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A B S T R A C T   

Flame synthesis of Carbon NanoParticle (CNP) films is gaining strong interest for novel industrial applications because of the easy tuning of the 
operating conditions that enables accurate control of the chemical and physical properties of the produced CNPs. This work proposes a novelty in 
the synthesis of CNP films, namely the possibility of applying electric fields in flame to trigger electrophoretic deposition phenomena. In this way, it 
is possible to add another degree of freedom to the harvesting process and potentially modify the properties of the CNP films, without changing the 
operating flame conditions. To investigate the physical mechanisms governing the thermo-electrophoretic deposition of CNPs, a numerical model to 
simulate the particle dynamics close to the collecting substrate has been developed, and experiments have been carried out to provide highly 
controlled test conditions that can be used to support model validation. The experimental results consist of Atomic Force Microscopy (AFM) 
measurements to determine the number of particles deposited after a controlled harvesting condition as a function of the applied electrophoretic 
force, imposed on the substrate by means of a DC voltage varied from 0 to -3kV. The AFM shows that the amount of deposited material increases up 
to six times when passing from an uncharged to the -3kV charged case. The model predictions are highly consistent with the AFM measurements and 
pointed out that the electric field in flame significantly alters the CNP deposition velocities and impact angles, which are likely to affect the 
properties of the film.   

1. Introduction 

Combustion-generated particles have been extensively associated with adverse health and environmental effects (Bernasconi et al., 
2022; De Falco et al., 2017a; Magnani et al., 2016; Thompson, 2018; Wang et al., 2023). Hence, over the last decades, 
combustion-generated Carbon NanoParticles (CNPs) (Michelsen, 2017; Michelsen et al., 2020; Martin et al., 2022; Bauer et al., 2022; 
D’Anna, 2009) have received increasing attention driven by the need to reduce the emission factors of combustion processes and the 
evolution of scientific knowledge and technological capabilities in the fields of combustion, environmental science, and toxicology. 

On the other hand, CNP-based materials are gaining increasing interest in material science, due to their high specific surface area 
(Chen & Dai, 2013; Zhang et al., 2010a), biocompatibility (Kümmerer et al., 2011; Souza & Fernando, 2016), superhydrophobicity 
(Khan et al., 2021; Seo et al., 2014) as well as fascinating optical and electrical properties (De Falco et al., 2014; De Falco et al., 2017b, 
De Falco et al., 2021; Minutolo et al., 2022; Veronesi et al., 2022) that have encouraged their use in various fields such as bio-imaging 
(Bhunia et al., 2013; Boakye-Yiadom et al., 2019; Dinger et al., 2022; Molkenova et al., 2020; Ray et al., 2009), nanomedicine (Liu 
et al., 2011; Loh et al., 2018; Zhang et al., 2014), sensor technology and energy storage (Islam & Saikia, 2022; Miao et al., 2020; Saini 
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et al., 2021; Xiao et al., 2021). 
CNPs materials are produced by a variety of methods, such as wet-chemistry, arc discharge, low-current glow discharge and gas- 

phase processes (Alam et al., 2017; Andhika et al., 2020; Sano, 2004; Sobczyk & Jaworek, 2021; Zhang et al., 2010b). Among these 
latter, flame synthesis appears as a valid option since it is autothermic, operable as a one-step process, with lower cost compared to 
other routes, and scalable to the industrial level (Commodo et al., 2015; De Falco et al., 2019; Kammler et al., 2001; Kelesidis et al., 
2017; Li et al., 2016; Nersisyan et al., 2017; Roth, 2007; Sirignano et al., 2020; Zheng, 2002). CNPs produced in flames can be collected 
by employing thermophoretic deposition, i.e., inserting a cold substrate in the flame environment (Messerer et al., 2003; Zhao et al., 
2008; Zheng, 2002). Large temperature gradients, up to about 106 K/m, appear very close to the substrate, driving particles toward the 
surface thanks to the unbalanced Brownian diffusion phenomena known as thermophoresis. The formation of CNP thin films with 
different properties can be obtained by tuning combustion parameters and the substrate temperature (Commodo et al., 2015; De Falco 
et al., 2017b, De Falco et al., 2019; Kammler et al., 2001; Kelesidis et al., 2017; Kumar & Bhattacharya, 2012; Li et al., 2016; Nersisyan 
et al., 2017; Roth, 2007; Sirignano et al., 2020; Zheng, 2002). 

De Falco et al. (De Falco et al., 2017b) have studied the morphological and electrical properties of flame-formed CNP thin films 
produced by thermophoretic harvesting in a laminar premixed ethylene-air flame at a fixed equivalence C/O ratio, deposition time, 
and height above the burner, HAB. A cold substrate is repeatedly inserted into the flame with controlled insertion and cooling-down 
times. The experiments revealed that the film properties change with the HAB and the C/O ratio and that it is possible to fine-tune the 
film thickness by opportunely combining the number of substrate insertions in flame and their duration. However, a low harvesting 
rate has been achieved at a low C/O ratio, due to the low amount of CNPs in flame and to the intrinsic low thermophoretic deposition 
rate. This implies long production times and, consequently, a less efficient and scalable process. Besides, the thermophoretic deposition 
provides film structures with low density and the film mechanical resistance is thus scarce (De Falco et al., 2017b; De Falco, Mattiello, 
et al., 2021; De Falco, Carbone, 2021). 

Electrophoretic forces can be used to enhance the deposition rate (Boccaccini et al., 2006; Cohen et al., 2020; Diba et al., 2016; Ho 
et al., 2019; Jaworek et al., 2017; Kumar & Bhattacharya, 2012; Sardari et al., 2018; Sung et al., 2020; Wang et al., 2010; Zhitomirsky, 
2006). The use of electric fields to trigger electrophoretic effects on CNP harvesting has been largely exploited in after-treatment 
equipment and high-precision measurements systems (Cid ÍUssembayev et al., 2021; Carotenuto et al., 2010; Di Natale et al., 
2022) but less adopted for producing thin films, where a few examples on flame-generated titania and silica are reported (Sabzyan & 
Ghalami, 2019; Vemury et al., 1997; Xiong et al., 2017). 

To ignite electrophoretic deposition, an electric field must be applied to the flame. Typically, this is achieved by applying an electric 
potential to the stabilization plate or the collector substrate. This has several effects on particle deposition and even on flame 
characteristics. 

The extensive knowledge of electrostatic particle capture suggests that the presence of an electric field in flame enhances deposition 
efficiency (Sardari et al., 2018). In fuel-rich flame conditions, a relevant fraction of the produced CNPs acquires an electric charge 
mainly due to thermal ionization and diffusion charging phenomena (Maricq, 2004; Sgro et al., 2010, 2011). The charge fraction 
distribution of CNPs formed in flames has symmetric polarities and is in good agreement with Boltzmann’s theory. 

In electric-field- enhanced flame synthesis, it was also observed that the electric fields have a noticeable effect on primary CNPs 
size, agglomerate size, and probably their crystallinity, depending on the potential polarity at the substrate electrode when the burner 
is grounded (Kammler et al., 2003; Tolmachoff et al., 2009; Wang et al., 2010; Xiong et al., 2017; Zhao et al., 2008). This is due to the 
alteration of CNP residence time in flame depending on the polarity of the substrate: application of a potential with a given polarity 
accelerates the capture of CNPs with opposite polarity, reducing their residence time, while the opposite occurs for CNPs with the same 
polarity of the applied potential (Wang et al., 2010). Since CNP charge distribution is symmetric (Sgro et al., 2010, 2011), in principle 
symmetric deposition rate can be expected regardless of the applied potential. Nevertheless, the effects of electric fields on the flame 
hydrodynamics and the ions dynamics alter this simple behaviour. 

