with 50, 000� Pi� 200, 000) and fit

Eq 1 looking at the size of the cities to which they migrated, we find a sublinear behaviour

with b̂ ¼ 0:8060� 0:0263 and adjusted R2 = 0.7101. We find a similar sublinear behaviour

when using a different “small city” threshold, for instance, for individuals who used to live

in a city with less than 500,000 inhabitants (b̂ ¼ 0:8224� 0:0206 with adjusted R2 =

0.8061), less than one million inhabitants (b̂ ¼ 0:8363� 0:0175 with adjusted R2 = 0.8554)

or other thresholds within that range (see the section Tables of results for the table of

coefficients).

In contrast, we find a superlinear behaviour (β> 1) when fitting Eq 1 but considering

only the destination of individuals who used to live in “large cities” and decided to move,

that is, if we select only individuals who used to live in cities with a population larger than a

certain threshold. For instance, for Pi� 5 million, we find a slight superlinear behaviour, as

b̂ ¼ 1:0499� 0:0337, with adjusted R2 = 0.7163. This behaviour gets more pronounced with a

larger threshold, so we find that b̂ ¼ 1:1688� 0:0506 (with adjusted R2 = 0.5814) with Pi� 8

million and that b̂ ¼ 1:2984� 0:0619 (with adjusted R2 = 0.5327) with Pi� 10 million (see

the section Tables of results). This means that an individual who used to live in a large city

(i.e., Pi> 5 million) is more likely to move to an equally large city than to move to a small city.

Thus, individuals tend to preserve city size when deciding to migrate: an individual from a city

with several million individuals is almost twice more likely to move to a city with several mil-

lion individuals as compared to an individual from a small city and similarly, individuals from

the smaller cities are more likely to move to equally small cities.

Migration patterns can also be analysed in terms of the influx of population into a city,

interpreted as the arrival of people per 1,000 inhabitants. Although we have found that individ-

uals who live in large cities are more likely to move to a large city the next year, that does not

necessarily mean that the influx of people who arrive into a large city come from equally large

Gravity and scaling laws of city to city migration
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cities since it depends on the distribution of city size. Thus, by fitting the power law equation

X�j ¼ aPb

j ð2Þ

we now consider the inflow of people who move to city j.
Again, if we consider only the influx of individuals who move to a city with population

in the range 50, 000� Pi� 200, 000 (i.e., a “small city”), we find a sublinear behaviour with

b̂ ¼ 0:7997� 0:0299 (with adjusted R2 = 0.6492) and find a similar sublinear behaviour when

using a different population range, for instance, for the influx of individuals who move to a

city of less than 500,000 inhabitants (b̂ ¼ 0:8159� 0:0245 with adjusted R2 = 0.7429). In gen-

eral, the impact of the sublinear behaviour gets more pronounced (that is, b̂ gets much smaller

than one) for intervals with smaller cities (see the section Tables of results for the table of

coefficients).

In contrast, we find a superlinear behaviour if we look at the influx of individuals who

move to a “large city”. For instance, if we analyse the influx of individuals who moved to a city

with more than 8 million people, we find a superlinear behaviour with b̂ ¼ 1:1180� 0:0460

(with adjusted R2 = 0.6053) and similarly if we look at the influx of individuals who moved to a

city with more than 10 million inhabitants with b̂ ¼ 1:2539� 0:0574 (with adjusted R2 =

0.5538). Roughly speaking, 1.7 individuals in every 1, 000 inhabitants of a city with millions of

individuals (such as Los Angeles) will have lived in a small city during the previous year, but

nearly 20 individuals in every 1,000 in a small city will have lived in a different small city the

previous year.

Migration to and from the countryside

An individual who lives in a city might decide to migrate to the countryside and this decision

is affected by the size of the origin city. By fitting a power law equation (Eq 1) we find that an

individual who currently lives in a city might decide to move to the countryside and, according

to the data, the probability of moving has a sublinear behaviour, with (b̂ ¼ 0:6846� 0:0273,

â ¼ 0:7214� 0:3464 and with adjusted R2 = 0.6199). Thus, results show that an individual

who lives in a city with less than 200,000 people is four times more likely to move to the coun-

tryside than an individual who lives in a city with 20 million inhabitants, such as Los Angeles

or New York City.

Also, an individual who currently lives in the countryside might decide to move to a

city and a scaling pattern for the size of their destination follows a sublinear behaviour

(b̂ ¼ 0:5971� 0:0342, â ¼ 0:4299� 0:4331 and with adjusted R2 = 0.4421). Thus, an indi-

vidual who currently lives in the countryside is 6 times more likely to move to a city with

200,000 inhabitants or less than to a city with 20 million individuals.

Migration to cities from another country

We find that the destination of international migrants is also affected by the city size of the

destination. An individual who arrives in the US from another country is more likely to move

to a large city, that is, international migration also exhibits a superlinear behaviour. Larger

cities in the US increase their population diversity, measured simply as the proportion of

individuals who previously lived outside the US [36], three times faster than smaller cities,

(b̂ ¼ 1:1884� 0:0339, with adjusted R2 = 0.7610) with an even more pronounced pattern for

individuals from Africa (b̂ ¼ 1:5794� 0:0728, with adjusted R2 = 0.5500) and Americas out-

side the US (b̂ ¼ 1:2808� 0:0424, with adjusted R2 = 0.7036).

Gravity and scaling laws of city to city migration
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The inflow of international migrants for every 1,000 inhabitants varies according to the size

of their destination. Thus, comparing the whole range of city size, we observe that large cities

with millions of people are increasing their percentage of the population from Africa and from

Americas outside the US, 32 times and 5 times faster respectively than the smallest cities (see

the section Tables of results for the full table of coefficients).

Migration patterns

Fitting a scaling equation and considering the destination of individuals who lived in small cit-

ies results in a sublinear scaling pattern in terms of their probability of moving and their desti-

nation, whether we consider small to be cities with less than 200,000 inhabitants or even less

than 1 million. Similarly, considering only individuals from the “large cities”, where the term

“large” can be cities with more than 6 million people or more, gives a superlinear result in

terms of the destination picked by its migrants. Thus, there is a phase transition between a sub-

linear behaviour for small cities to a superlinear behaviour in the case of large cities and, in

general, this pattern tends to get more pronounced at the extreme values of city size, that is, b̂

gets smaller for the smallest cities and larger for the largest cities. Additionally, by considering

the inflow of migrants, we observe a sublinear pattern for small cities and a superlinear pattern

for the large cities. Thus, there is also a transition for the influx of migrants into a city.

Migration patterns, either the decision to move to another city, move to a small city given

that the individual lives in an equally small city, the inflow of individuals who move from

another city or from another country are all influenced by city size, either the size of the origin

or the destination city and some of the patterns presented here are sublinear and some super-

linear (Fig 1). The observed phase transition occurs roughly for cities between 1 and 5 million

inhabitants. Below that, cities follow a sublinear pattern and above that, cities follow a super-

linear pattern in terms of the destination picked by migrants. Detecting a sublinear pattern in

the destination picked by migrants required grouping cities with a population smaller than a

certain threshold and to analyse the observed pattern from the whole group. Thus, it is by

grouping cities with a similar population size that we are able to detect an emergent pattern.

To analyse the migration data, not just for “small” or “large” cities, we designed an algo-

rithm which takes a ranked list of the cities according to their size, using a logarithmic scale,

and creates non-overlapping partitions using a moving window of various ranges and with a

random starting point. This allows us to group similar cities in terms of their population size

but varying what we mean by similar. The cities were then partitioned 1,000 times, each time

considering a partition with a different starting point and a different width, such that on each

partition, cities are grouped based on slightly different criteria. For instance, one partition

might consider an interval I1 = 270, 000� Pi� 355, 000 while another time cities might be

partitioned in such a way as to create an interval I2 = 290, 000� Pi� 390, 000. Thus, on each

run of the partitioning process, particular cities might be grouped in different ways. Then, tak-

ing into account the destination picked by migrants from the different cities within each inter-

val, we obtain the scaling coefficient b̂ by fitting Eq 1 for each interval of cities. Intervals with

no cities inside are ignored. The result after grouping 1,000 times the cities was roughly 33,000

intervals and so the scaling equation was fitted this number of times and then, for each point

in the population range, its corresponding values of b̂ were averaged. Finally, for each point in

the whole population range, we obtained an estimated value of the b̂ which smooths out any

possible decision of considering different ranges of city size. The results of the b̂ for each popu-

lation range gives us a stable and consistent way of estimating the scaling pattern observed for

the cities in the US (Fig 2).
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The size of the destination, picked by an individual who chooses to migrate, depends on the

size of the origin city. For example, the probability that an individual from a city with less than

100,000 inhabitants moves to a city with less than 100,000 inhabitants is 44 times larger than

the probability that they will migrate to a city with 10 million inhabitants or more. The result-

ing relationship is thus given by a b̂ coefficient which captures the probability of moving to a

city with any size according to the size of the origin (Fig 2).