It has long been common knowledge that an external electric field has dramatic visible effects upon a flame since this is essentially a 
thermal plasma system: flame distortion, flame extinction, and soot suppression have been evidenced since decennia (Altendorfner 
et al., 2011; Volkov et al., 2009; Zigan, 2018). These phenomena are due to mechanical forces acting on the molecules as a conse
quence of the ionic wind, which sensibly affects the physical parameters of the flame. Flames contain large amounts of ions and free 
electrons deriving from the thermal energy and the chemical reactions developing within them and it is usually recognised as plasma 
(Bradley & Ibrah1m, 1974; Butler & Hayhurst, 1998). The ionic wind theory claims that naturally occurring ions and electrons are 
accelerated in a flame in response to a Lorentz force from an external electric field generated between a grounded burner and its 
stabilizing plate. The charged species are extracted from the flame and undergo continuous non-reacting molecular collisions with 
neutral gaseous molecules thereby producing a net acceleration in the exhaust gas (Kuhl et al., 2017; Park et al., 2017). 

Wang et al. (Wang et al., 2010) have studied the effect of a uniform electric field in a laminar premixed ethylene/air flame from a 
McKenna burner, where the burner was electrically grounded, whereas either positive or negative voltages were applied to the sta
bilization plate. They have shown that above a critical value for the electric field, the flame becomes unstable, firstly exhibiting 
flickering and then showing the onset of electric discharges. In particular, the electric breakdown potential under a negative field is 
about two times greater than that observed for a positive field and takes place well below the 3000 kV/m observed for dry air at 
ambient conditions (Biswas & Mitra, 1979). 

Therefore, the motion of CNPs under the effects of an external electric field applied to a surface immersed in the flames is the result 
of the complex intertwining between electrostatic effects on the CNP charge, ionic wind effects and occurrence of the voltage leading to 
breakdown. Below the electric breakdown, only flame-generated ions are present. Positive ions are formed by cations, while the 
negative ones are mostly composed of electrons, whose mass is far lower than that of the cations. Therefore, the ionic wind mostly 
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follows the direction of the cation motion in the field. For a negative polarity applied to the substrate, flame cations and positive CNPs 
are attracted. The cations mass generates an appreciable ionic wind that further pushes the particles towards the substrate. For a 
positive polarity, negatively charged CNPs are attracted to the substrate, but repelled by the ionic wind. 

Xiong et al. (Xiong et al., 2017) have studied the effects of a uniform external electric field and polarity on the production of 
titania-based films on a silicon substrate. Specifically, a stagnation-swirl-flame synthesis burner is used and a high-voltage power 
supply provides the voltage bias at its aluminium stabilizing plate, creating a uniform electric field between the grounded burner and 
the substrate. When the applied electric potential is below 400 V, oppositely charged particles have been attracted to the substrate, 
increasing their electrophoretic velocity but decreasing their in-flame growth and agglomeration, resulting in smaller particle sizes and 
more columnar-structured films with lower packing density. For voltages above 400 V, the authors argued that particles behave as they 
acquired the same charge polarity as the voltage bias applied, being repelled and residing in the flame longer, thus increasing in-flame 
agglomeration and particle size. This turned into a more branched-structured film growth with high packing density (Xiong et al., 
2017). 

As shown by Xiong et al. (Xiong et al., 2017) the acceleration, or the deceleration of CNPs toward the charged substrate, and the 
resulting alteration of their velocity and impact angle with the substrate is likely to be related to a modification of the achieved film 
morphology. Indeed, the growth of CNP films comprises several steps: CNP collision on the substrate (or on deposit), CNP adhesion to 
the clean substrate or CNPs deposit, and, finally, CNP deposit/film re-structuring (Kardar et al., 1986; Meakin et al., 1986; Rodrí
guez-Pérez et al., 2007; Tassopoulos & Rosner, 1989). The CNP motion above the deposit can be considered as the controlling 
mechanism for film growth assuming a complete passive deposit, for which CNP attachment and coagulation phenomena can be 
neglected (Rodríguez-Pérez et al., 2005, 2007). 

The dynamics of CNPs close to the substrate depend on field forces (e.g. gravitational or electromagnetic fields), particle inertia, and 
Brownian diffusion, which give rise to a combination of deterministic motions and random motion trajectories (Kardar et al., 1986; 
Meakin et al., 1986; Rodríguez-Pérez et al., 2005, 2007; Tassopoulos & Rosner, 1989). The dimensionless Peclet number measures the 
relative importance of the deterministic CNPs motion to the Brownian random motion and it is defined as: 

Pei =
vidp,i

Di
(1)  

Where vi is the normal component of the particle arrival velocity and Di is the CNP diffusion coefficient. In the limit case of Pe≪1, a 
purely diffusive CNPs deposit occurs and the generated film grows with a fractal structure predicted by the diffusion-limited aggre
gation model (Liu et al., 2017). On the other hand, for Pe≫1 there is a ballistic behaviour of the CNP and the deposits will be compact 
with a rough interface (Arai et al., 2022; Castillo et al., 2014; Conde et al., 2021; Zhao et al., 2015). The introduction of an electric field 
in the flame, and the onset of an electrophoretic deposition mechanism in combination with a pure thermophoretic one, may alter the 
particle velocity, and thus their characteristic Peclet number, giving rise to an alteration of the film properties. Unfortunately, an 
experimental determination of the CNPs trajectories and velocity close to the film substrate is not available. 

This paper aims to contribute to the discussion by proposing new experiments and a mathematical model for the thermo- 
electrophoretic deposition of CNPs in flame. A mathematical model is used to describe the CNPs dynamics close to the collector 
surface and aims to understand how the application of an electric field over the collecting substrate alters the velocity and the tra
jectories of CNPs of different sizes and charges while they are in the flame. The experimental work is thought to support and validate 
the modelling data, a controlled flame reactor has been equipped with a CNP collector unit which is pneumatically driven to provide a 
single insertion of a substrate in the flame, at a given height above the burner (HAB), with controlled residence time and speed of 
insertion. CNPs deposited on substrates have been analysed by atomic force microscopy (AFM). The validated model could offer useful 
indications to predict the morphological characteristics of CNP films obtained in the same experimental conditions with a larger 
number of insertions in flame. 

The experimental results allow us to shed light on the amount of CNPs deposited under the effects of thermophoretic and 

Fig. 1. Sketch of the electrophoretic deposition setup.  
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electrophoretic forces. The model results allow us to predict CNPs collisional probability with the substrate and to identify the main 
controlling mechanisms of the film formation process. 

The paper is divided into three main sections: the description of i) the experimental setup and methodology and ii) the model 
equations to describe particle motion in the flame and their adhesion to the substrate and the characteristics of the numerical model 
used for their resolution and iii) the presentation of experimental and model results. 

2. Experimental methods 

A sketch of the thermos-electrophoretic deposition setup is shown in Fig. 1. This is an update of the thermophoretic deposition 
setup used by De Falco et al. (De Falco et al., 2014, 2021; De Falco et al., 2017b; Minutolo et al., 2022), with specific improvements 
aimed to allow stable and steady application of a DC electric potential on the surface of the collector. 

A flat laminar premixed ethylene-air flame stabilized on a water-cooled McKenna burner was used as the CNPs-producing reactor. 
The carbon-to-oxygen ratio (C/O) was set to 0.67 with an air (N5.0 with 99.999% purity provided by Sol Group) flow rate of 13.06 L/ 
min and an ethylene (N3.5 with 99.97% purity provided by Sol Group) flow rate of 1.79 L/min. Under these slightly sooting flame 
conditions, the cold gas velocity at the burner inlet is equal to 9.8 cm/s. This flame has been extensively characterized (Commodo 
et al., 2015, 2018; De Falco et al., 2014, 2017; De Falco et al., 2017b), showing that CNPs harvested at a HAB higher than 10 mm have a 
typical bimodal number particle size distribution (PSD), with a first mode around 2–3 nm and a second one made by particles larger 
than 10 nm. However, CNPs of the first mode give a negligible contribution in terms of relative mass to the total population, whereas 
most of the mass of the total population is due to CNPs of the second mode. Moreover, CNP charge distributions are also known from 
previous works (Sgro et al., 2010, 2011). The experiments indicate an equal distribution of positively and negatively charged particles 
sampled from flames at atmospheric pressure and that all the particles with sizes up to 20 nm carry on at most a single electric charge 
(Maricq, 2004, 2006). The PSD in number and the fraction of charged particles for the experimental condition investigated therein are 
shown in the following Fig. 8B. 

CNPs were deposited on a freshly cleaved mica disk (d = 10 mm) substrate after a single rapid insertion in the flame by means of a 
homemade pneumatic actuator. The insertion time tins was 100 ms, and the HAB was 15 mm. It is worth mentioning that the insertion 
time has been optimized in order to minimize the overlapping effect and to collect an almost single layer of CNPs, keeping the degree of 
coverage as low as possible. The aluminium probe containing the substrate was kept at a fixed electric potential, while the burner and 
its stabilizing plate were grounded. Due to the small mica thickness (about microns), the electric potential on the mica substrate was 
considered exactly the same as that applied to the probe, even though mica is a dielectric material. This hypothesis was also verified by 
numerical simulations. 

The electric potential on the substrate varied from 0 kV up to -3kV, below the onset of corona discharge, which appears at about − 4 
kV. In this work, only negative electric potentials were tested, since in presence of positive polarities, instabilities and flame extinctions 
have been observed, leading to a more complex interpretation of the experimental and model results. 

Experimental setup conditions are summarized in Table 1. 
AFM images of particles deposited on freshly cleaved mica substrates were acquired to estimate the degree of coverage (i.e. the area 

of CNP deposits per unit area of mica substrate) and to obtain a morphological characterization of CNPs deposits as a function of the 
applied potential. AFM measurements were performed with a Scanning Probe Microscope NTEGRA Prima from NT-MDT, operated in 
semi-contact mode in air and equipped with NANOSENSORS SSS-NCHR super-sharp silicon probes with a nominal tip radius of 2 nm. 

3. Model description 

In this section, we report the equations used to simulate the dynamics of CNPs close to a cold substrate immersed in a flat laminar 
ethylene-air premixed flame. 

The model simulates the exact geometrical characteristics of the McKenna burner flame space, with its stabilization plate and with 
the substrate steadily kept in position inside the flame, according to the experimental conditions. The mathematical domain is thus a 
cylindrical space between the burner exit and the stabilization plate where the substrate is immersed in. Due to the extremely fast 
chemical kinetics and specific harvesting conditions, we assumed that no active chemistry is involved. Accordingly, the flame is made 
up of air entering the burner. Temperature (1500 K) and uniform axial velocity (0.50 m/s) simulating flame-burnt gases have been 

Table 1 
Experimental setup conditions.  

Description (units) Value 

C/O ratio (− ) 0.67 
Air flow rate (L/min) 13.06 
Ethylene flow rate (L/min) 1.79 
Cold gas velocity (cm/s) 9.8 
Sampling position HAB (mm) 15 
Insertion time tins (ms) 100 
Applied voltage V0 (kV) 0;-1;-2;-3 
Substrate Mica 
Number of insertions Nins (#) 1  
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assigned at the burner exit (Carbone et al., 2017). The substrate is kept at 350 K when the simulation starts. The substrate is kept at a 
fixed applied potential while the burner and the stabilization plate are grounded. 

The particle deposition model includes the resolution of the mass, momentum and energy balance in the gas phase, the Maxwell and 
Gauss equations for the assessment of the electric field and the particle’s momentum balance to determine particle tracing. Consid
erations to estimate particle rebounds and adhesion on the substrate surface have been included to allow a more appropriate com
parison with the experimental results. All the equations reported in this section are in vectorial notation. Both vectors and tensors are 
always reported in bold. 

The model adopts Navier-Stokes equations for the conservation of momentum and the continuity equation for incompressible 
flows, by neglecting the influence of the electric field on the stress tensor: 

ρg(u · ∇u)=∇ ·
[
− PI+ μg

(
∇u+∇uT)] (2)  

∇· u = 0 (3)  

Where ρg is the gas density; u is the velocity vector; P is the pressure; I is the identity tensor and μg is the gas viscosity; ∇u and ∇uT are, 
respectively, the velocity gradient tensor and its transposed; ∇⋅u is the divergence of the velocity vector. No slip condition is assigned 
on the physical walls and a suppress backflow condition is imposed on the lateral surface of the domain. A uniform axial velocity 
simulating flame-burnt gases is assigned at the base of the cylinder in correspondence with the burner exit: 

uwall = 0 (4)  

[
− PI+ μg

(
∇u+∇uT)] ·n= − pout · n  

|uinlet| = 50 cm / s  

Where uwall is the gas velocity vector on the physical walls; n is the outward surface normal vector; pout is the pressure outside the 
domain, set to prevent the fluid from entering back into the domain; |uinlet| is the normal inflow inlet velocity, equal to 50 cm/s at the 
inlet temperature of 1500 K (9.8 cm/s at ambient temperature) as in the experiments (De Falco et al., 2017b). 

The flame temperature is modelled by solving the enthalpy balance as a boundary value problem of the form: 

ρgcp,gu · ∇T +∇(− k∇T + qr)=Qgen (5)  

Where cp,g is the gas specific heat capacity at constant pressure; ∇T is the temperature gradient; k is the thermal conductivity; qr is the 
heat flux by radiation estimated from our previous knowledge of the particle emissivity values (De Falco et al., 2017b; Maquin et al., 
2000); Qgen contains heat sources other than viscous dissipation such as the thermal power generated by the highly exothermic 
incomplete combustion reactions occurring in the flame (Yang et al., 2021; D’Anna, 2008; Balthasar & Frenklach, 2005; D’Anna et al., 
2001). Computations are preliminarily performed for the unperturbed flow in the absence of the probe and, subsequently, by intro
ducing the probe in the flame at an imposed temperature of 350 K. 

By neglecting magnetic field effects, the Maxwell and Gauss laws are solved to simulate the electric field along the flame, 
considering a ground boundary condition on both the burner and the stabilization plate, and a constant DC electric potential applied on 
the substrate, V0: 

− ∇ · (εm∇V)= ρsc (6)  

Vp =Vb = 0  

Vsub =V0  

where Vsub is the electric potential at the substrate; Vp and Vb are, respectively, the electric potential values at the burner and the 
stabilization plate; ρsc is the net space charge density -i.e., the difference of positive and negative ions concentration in a flame (Calcote, 
1957; Calcote & Pease, 1951; Guo et al., 2003). Electrons, with their small mass and high mobility, have a high diffusion rate out of the 
flame, resulting in a spatial distribution of charge in the flame. In order to adjust the electrons and ions fluxed in flame, there is a 
self-induced electric field through the flame that accelerates positive ions and decelerates electrons, making them diffuse out of the 
flame front at an equal rate. The intrinsic electric field in the flame is described in terms of net space charge density (Butterworth & 
Cha, 2021). This parameter is a function of both flame fluid dynamics and the local Carbon-to-Oxygen ratio. An average value of the 
flame space-charge density is retrieved from the pertinent literature (Calcote & Pease, 1951). 