Models for the dynamics of city to city migration

Scaling model

City size plays a strong role in determining the patterns of city to city migration: from the

decision of whether to migrate or not (sublinear), whether to migrate to the countryside (sub-

linear), move to a small city (sublinear), move to a large city (superlinear) and in the destina-

tion for international migration (superlinear). Eq 1 determines the estimated probability that

an individual living in a city with population Pi migrates from one year to the next (given by

aPb� 1
i ). Fig 2 shows the relationship between the city size and the frequency of migration by

Fig 1. Selected scaling relationships fitted to the data. The dots represent data on each of the 385 cities in the US with its size on the horizontal

axis and its corresponding figures for migration given on the vertical axis given in different units (as a probability or as the inflow of migrants

per 1,000 inhabitants). Also plotted on the same diagrams are the results of the scaling relationship fitted to the data with the coefficient b̂ given

in each case. Top panel: three sublinear relationships. Bottom Panel: three superlinear relationships. A coefficient b̂ � 1, as establish in the

diagram on the left in the bottom panel (for the inflow from a city larger than 5 million), means that city size has negligible impact on that flux.

This establishes the approximate city size where a phase transition occurs.

https://doi.org/10.1371/journal.pone.0199892.g001
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Fig 2. Probability of migration conditional on city size. Probability of migrating from a city of a given size (horizontal axis) to a city of a given

size (vertical axis). The fitted values of b̂ according to the city size (plotted in the lower panel) indicates if the probability of migrating to a

destination with a given size follows a sublinear (b̂ < 1, in blue) or superlinear (b̂ > 1, in orange) behaviour. For example, we observe that if the

city of origin is larger than 4 million inhabitants, then the probability of migration follows a superlinear behaviour. In contrast, a strong

sublinear behaviour is observed for small cities, particularly if the city has less than 100,000 inhabitants.

https://doi.org/10.1371/journal.pone.0199892.g002

Gravity and scaling laws of city to city migration

PLOS ONE | https://doi.org/10.1371/journal.pone.0199892 July 6, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0199892.g002
https://doi.org/10.1371/journal.pone.0199892


considering the probability of each destination, given that an individual actually migrates.

These two relations fully determine the dynamics of migration between different cities.

To take individuals from the countryside (51 million people) into account within the

model, we consider that with a probability p̂ ¼ 0:0322 an individual will migrate from the

countryside to a city from one year to the next and their destination city follows a sublinear

behaviour (b̂ ¼ 0:5971� 0:0342). Also, an individual who currently lives in a city might

decide to move to the countryside with a sublinear probability (b̂ ¼ 0:6846� 0:0273). This

also fully determines the dynamics of migration between the countryside and the different

cities.

We consider a two-step simulation for the dynamics of internal migration observed in the

US with individuals moving between different cities or between the countryside and the vari-

ous cities. We also assume the Markov property so that an individual’s choice to migrate, as

well as their destination, are based only on the current location (that is, the size of their city for

individuals who live in a city or the fact that they live in the countryside). In the first step, we

simulate for each individual, whether they migrate or not, while in the second step we deter-

mine the destination of the ones who have chosen to move. Since both steps are affected by the

observed scaling laws, we model migration as a decision problem [37]. Assuming no deaths or

births and ignoring international migration (both arriving and leaving the US) the population

dynamics is fully determined. The impact of city size in the migration pattern is summarised

in Fig 3.

The observed scaling laws of city to city migration allow us to model the migration process

by considering the distribution of US population living in different cities (83% of the US popu-

lation) and the population living in the countryside (17% of the US population) and to con-

sider the corresponding urban dynamics [33].

Impact of distance and the gravity-scaling model

Undoubtedly, physical distance has an impact on human migration [37] which is not consid-

ered in the scaling model, so far. Thus, using only city size as a variable to determine the proba-

bility of migrating and the destination picked by those who actually move, we expect, for

instance, roughly the same number of individuals moving to Los Angeles from Stockton-Lodi

(a city in California with 684,000 inhabitants, located 500 kilometres away from Los Angeles)

as those from Charleston (a city in South Carolina with 680,000 inhabitants, located 3,500 kilo-

metres away from Los Angeles) simply because both, Stockton-Lodi and Charleston have

(almost) the same population. However, data shows that there were 7.5 more people moving

from Stockton-Lodi to Los Angeles than from Charleston. Physical distance is indeed relevant.