The motion of dispersed CNPs in the flame can be modelled by the Langevin equation (Kim & Zydney, 2004; Vishnyakov et al., 
2014). For each CNPs size dp and each value for the CNPs charge q, its translational motion under the assumption of spherical shape is 
modelled as: 

m
dU
dt

=FD + FG + FB + FT + FE + FDEP + Fi (7)  

where m is the mass of a single CNP; U is the relative velocity – i.e., the difference between the particle velocity and the gas (flame) 
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velocity at each point in the domain. FD is the viscous drag on a spherical CNP: 

FD =
3πμgdpU

Cc
(8)  

where dp is the CNP diameter, and Cc is the Cunningham correction factor. 
Due to the size of CNPs considered therein, the particle’s motion is also affected by Brownian diffusion. This is the irregular 

wiggling motion of a particle caused by random variations in the relentless bombardment of gas molecules against the CNPs. The 
amplitude of Brownian excitation can be modelled with the Gaussian-with noise fictitious force: 

FB = ζ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6πkBTdp

Δt

√

(9)  

where ζ is a zero-mean, unit-variance independent Gaussian random number vector; kB is the Boltzmann constant; T is the absolute 
temperature and Δt is the time-step for the integration of the equation of particle motion. 

FG is the gravity (and buoyancy) body force: 

FG =
π
6

d3
p

(
ρp − ρg

)
g (10)  

where ρg is the gas density; ρp is the CNPs density and g is the gravitational acceleration. 
FT is the thermophoretic force: 

FT = −
Pλd2

p∇T
T

(11) 

valid on the free molecule regime (Knudsen number Kn»1) limit, where P is the pressure and λ is the fluid mean free path. 
In the operating conditions, CNP deposition is driven mostly by thermophoresis and viscous drag, since inertia and body forces are 

negligible because of their small sizes (Bongiorno et al., 2006; Fuchs et al., 1989; Hinds, 1999; Hwang et al., 2020). This is in line with 
former studies on the Brownian deposition mechanism which showed that this phenomenon is relevant only when the CNPs are within 
100 nm distance from the collecting surface (Wang et al., 2010). 

Fi reported in Eq. (7) represent a sum of all contributions from interaction forces between pairs of particles, i.e. the attractive van 
der Waals sintering force and the electrostatic forces between charged CNPs, normal repulsive, dissipative and attractive contact forces 
(Endres et al., 2021; Qian et al., 2022). For diluted systems, where the interparticle distance is higher than 5 times the CNPs diameter, 
these interparticle forces could be neglected. Moreover, if CNPs have sizes higher than 20 nm, the assumption of a spherical shape is 
not acceptable. In fact, particles larger than 20 nm appear as aggregates, which are clusters of primary particles that are chemically 
bonded by sinter-bridges with dimensions typically between 200 and 300 nm. For aggregated and agglomerates, the additional torque 
balance is needed (Endres et al., 2021; Qian et al., 2022): 

M = I
dω
dt

= MF + Mi (12)  

Where I is the CNP moment of inertia, ω is the CNP angular velocity, M is the net torque, MF is the resulting momenta related to the 
external long-range field and Mi is the resulting torque acting between pair of CNPs, which can be expressed as: 

Mi = − Ft × Rp − Mr (13)  

Where Ft is the tangential component of the friction forces related to the CNP against the tangential component of the velocity; Rp is the 
radius vector for a CNP and Mr is the rolling friction force acting against the angular velocity ω (Endres et al., 2021). 

When an external electric field is applied, charged CNPs are affected by an electrostatic force FE (Li & Ahmadi, 1992; Sardari et al., 
2018) near the deposition surface, which is given by the following expression: 

FE = qE −
q2

16πεmz2 n (14)  

where q is the total charge carried by a CNP; E is the electric field vector; n is the unit vector orthogonal to the burner exit; εm is the 
flame permittivity. On the right-hand side of Eq. (14), the first term, qE, is the Coulomb force due to the imposed electric field, and the 
second term is the image force, corresponding to the force created by an image charge of -q at position -z from the surface. Under the 
effect of an external field, the Coulomb force is dominant, the image force being relevant only at short-range very near the surface 
(Endres et al., 2021; Li & Ahmadi, 1992). 

When CNPs are placed in a non-uniform electric field, they will be polarized leading to the attraction of CNPs, which are dependent 
on the relative polarizability of the CNPs and the surrounding medium (Jones, 2003; Jungmann et al., 2022; Markx & Pethig, 1995; 
Pohl, 1951). According to Maxwell-Wagner-Sillars theory (McKenzie et al., 2014; Xia et al., 2017) such polarization occurs at the CNP 
medium interface on a microscopic scale, leading to the separation of charges. This gives rise to a motion of particles toward the 
electrode known as dielectrophoresis, DEP. The strength of the DEP force (FDEP) varies with the properties of these CNPs and the 
suspension media. The simplest theoretical model for DEP is that of a homogeneous spherical particle immersed in a dielectric medium 
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(Irimajiri et al., 1979), which can be calculated according to the Pohl model (Pohl, 1951) as follows: 

FDEP =
π
4

d3
pεmRe(fCM)∇E2 (15)  

Where εm is the medium permittivity and Re(fCM) is the real part of the Clausius-Mossotti factor (fCM) (Jones, 2003; Markx & Pethig, 
1995), which is defined in terms of complex permittivity as follows: 

fCM =
ε∗p − ε∗m
ε∗p + 2ε∗m

(16)  

Where εp* and εm* are the complex permittivity of the CNP and the suspension medium respectively. The calculation of the complex 
permittivity for CNP and medium is given below (Jones, 2003; Kirby, 2010): 

ε∗p = εp − i
(

σp

ωe

)

(17)  

ε∗m = εm − i
(

σm

ωe

)

(18)  

Where εp is the CNP permittivity; σp is the CNP electrical conductivity; σm is the medium electrical conductivity; ωe is the angular 
frequency of the electric field. If the angular frequency of the electric field is equal to zero, i.e., direct current electric field-the real part 
of the complex permittivity becomes (Kirby, 2010): 

Re(fCM)=
σp − σm

σp + 2σm
(19) 

The Langevin equation can be used to determine particle trajectories inside the flame, as they enter the domain through a given 
injection plane. The model is also able to calculate the fraction of particles that collide with the substrate, i.e., the collisional prob
ability ξi of each particle size. 

To compare model results and experiments, it is necessary to make a direct comparison of the model result with the data in terms of 
the degree of coverage obtained by AFM. To this aim, it is possible to estimate the area Ai occupied by a CNP of diameter dpi on the mica 
substrate, if the collisional probability ξi of each particle size is known: 

Ai = γiξiNi0
π
4

d2
pi (20)  

In which Ni0 is the number concentration of CNPs in the sampling point of the flame, as defined by the experimental data, γi is the 
sticking coefficient of a particle of diameter dpi. Some clarification is needed regarding this parameter. CNPs reach the charged surface 
with an impact velocity vi that is obtained by solving Eq. (7). According to the specific characteristics of the impact dynamics, particles 
may either adhere or rebound after collision with the substrate. Typically, particle rebounding from a surface has been considered an 
unwanted phenomenon causing artifacts in inertial impactors and reduction of the effective deposited particles. This suggests the 
importance of studying particle-surface interaction phenomena. The interaction can be understood through four basic phenomena: 
adhesion, rebound, resuspension and charge transfer. An adhesion force arising from the molecular interaction of a particle and a 
surface affects the particle in the adhesion force field within a distance from the surface. The extension of the adhesion force field 
depends on the material roughness and objects involved but for flame-formed nanoparticles, it is in the order of a few atomic layers, 
typically near 0.4 nm (Kuuluvainen et al., 2013; Kweon et al., 2015; Takeuchi, 2006). 