The law of migration, first published by Ernst Georg Ravenstein in 1885, developed looking

at migration at county level from and to the UK, Ireland and Scotland, states, among many

key issues [38], that the majority of migrants move a short distance. For more than a century

there has been quantitative evidence that distance is one of the key aspects of migration and, in

general, migration is inversely proportional to the distance between two locations.

As a consequence, one of the most commonly used models of human migration is called

the gravity model (due to the similarity with the concept of physical gravity, in which objects

are attracted to each other with a force directly proportional to their mass and inversely pro-

portional to the distance between them) [6, 23]. The gravity model predicts the flux of

migrants Fij between locations i and j as:

Fij ¼
aPiPj
dbij

;
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where a is a constant which needs to be estimated from the data, b is a constant which takes

into account the impact of distance and dij is the geographic distance between the two loca-

tions which in our case are cities, although the gravity model has been used to estimate the flux

of migrants between countries, as for instance [7, 39]. Although the gravity model provides a

valuable starting point for the analysis of migration, it has several drawbacks, for instance, it

predicts the same flux from i to j as it predicts from j to i; it assumes a linear impact of the pop-

ulation of each location on the flux; in some cases it predicts more individuals leaving a loca-

tion than the amount of individuals in the location and other issues (see [24]). There are some

modified versions of the gravity model which remove the linearity or the symmetry of the flux

[40] but one of the main issues to consider when using the gravity model is that it ignores any

Fig 3. Schematic model of migration dynamics considering the location of an individual between two consecutive years. An individual

from the countryside decides to migrate to a city from one year to the next one (with probability p̂ ¼ 0:0322) and the destination is chosen

following a sublinear pattern. An individual from a city might migrate to the countryside (with a probability that decreases sublinearly with city

size) or might decide to move to another city (with a probability that also decreases sublinearly with city size) although in this case, the

destination is selected according to the city size of the origin and destination (Fig 2). Finally, an individual who arrives from another country

picks their destination following a superlinear pattern according to city size.

https://doi.org/10.1371/journal.pone.0199892.g003
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scaling factor and so all modified versions of the gravity model assume that individuals from

small and large cities behave the same and have the same probability of migrating, as opposed

to the results demonstrated earlier based on data.

To rectify this, a modified scaling model, a gravity-scaling model for human migration is

constructed by modifying the destination picked by migrants. It takes into account the impact

of distance and it also considers the scaling factor observed in the probability of migrating and

the preferential destination picked by those who actually move. Consider an individual from

city i, with population Pi who has decided to migrate. According to the scaling model (Fig 3)

the probability that the individual moves to city j, say πij, follows a scaling pattern with some β
(which could either be greater than one, if i is a large city, smaller than one if i is a small city or

close to one if i is near the phase transition, according to Fig 2). We consider the modified

probability of moving from city i to city j, p0ij as

p0ij ¼ C
pij

dij
;

where dij is the geographic distance between cities i and j, and C> 0 is a number which makes

the set of probabilities p0ij sum to one. Although other expressions of the gravity model of

migration consider the impact of the distance squared, or other functions of the distance,

not necessarily linear (for instance [24, 39, 40]), here we simply assume that the probability

that the individual will migrate between two cities decreases as the distance between them

increases. Note that the fact that it is a set of probabilities (i.e., they have to sum to one) means

that the distance causes a non-linear impact.

The gravity-scaling model takes into account the observed scaling probability that an

individual will migrate as well as the preferential migration observed between individuals

from small o large cities and the impact that the physical distance has on the migration

patterns. The gravity-scaling model gives, in our case, the same results as the scaling

model for the migration to and from the countryside and for the inflow of international

migrants as the distance between a specific city and the countryside or a continent is not

well defined.

Results

The fit of the power law equation (Eq 1) is, in most cases, good (see the section Tables of results

for the full table of coefficients), as expressed by the high adjusted R2 obtained from the data.