For uncharged CNPs, the van der Waals interactions represent the main contribution to adhesion (De Falco et al., 2015). These 
interactions can be modelled in terms of Lennard-Jones potentials and the framework of the gas kinetic theory. In particular, it is 
considered that for CNP sizes smaller than 10 nm, a sticking coefficient significantly lower than 1 is expected because thermal rebound 
effects are likely to prevail over adhesion mechanisms due to van der Waals forces (D’Alessio et al., 2005). On the contrary, soot 
particles with a diameter larger than 10 nm are expected to stick after collision (D’Alessio et al., 2005). 

This discrepancy is likely to be neglected in presence of a voltage since the adhesion mechanism includes additional attractive 
electric interaction forces with a potential increase in the sticking coefficient up to 1 (D’Alessio et al., 2005). In this model, sticking 
coefficients for uncharged CNPs produced in a C/O = 0.67 flame reported in D’Alessio et al. (D’Alessio et al., 2005) are used for both 
charged and uncharged particles and whatever the applied potential is. The total degree of coverage φ is the ratio between the total 
area occupied by all the CNPs and the mica substrate area, As. 

φ=

∑
iAi

As
(21) 

It is worth noting that the model does not account for overlapping between CNPs. Hence two CNPs impacting in the same point on 
the mica disk are at the moment considered twice for the coverage. The effect of this hypothesis are discussed hereafter in the model 
validation section. 
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4. Numerical methods 

COMSOL Multiphysics® (Chaurasia, 2022) finite element solver package has been used to solve the mass, momentum, energy 
balances, electric field equations, and the particle tracing model, using specific integrated software libraries. 

The flame environment is represented as a cylindrical three-dimensional domain (diameter 6 cm and height 22 mm, as the distance 
between the burner exit and the stabilizing plate), generated within the COMSOL software using the internal geometry and func
tionality tools. In particular, the bottom and top circular surfaces of the cylinder represent the burner exit (namely the flame inlet) and 
the stabilizing plate (namely the flame outlet) respectively, while the side surface of the cylinder represents the interface between the 
flame and the surrounding outside air. 

An aluminium holder including the deposition substrate has been positioned at a distance from the burner exit equal to the height 
above the burner of the real system (HAB = 15 mm) so that the centre of the deposition substrate coincides with the centre of the flame 
itself. A 3D CAD file for the holder has been imported to obtain its correct sizes. The aluminium holder is available at 350 K. A 
preliminary time-dependent numerical simulation shows that during the insertion time, a heating of about 5 K takes place, so that the 
holder temperature still remains below its melting temperature. 

For the substrate, a flat disk with a 10 mm diameter and 150-μm thickness has been considered. All the physical properties of the 
substrate have been set equal to those of mica muscovite. 

The numerical simulations for the flame have been carried out by using COMSOL Computational Fluid Dynamics, Heat Transfer, 
and AC/DC three-dimensional solvers. The specific physics interfaces used are Heat transfer and Laminar Flow, both of which are 
coupled to the Multiphysics of Non-Isothermal Flow, and Electrostatics, considering stationary conditions. 

In particular, Eqs. (2) and (3) have been solved under the hypothesis of incompressible laminar flow with a reference pressure level 
equal to 1 atm. The fluid viscosity has been set equal to that of air, whereas the density is a simulation result. A normal inflow velocity 
of 50 cm/s has been considered as a boundary condition at the burner exit for the inlet flame (this corresponds to the 9.8 cm/s cold-gas 
velocity – 25 ◦C – set for the experimental setup), whereas for the flame outlet an ambient reference absolute pressure equal to 0 Pa 
with a compensation of the hydrostatic pressure and suppression of the backflow has been considered. Regarding the lateral walls, 
however, the standard no-slip condition has been used. 

Furthermore, Eq. (5) has been solved for the heat transfer in the flame. Here, a reference temperature equal to 293.15 K has been 
used, applying a consistent stabilization with streamline and crosswind diffusion. Both at the flame inlet and outlet a thermal insu
lation condition has been applied. Additionally, the temperature at the holder and substrate surface has been set equal to 350 K, and a 
volumetric heat source equal to Qgen = 40 W has been set to simulate the heat generated by the exothermic incomplete combustion 
reactions occurring in the flame (Yang et al., 2021; D’Anna, 2008; Balthasar & Frenklach, 2005; D’anna et al., 2001). Moreover, heat 
flux is added to the whole domain to consider the radiative heat losses estimated from the emissivity values for CNPs generated in 
flame (De Falco et al., 2017; Maquin et al., 2000). 

Regarding electrostatics physics, the reference default impedance value of 50 Ohm for the terminals connected to grounding has 
been selected. A ground condition has been defined for both the flame inlet and outlet, while for the lateral walls, a zero charge 
condition has been considered. A space charge volume density has been defined, as 4.61⋅10− 10 C/m3 as obtained indirectly by current- 
voltage measurements in other works retrieved in literature (Calcote, 1957; Calcote & Pease, 1951; Guo et al., 2003). Finally, an 
adjustable electric potential condition (V0) has been applied to the holder. 

All these equations have been first discretized on the flame domain and then solved via the finite element method (FEM). The FEM 
technique discretized the domain into finite elements and the dependent variables have been solved at nodes connecting these ele
ments. This is done by multiplying the governing equation by weighting functions and integrating them to obtain their weak form. The 
solution has been then approximated at the element level, and the entire problem can be solved by assembling the elemental equations. 
The main advantage of the finite element method is its capacity to treat boundary conditions on curved surfaces. 

To obtain fluid temperature, velocity, pressure, electric potential, and electric field, a three-dimensional unstructured mesh with 
four-node tetrahedral elements has been adopted. In the region close to the holder and substrate wall, where the boundary layers 
develop, mesh refinement is used. The Multifrontal massively parallel sparse direct solver has been used for all the simulations, with 

Fig. 2. Left: Temperature profile and velocity streamlines without (A) and with (B) the probe in flame; Right: Electric field intensity and lines 
(arrows) without (C) and with (D) the voltage applied to the probe. Images reported refer to the cut plane rz perpendicular to the burner plate, 
where r and z are the radial and axial coordinates. 
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the generalized minimum residual (GMRES) solver as a linear solver and the Newton iteration method as a nonlinear method. The 
relative tolerance has been set to 10− 4, but usually, values below 10− 5 are reached. 

Grid independence tests, from the numerical results, have been done with various grid sizes. From this process, a mesh with 807804 
size elements and 39888 boundary elements has been built. This mesh is sufficient to achieve accuracy within 2% of that obtained by 
the maximum number of elements (820370 size elements and 43944 boundary elements). 

Model results of temperature profiles and velocity streamlines with and without the probe inserted in flame and of the electric field 
modulus and streamlines without and with a voltage applied to the probe are reported in Fig. 2. 

The comparison between the experimental axial temperature profiles reported in (Commodo et al., 2015) and the simulated one 
shows a very good agreement (see Fig. 3). 

Even in the absence of an applied electric potential, the flame is characterized by an intrinsic (although very low) electric field, 
deriving from the imposed space-charge density. When potential is applied, a strong electric field perpendicular to the substrate es
tablishes. The electric field has been simulated using the same mesh of the fluid dynamic field model. 

CNPs are modelled with a discrete distribution, considering seven reference size bins at 2, 3, 5, 8, 10, 15 and 20 nm. The selected 
bins have been chosen to fully describe the experimental CNPs Size Distribution (PSD) (Commodo et al., 2013; Sirignano et al., 2017; 
Vitiello et al., 2019). The use of finer discretization does not affect the results. Modelled CNPs are considered single spheres, and this 
assumption is reasonable for the investigated size range (Endres et al., 2021; Qian et al., 2022). CNPs are released from the inlet burner 
boundary plane with a random spatial distribution at the bottom of the particle tracing domain. To allow a proper balancing between 
calculation time and significance of the model results, for particles up to 10 nm, Nin,i = 5⋅103 particles have been injected in the particle 
tracing domain, while this number is doubled for the 15 and 20 nm particle size, to account for their lower thermophoretic deposition 
efficiency. 

CNP motion has been modelled using Particle Tracing for the Fluid Flow interface with a one-way coupling approach: this implies 
that particle dynamics do not induce effects on the external fluid. When this physics interface is added, it is important to define particle 
properties in terms of density, diameter (dp), charge number (Z) ‒ the ratio between the CNP electric charge (q) and the elementary 
charge constant (e) ‒ and type. CNPs have been approximated as solid spherical particles of density 1.8 g/mL (Alfà et al., 2007; 
Apicella et al., 2002), with variable diameters from 2 to 20 nm, and charge numbers (0, +1, or − 1). It is important to underline that the 
spherical hypothesis is consistent with some experimental evidences for the selected size range (Endres et al., 2021; Morán et al., 
2021). Particle release and propagation have been modelled using the Newtonian formulation with the Langevin correction (see Eq. 
(7)). In this module, it is possible to add some default forces, but also user-defined forces can be added. In particular, the gravity, the 
drag with the Cunningham-Millikan-Davies model, the Brownian, dielectrophoretic and the Coulomb electric forces have been selected 
from the default ones, since the COMSOL default equations are the same adopted in the model. Instead, thermophoretic and image 
forces have been user-defined (see Eq. (11) and the second addendum to the right of Eq. (14)). 

It is worth pointing out that computational costs could be substantially reduced if negligible terms of Eq. (7) are not considered in 
the simulations. To this aim, an order of magnitude preliminary analysis of the relative importance of each force has been fulfilled and 
the results of this analysis for each CNP size are reported in Table 2, taking the magnitude of the viscous drag FD as reference. 

The order of magnitude analysis suggests that the gravity force can be neglected in simulations, since for all the CNP sizes its 
contribution is very small compared to the viscous drag. All the other forces should be taken into account since their relative 
importance varies with the CNP size. 

To further balance the physical representativeness of the model results and computational costs, particle tracing has been calcu
lated in a portion of the overall domain: the particle tracing domain is a cylindrical volume of a given diameter, which extends 
vertically from the burner to the substrate horizontal surfaces. The size of this cylinder is determined according to optimization and 
convergence criteria, as discussed in the following paragraph. Also in this domain, the calculations are performed using the same 
tetrahedral mesh of the overall computational domain. Fig. 4 shows the projection in the x-z plane of the domain for the flame 

Fig. 3. Comparison between experimental (Commodo et al., 2015) and simulated temperature profile of the flame without and with the probe 
(HAB = 15 mm with C/O = 0.67). Experimental uncertainty: ±50 K. Simulation have been performed using a cylindrical dilution probe in order to 
accurately simulate the experimental apparatus used for the temperature profile measurements described in (Commodo et al., 2015). 
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environment and the particle tracing with the adopted mesh. The mesh refinement area close to the substrate is also reported. 
CNPs have been released from the inlet flame boundary plane with a random spatial distribution from the bottom of the particle 

tracing domain. At the lateral wall of this domain, a boundary condition of disappear has been set. Instead, a freeze condition has been 
set on the substrate to activate the Particle Counter node. 

The diameter of the particle tracing domain has been determined from the numerical simulation. In particular, the minimum size of 
the cylindrical volume close to the deposition substrate was found as the one which guaranteed that all the positively charged CNPs 
were harvested when the maximum electric potential (i.e. − 3 kV) was applied to the deposition substrate. Similarly, it was decided to 
optimise the release time of the CNPs in the control volume by defining a minimum duration that would not alter the results. CNPs 
injection in the volume could be better described as an instantaneous pulse ‒ namely zero release time ‒ or as a time-distributed 
injection ‒ namely non-zero release time. For each domain size, the mesh is optimized to grand convergence of the results. The ef
fects of the diameter of the particle tracing domain and the release time of collisional probability for positively charged particles of 10 
nm are reported in Fig. 5 considering a standard COMSOL Fine mesh. 

Fig. 5 shows that the duration of the release time does not affect the collisional probability, so this was minimized by assuming an 
instantaneous impulse. Moreover, the simulations indicate that the minimum particle tracing domain diameter is 10 mm, which is 
exactly the size of the deposition substrate. The computational time of the COMSOL model is greatly affected by the particle tracing 
step- Convergence for the steady state solution of the thermal-fluid dynamic and the electric fields requires 30 and 45 iterations 
respectively, while the particle tracing model requires 8000 iterations. The simulations results consist of profiles of velocity, tem
perature, pressure, electric potential, and electric field at each point of the domain and the different streamlines. Moreover, for CNPs it 
is possible to obtain information about the particle trajectories, the impact velocity vectors, and the number of particles that freeze on 
the substrate. Besides, the freezing position can be determined. From particle trajectory analysis, a collisional probability (ξi,%)- the 
ratio between the number of harvested CNPs (Nout,i) and the number of injected ones (Nin,i)- can be determined. The fraction of covered 
area for each CNP size is calculated from Eq. (20) after fixing the sticking coefficient γi. Finally, the total degree of coverage φ is 
calculated with Eq. (21). 

5. Experimental results 

CNPs have been collected with a single insertion of 100 ms on mica disks varying the electric potential from 0 kV to -3kV. The 
insertion procedure was optimized to collect a significant number of particles whilst it is minimized the probability to deposit particles 
on already deposited particles so that the coverage area is representative of the particle capture rate. Fig. 6 shows AFM images for 
selected areas of the mica disk for different applied voltages. The images show that the number of deposited CNPs increases as the 
voltage increases. Using the Software Image J® to obtain image analysis it was verified the absence of columnar deposition of particles 
and the degree of coverage was found to increase by six times, from 5% at 0 kV to 30% at -3kV. 

Interestingly, in the case of pure thermophoresis at 0 kV, CNPs are distributed uniformly on the substrate and appear mostly as 
single spherical entities or small aggregates of a few particles. This effect is consistent with former observations of the thermophoretic 
deposition mechanism (Buzio et al., 2000; De Falco et al., 2017b), according to which particles fall sequentially at apparently random 
points towards an initially flat surface and each particle sticks to the first point of contact. On the other hand, in presence of applied 
potential, CNPs are preferentially positioned close to another particle so that the deposit is organized as fractal petal-like structures. It 

Table 2 
Order of magnitude analysis of the relative importance of each force (gravity FG, Brownian FB, thermophoresis FT, dielectrophoresis FDEP and electric 
force FE) respect to the viscous drag FD determined at 1 mm from the deposition substrate.  

dp, [nm] FG/FD FB/FD FT/FD FDEP/FD FE/FD 

s2 9.0⋅10− 8 0.26 0.23 0.01 70 
3 1.0⋅10− 7 0.14 0.23 0.01 30 
5 2.0⋅10− 7 0.06 0.23 0.02 10 
8 3.0⋅10− 7 0.03 0.22 0.03 4 
10 4.0⋅10− 7 0.02 0.22 0.04 3 
15 6.0⋅10− 7 0.01 0.22 0.05 1 
20 8.0⋅10− 7 0.01 0.22 0.1 0.7  

Fig. 4. (A) Geometry domain for the flame environment and (B) Particle tracing domain projected in the xz plane. The unstructured mesh with four- 
node tetrahedral elements and the mesh refinement adopted for the boundary layer are reported. 
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is beyond the scope and the limit of the proposed model to delve into details of the morphology of the deposits, that will be specific 
object of further investigation. However, literature studies suggest that the formation of the deposits can be described by using a 
diffusion-limited cluster aggregation (DLCA) model, according to which single CNPs deposited on the substrate after impacting on the 
surface, diffuse and aggregate to form larger fractal structures. Also polarization effects should be considered as well (Olevanov et al., 
2004; Xiong et al., 2017): positively charged CNPs are deposited on the negatively charged substrate as a result of Coulomb in
teractions (Vishnyakov et al., 2014). CNPs reach the negative charge at equilibrium with the substrate. While other positively charged 
particles can be attracted by Coulomb interactions, the neutral CNPs in the flame – the majority – can be polarised by the applied field 
determining stronger adhesion over the already deposited particles due to the higher chemical affinity (Sgro et al., 2010, 2011). 
Indeed, CNPs fractal-like structures are also observed in other works for similar reasons (Liu et al., 1999; Nie et al., 2014). 