To determine the validity of the results of the scaling model and the gravity-scaling model (as

measured by how well they fit the observed data), we compare against the commonly used

gravity model and the radiation model of human migration. The two parameters of the gravity

model (â ¼ 2:59� 10� 6 and b̂ ¼ 0:753) were estimated by minimising the mean square error

of the model and the estimated flow between every pair of cities given by the radiation model

was computed using the population density of the US. The results of the scaling model and of

the gravity-scaling model are obtained by simulating the model dynamics 100 times, consider-

ing 53.2 million people at each time (20% of the total urban population) who first decide

whether or not to migrate and then choose the destination, both according to their city size.

The median of the 100 simulations is reported.

Under the scaling model dynamics, 3.1% of the metropolitan population of the US migrates

each year. Also, a random individual from the cities in the US lives in a city with 4.92 million

people, but after migration, it is expected that they will live in a city with 4.81 million people.

Ignoring births and deaths and international migration, 80.5% of the movers went to a city

with less population than their origin.

Gravity and scaling laws of city to city migration
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We compare the observed migration between every pair of cities and the predicted migra-

tion by the gravity, radiation, scaling and gravity-scaling models and report the mean square

error and the maximum error in absolute value in Table 1. Ignoring the impact of distance (as

in the scaling model) shows large departures from the observed migration flows, but also,

ignoring the scaling factor on migration (as in the gravity model and the radiation model)

yields on large errors. The gravity-scaling model has the best results in terms of the fit of the

migration flux (see Table 1).

Also, we compare the outflow and inflow of migrants from each city provided by the

four migration models. Results show (see Fig 4) that the gravity model and the radiation

model, as opposed to the scaling model, have a systematic bias and underestimate the outflow

of migrants for the smaller cities (those with the smallest outflow of migrants), as it ignores the

fact that individuals from small cities are more likely to migrate, as described by Eq 1. Also,

both the gravity model and the radiation model underestimate the inflow of migrants to small

cities and this is mainly because they also underestimate the outflow of individuals from small

cities which have preferential migration to equally small cities. In general, the gravity model

and the radiation model both have a systemic issue related to small cities, which is corrected

by the scaling model. The gravity-scaling model, similar to the scaling model, takes into

account the fact that individuals from small cities are more likely to migrate and so it does not

present any systematic bias as the gravity model does. The comparison of the four models

reveal that ignoring the distance between cities (as it is done by the scaling model) does not

provide a better fit in terms of the mean square error. However, the scaling model does take

into account that individuals from small and large cities behave differently and therefore does

not have a bias, as opposed to the gravity model and the radiation model.

When determining the validity of the scaling and the gravity-scaling model, note that inter-

nal migration from and to the countryside and international migration should be also taken

into account. The scaling model predicts that roughly 1.51 million individuals will move from

the cities to the countryside and they will more frequently be from the smaller cities, whilst

1.64 million individuals will move from the countryside to a city and they are more likely to

move to smaller cities. The destination picked by individuals who move from the countryside

to a city has a sublinear behaviour: the scaling model predicts that less than 109,000 individuals

from the countryside moving to the four largest cities of the US, simply because individuals

from the countryside are more likely to move to small cities than large cities. Similarly, if we

consider individuals who used to live in the countryside who then moved to the smallest 100

cities of the US, the gravity model predicts less than 67,000 movers, when in fact there were

nearly 190,000 individuals moving. In this case, the scaling model predicts 156,000 movers,

which is a much better fit.

International migration is also affected by city size. Although it is not possible to determine

the impact of the size of the origin city and it is not possible either to compare against the grav-

ity or the radiation model, the data does allow us to measure the scaling of international

Table 1. Results of the scaling, gravity, radiation and gravity-scaling models. Mean square error and maximum

error comparing the migration flow considering all pairs of cities as origin and destination. The smallest mean square

error and the smallest maximum square error (in absolute value) are provided by the gravity-scaling model.

model mean square error max error

scaling 102,112.4 15,547

gravity 82,278.8 25,929

radiation 71,463.5 21,758

gravity-scaling 58,288.8 9,592

https://doi.org/10.1371/journal.pone.0199892.t001
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Fig 4. Observed outflow and inflow of migrants from each city against the predicted values of the scaling and

the gravity model. The horizontal axis is the observed outflow or inflow of migrants from each city and the vertical

axis is the results of the scaling and gravity models. The yellow line represents the identity (where the predicted value

of the outflow or inflow of migrants from each city match the observed values, so there is a perfect match), so that

observations closer to that line have a better fit. The gravity model (with blue colour) shows a systematic bias on the

smaller cities.

https://doi.org/10.1371/journal.pone.0199892.g004
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migration based on the destination. According to the scaling model, nearly 1% of the popula-

tion of the largest cities lived in a different country the previous year, thus, increasing the

diversity and multiculturalism of cities like New York, Los Angeles or Chicago. Large cities are

increasing their diversity three times faster than small cities.