6. Modelling results 

To understand the controlling mechanism and the role of the electric field in the harvesting for each class of CNPs, simulations have 

Fig. 5. Effects of the domain diameter (left) and release time (right) on the collisional probability (ξ, %) of 10 nm CNPs with a single positive charge 
in the absence (V0 = 0 kV, black) and presence (V0 = − 3kV, grey) of an electric potential applied to the deposition substrate. A release time of 0 ms 
refers to an instantaneous pulse. 

Fig. 6. AFM 2D images of the CNPs collected on a mica substrate with a single insertion of 100 ms in flame. (C/O = 0.67, HAB = 15 mm, tins =

100ms; Nins = 1). 

Fig. 7. Collisional probability of CNPs of different sizes for uncharged (left) and a single positive charge (right) CNPs. B: Brownian motion; T: 
Thermophoretic force; DEP: Dielectrophoretic force for uncharged CNPs with an applied voltage equal to − 3 kV; E: Electrostatic force for charged 
CNPs with an applied voltage equal to − 3 kV. 
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been conducted for different applied voltages, considering both uncharged and charged CNPs with and without the application of an 
electric field. 

Fig. 7 shows the collisional probability related to Brownian, thermophoresis, Coulomb, and dielectric electrophoresis of uncharged 
and single (positive) charged CNPs over a substrate kept at – 3 kV, as a function of their size. These are obtained by applying the 
particle tracing model (Eq. (7)) with one single force plus the drag, FD, and interaction forces, Fi, at a time. 

Fig. 7 shows that for uncharged CNPs the resulting total collision probability (dark line) has a decreasing trend with CNPs sizes, 
passing from 40% to 1% for CNPs size increasing from 2 to 20 nm. Moreover, the contribution to the collisional probability due to the 
Brownian motion (B) is negligible for all CNPs classes. In the presence of an external electric field – when a voltage is applied to the 
deposition substrate – polarization phenomena are activated on the CNPs, determining the onset of dielectrophoretic force (DEP). This 

Fig. 8. (A): Total collisional probability for uncharged and for single charged CNPs varying the voltage applied to the deposition substrate from 0 
kV to − 3 kV. Note that for uncharged CNPs the collisional probability is always equal to that at 0 kV. (B): Particle size distribution (PSD) in number 
for total (black) and single-charged CNPs (grey). (C): Collisional probability (ξ,%) weighed against the size and charge distribution of CNPs adapted 
from (Sgro et al., 2010, 2011) as a function of the particle diameter varying the electric potential applied to the deposition substrate. 
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contribution becomes non-negligible only for CNPs larger than 5 nm, but it is still <4% of the total collisional probability. Indeed, for 
uncharged CNPs thermophoresis is the controlling mechanism for the harvesting, favouring the deposition of smaller CNPs, charac
terised by higher thermal mobility, and disfavouring the larger ones, whose inertia is higher and thermal mobility is lower. Ther
mophoresis favours the harvesting of smaller CNPs, both for the lower fraction of charged particles and for the higher thermal mobility. 
The fluid dynamic field and the Brownian motion allow small CNPs to randomly approach the substrate zone. At a distance <1 mm 
from the deposition substrate, due to the very high-temperature gradient (about 106 K/m) thermophoresis becomes larger than 
Brownian motion and CNPs motion becomes non-chaotic and directional. 

For charged CNPs (Fig. 7, right), Brownian motion remains negligible and the effect of thermophoresis is similar to that obtained for 
uncharged CNPs. Ionic wind effects and dielectrophoretic forces have low effects on the deposition rate, but Coulomb electrophoresis 
provides a significant increase in the collisional probability, which reaches 100% for an applied potential of − 3 kV. Moreover, the 
effect of the electric field is CNPs size-independent, being mostly influenced by the CNP charge (equal to a single cation in this 
calculation). 

The results obtained for both charged and uncharged CNPs are consistent with the order of magnitude preliminary analysis shown 
in Table 2. 

The calculated collisional probability can be applied to the actual particle size and charge distribution of flame CNPs at the 
sampling point, to compare with the experimental deposition data (C/O = 0.67, HAB = 15 mm).To this aim, Fig. 8 shows (from the top 
to the bottom) the total collisional probability values for uncharged CNPs and charged ones varying the voltages applied to the 
deposition substrate; the actual fraction of positively charged and uncharged CNPs and the resulting collisional probability values for 
CNPs weighed against the CNP size and charge distributions. 

Fig. 8A reports the total collisional probability for each CNPs size on the deposition substrate as a function of the applied potential. 
As discussed in the comments of Fig. 7, for uncharged CNPs, thermophoresis is stronger than dielectrophoresis and ionic wind effects 
and therefore, the curve 0 kV refers to the harvesting of charged CNPs in absence of an external electric field but is also very close to 
that of uncharged CNPs for a charged substrate. For charged CNPs, there is an increase in the total collisional probability, which 
reaches 65% for an electric potential applied to the deposition substrate of − 1 kV and up to 100% for an applied potential of − 3 kV. 
Fig. 8B reports the PSD of CNPs used as input for this work together with the size distribution of single-charged (both positive and 
negative) CNPs achieved in the same experimental conditions tested in this work (Sgro et al., 2010, 2011). It is possible to see how 
below 8 nm the fraction of charged CNPs is less than 10% while reaching nearly 30% for CNPs larger than 10 nm. Modelling results on 
the collisional probability for each CNPs size as a function of the applied potential are reported in panel (C) of Fig. 8 taking into account 
the fraction of charged CNPs. 

Fig. 8C shows that, due to the small fraction of CNPs smaller than 5 nm that is charged (Fig. 8B), the collisional probability for these 
particles is not affected by the applied electric field. On the other hand, thanks to the higher fraction of charged particles (Fig. 8B), a 
significant increase in the collision probability for CNPs larger than 5 nm appears after the application of the electric field. This in
crease is not linear: the collisional probability increases significantly in the transition from pure thermophoresis to an applied potential 
of − 1 kV. For higher potentials, there is a weaker increase since mainly all particles are collected within the insertion time and 
saturation is reached for the system. 

On the bases of the collisional probability data for the CNPs in the experimental flame conditions, and after the application of Eqs. 
(20) and (21), the surface coverage can be estimated. Fig. 9 resumes on the left the estimated degree of coverage as a function of the 
electric potential applied to the mica substrate and on the right the comparison between simulation and experimental values of the 
degree of coverage without and with the sticking coefficient correction. 