The scaling model is based on a set of observations in which noise is a relevant issue, so that

we are detecting a generalised pattern, for instance, individuals from small cities have a higher

probability of migrating, but it does not mean that all individuals from all small cities have a

higher probability of migrating. The scaling model and the gravity-scaling model do not pro-

vide deterministic results. By simulating several times (100 in our case) under the same

dynamics, both models provide natural departures which could be observed under the same

dynamics. For instance, between Houston and Dallas, there were 14,666 migrants and results

from the 100 simulations of the gravity-scaling model show that a migration flux between

14,485 and 15,745 is expected under the same dynamics.

Conclusions

Power laws correctly describe many aspects of human activity, from the frequency of family

names, the wealth of the richest people [41], the sizes of town and cities [42], the distribution

of travelled distances [43, 44] and now, we can also include to this list, the probability of

migrating from a city, the probability of moving to the countryside, the probability that an

individual from a small city moves to a small city (and the other relationships indicated in Fig

2) and also the size of the city picked as the destination for international migrants. Scaling laws

play a fundamental role in the dynamics of migration.

An improved model of human migration

Our initial scaling model examined human migration without considering the physical dis-

tance between cities, that is, only considering the city size. This stance is supported by the data

which indicates that individuals from large cities are more likely to move to other large cities,

despite the fact that large cities can be far away from each other and relatively scarce. Our grav-

ity-scaling model considers also the impact of distance and so it could be considered a modi-

fied version of the gravity model. The gravity-scaling model has a better fit to the observed

data, is not symmetric, does not have a systematic bias (as can be observed in the gravity

model) and takes into account scaling (from the probability of migrating to the preferential

destination picked by migrants).

By considering scaling on migration patterns, the commonly used gravity model is consid-

erably improved, highlighting the relevance of city size. A valuable aspect of both the scaling

and the gravity-scaling models is that rather than providing a deterministic number for the

flux between two cities, they give a procedure to simulate migration providing intervals which

could be observed under the same circumstances. Both models begin by taking into account

the number of inhabitants of a city and simulate whether individuals move and, if so, where do

they move to. Therefore, there is a natural upper limit to the estimated number of individuals

who leave that city, as opposed to the gravity model which might, under certain circumstances,

estimate more individuals leaving that actually live there.

A large city versus a small town

Living in a large city may mean an improved access to education, job opportunities and

income, among other “benefits”, but on average and it does not mean better education or

income to all; however, the costs of living in a large city is experienced by all its inhabitants.

The population living in Kibera, for instance (a slum in Nairobi, Kenya, with approx 1.2
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million slum dwellers) or Rocinha (the largest favela of Rio de Janeiro) enjoy a limited number

of the benefits of living in a large city but they pay the price for longer commuting distances, a

higher price for the food and services, pollution, crime rates and more. Thus, although large

cities provide certain benefits, more people moving into large cities does not necessarily trans-

late to people enjoying a better standard of living, but might, unfortunately, translate into

greater inequality and severe socio-economic problems within the cities.

The same applies to people from smaller cities. Take, for instance, the case of Carson City,

one of the smallest cities in the US, where nearly twice the amount of people moved to Redding

than to Sacramento (both in California), even though Sacramento is nearly 100 kilometres

closer to Carson City than Redding is and Sacramento is 12 times larger in terms of population

size. According to the gravity model, we would expect 20 times more people moving to Sacra-

mento than to Redding since it is larger and closer, but we observe twice the amount of people

moved to Redding than to Sacramento; scaling affects migration. Perhaps this is because Redd-

ing is a rural environment more similar to Carson City than Sacramento is, although this also

warrants further explanation.

Using only population and distance variables

In terms of migration, not everything can be explained by using only population and distance

variables, as used in the models presented here. There are other reasons which create relevant

push and pull factors for each city, for instance, Rochester, Minnesota might attract more med-

ical doctors, whilst Ithaca and New Haven might attract more students. Migration is a complex

social phenomenon, which begins with individuals deciding whether or not to migrate and

develops further when the migrant selects their destination. The mathematical models used

here focus on the detection of the patterns which emerge when millions of individuals move

from one city to the other.

In particular, the scaling model and the gravity-scaling model show a generalised pattern

that is observed with noise being a normal and expected part of the model, as they are a simpli-

fication of a much more complex reality. Nonetheless, here results show that scaling is a funda-

mental aspect of the individual decision of moving and the destination picked by those who

decide to move.

Migration patterns might not be stable

The observed patterns might change and migration to small or large cities might be conse-

quently affected. The current main drivers of migration could subsequently be replaced by

other drivers, such as technology, an ageing population, jobs being lost due to automation, cli-

mate change, conflicts, fear of crime, water scarcity or other disasters, to name but a few. Cities

might have experience positive and negative shocks, which affect their push and pull factors

which change how they influence both internal and international migration. The methodology

presented here allows different scaling patterns to be detected, through different time intervals,

to be applied to international migration or migration from and to the countryside and the

detection of quantitative and qualitative changes of human migration.

The methodology presented allows different scaling patterns to be detected, through differ-

ent time intervals, to be applied to international migration or migration from and to the coun-

tryside and the detection of quantitative and qualitative changes in human migration.

The scaling and the gravity-scaling models are based on current observations of migration

but it does not mean that the same pattern has been observed previously, nor does it mean that

the same pattern will be observed in the future. However, the methodology presented here

allows scaling to be taken into account from and to the countryside, between cities and from
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international migrants and it goes beyond a static result observed only for a specific time inter-

val and a particular region of the world. It highlights that in the studies of migration patterns,

scaling might occur, it does so without assuming that scaling happens. In the case in which the

exponent β * 1 the scaling might be negligible.

The role of distance in human migration

Although distance does play a crucial role in migration, either because of the mental cost of

being far from the origin, the lack of information about distant places [37] or the actual mone-

tary cost of moving, our results indicate that distance could also be expressed in terms of the

lifestyle of the individual and not only in terms of physical distance. For example, the four

most frequent destinations for an individual who used to live in New York City are Philadel-

phia, Miami, Washington and Los Angeles, which are 1,800 and 3,900 kilometres away from

New York City in the second and fourth case, respectively. Modern communications and

rapid transportation mean that the impact of physical distance is reduced so that in terms of

migration, distance is becoming less relevant, while the differences in lifestyle between large

cities and small cities or countryside are gaining prominence. There are several reasons why

the scaling laws affect migration patterns. Our findings suggest that a relevant cause is that an

individual chooses between the lifestyle of a large city or the lifestyle of a small one.

The scaling of international migration

There are still open questions regarding the scaling phenomenon in the case of international

migration. Is a person from a large city more likely to move to another country, despite the

fact that people from large cities are less likely to migrate? Is the relationship found here,

where an individual from a small city is more likely to move to equally small cities, also

observed for international migration? Unfortunately, in our dataset there is little information

about the origin of international migrants who arrive in the US. However, in terms of their

destination we find a strong impact of the city size, which is even more prominent for people

who previously lived in Africa or America but outside the US. An individual is less likely to

move to a city in which they have less information [37], which might be the reason why people

from other countries are more likely to move to a large city.

The scaling of migration in other parts of the world

Although the results obtained here are based on data for migration to and from cities in the

US, a similar scaling pattern is expected in other countries, so that we predict that an individ-

ual from Paris is less likely to move to the countryside than a person from Tours, a smaller

French city; a person from Guangzhou is more likely to move to Beijing or Shanghai since

both cities have millions of inhabitants, even though they are at 1,200 and 1,900 kilometres

away respectively; and Sidney, Melbourne and Brisbane are increasing their international pop-

ulation at a faster rate than the rest of Australia. We predict scaling to be relevant for other

types of migration and in other regions of the world, although there might be other drivers, for

instance, language, weather, conflicts or government-controlled migration policies.

Tables of results

Results of selected estimated parameters according to different thresholds of city size. The esti-

mation of the parameters uses a logarithmic transformation on both sides of Eq 1 and so the

results for â are expressed in terms of its natural logarithm. Table 2 has the coefficients
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obtained for the outflow of internal migration and Table 3 has the coefficients obtained for the

inflow of migration to the cities and the countryside in the US.
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