From Fig. 9 it is possible to understand that there is a good agreement between the simulation and the experimental values for the 
degree of coverage, which goes from 5% to 30% passing from 0 to − 3 kV. The increase in the degree of coverage is not linear, but it 
seems to reach an asymptotic value, also confirmed by the collisional probability values. Moreover, the sticking coefficient model of 
D’Alessio et al. (D’Alessio et al., 2005) valid for uncharged CNPs seems to be efficient in describing experimental results. It is worth 
noticing, indeed, that the sticking coefficient model can solve an error of estimation of the model which is exactly the same for 

Fig. 9. Left: simulation results in terms of the degree of coverage as a function of the electric potential applied to the mica substrate. Values in 
brackets represent the corresponding values for the collisional probability if all the CNPs are positively charged. The horizontal line represents the 
degree of coverage if all the released CNPs were collected (complete harvesting). Right: Comparison between the simulation and the AFM degree of 
coverage without (grey) and with (black) the sticking coefficient correction. (C/O = 0.67, HAB = 15 mm, tins = 100ms; Nins = 1). 
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thermophoretic and electrophoretic depositions, suggesting that particle rebounding is mostly related to the thermal agitation velocity 
of the CNPs rather than to the electrophoretic velocity. 

It is worth to note that the degree of coverage, Eq. (21) is not the unique factor to characterize the particle capture rate as some 
particles attach on already deposited particles inducing no change on the degree of coverage. As previously observed, the fast single 
insertion procedure minimized the overlapping phenomenon. This is further confirmed by the agreement between the model and the 
experimental results. In general, there is a possibility that the degree of coverage underestimate particle capture rate. The presence of 
petal-like structure on the surface as evidenced by AFM images might suggest that this phenomenon is large and significant. However, 
these agglomerates are not present in the flame – as confirmed by 0 kV conditions and previous results – hence, they are likely to be 
formed during the deposition or on the surface of the substrate after the deposition due to their rearrangement, i.e., there is no effect of 
the particles themself in term of increasing particle capture rate. 

Looking at overlapping, the simple presence of deposited particles on the surface can affect the estimation of particle capture rate 
by reducing the surface available for deposition, hence underestimate the degree of coverage. In this case the degree of coverage 
underestimation is proportional to the degree of coverage itself. It is worth to note that in this case for the investigated conditions this 
error would be no larger than 30% for the higher voltage and minimum for the no voltage conditions. 

This latter consideration seem to be mitigated evaluating the height distribution of the deposited particles measured by the AFM. 
The deposition of an almost single layer of deposited CNPs over the substrate has been also verified for the electro/thermos phoretic 
deposition. Overall the petal-like structures are likely to be planar or only partially detached from the substrate. As stated above, a 
rearrangement of the structure on the surface during and/or after deposition could be responsible for this. 

Finally, the model allows the estimation of particle velocity trajectories and modulus in the particle tracing domain, and, in 
particular, when they impact the substrate. 

Table 3 summarises the mean and standard deviations of the velocity modulus and the impact angle distributions for the CNPs at 
0 and -3 kV for 2, 5 and 10 nm particles. 

The model results indicate that at 0 kV, the impacts of CNPs with the substrate is independent on their charge, since thermophoretic 
forces are dominant in both cases, as shown in Fig. 6. Instead, the charged CNPs impacts the substrate at a far larger velocity when the 
electric field is applied to the substrate. This is related to the component of velocity perpendicular to the substrate, while other 
components are scarcely affected by the potential. As a consequence, the impact angle becomes closer to the perpendicular, following 
the direction of the electric field, and the standard deviations of both the velocity and the angle are smaller. It is indeed relevant to 
notice that the impact velocity of uncharged particles is very similar for both charged and uncharged substrates. Therefore, following 
the indications of Castillo et al. (Castillo et al., 2014; Kardar et al., 1986; Meakin et al., 1986; Rodríguez-Pérez et al., 2005, 2007; 
Tassopoulos & Rosner, 1989), the model results indicate that uncharged particles are deposited according to a diffusional model, while 
for charged particles larger than 6 nm a ballistic deposition model is likely to take place. The role of this different impact velocity on the 
morphology of the CNPs films requires further investigations and will be the subject of following works. 

7. Conclusions 

CNPs harvesting and deposition on a substrate in flame with and without the presence of an electric field has been modelled by 
implementing all the force fields involved in the process in a commercial CFD software. The proposed model is able to identify the 
controlling mechanisms for the CNPs harvesting, as their size and charge vary. 

For uncharged CNPs, or for an uncharged substrate, thermophoresis is the controlling mechanism of the harvesting process, 
theoretically favouring the deposition of smaller CNPs with higher thermal mobility. For uncharged CNPs, results are similar even in 
presence of an external electric field since polarization phenomena and dielectrophoretic forces are negligible. For charged CNPs, 
electrophoresis is the controlling mechanism for the harvesting process in presence of an external electric field with a resulting 
collisional probability that is size-independent. 

Considering the PSD in the actual flame and the actual fractions of charged CNPs, Collisional probability is higher for small CNPs 
under pure thermophoretic conditions. However, the presence of resuspension and rebounding phenomena in particles smaller than 
10 nm leads to a reduction in the actual number of particles adhering to the substrate. Furthermore, the presence of external electric 
fields determines a significant increase in the collisional probability for CNPs larger than 5 nm. A non-linear trend with the electric 
potential applied to the deposition substrate due to saturation phenomena is observed. The good agreement between modelling and 
AFM experimental results in terms of the degree of coverage provides a validation criterion for the model. 

Model is also able to retrieve information on particle impact velocities. It suggests that electrophoretic harvesting implies higher 
impact velocities and more perpendicular impact angles, consequently, a partial transition from a diffusion-controlled to a ballistic 
deposition mechanism is expected. Further experimental and numerical investigations on this aspect can shed light on the nature of 
deposited films and their possible applications. 
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List of Symbols 

Ai Area occupied by a single CNP 
As Mica Substrate area 
AFM Atomic Force Microscopy 
Cc Cunningham correction factor 
CNP Carbon nanoparticle 
C/O Carbon to oxygen ratio 
cp,g Gas specific heat capacity at constant pressure 
Di CNP diffusion coefficient 
dp/dpi CNP diameter 
E Electric field vector 
e Elementary electric charge 
FB Brownian excitation amplitude 
FD Friction force on a spherical CNP 
FDEP Dielectrophoretic force for uncharged CNP 
FE Electrostatic force for charged CNP 
Fi Interaction forces 
FG Gravity and buoyancy body force 
FT Thermophoretic force 
Ft Tangential component of the friction forces to the CNP against the tangential component of velocity 
fCM Clausius-Mossotti factor 
g Gravitational acceleration 
HAB Height above the burner 
I Moment of inertia 
I Identity tensor 
k Thermal conductivity 
kB Boltzmann constant 
M Net torque 
m Mass of a single CNP 
MF Resulting momenta related to the external long-range field 
Mi Resulting torque acting between pair of CNPs 
Mr Rolling friction force acting against the angular velocity 
Nin,i Number of injected CNPs 
Ni0 Number of inlet CNPs in the real flame 
Nins Number of insertions in flame 
Nout,i Number of harvested CNPs 
n Outward surface normal unit vector 
P Pressure 

Table 3 
Mean and standard deviation (St.dev.) of CNPs impact velocity and impact angle for the CNPs at 0 kV (either charged or uncharged) and the single- 
charged CNPs at − 3 kV.  

Parameter Descriptor dp = 2 nm dp = 5 nm dp = 10 nm 

0 kV 
q = 0, +1e 

− 3 kV 
q = +1e 

0 kV 
q = 0, +1e 

− 3 kV 
q = +1e 

0 kV 
q = 0, +1e 

− 3 kV 
q = +1e 

Impact velocity Mean, m/s 0.50 20.19 0.50 20.33 0.50 20.24 
St. dev., - 7.3% 2.1% 7.4% 1.7% 9.4% 1.4% 

Impact angle Mean, ◦ 83.84 88.77 82.36 88.89 81.72 89.10 
St.dev., ◦ 4.48 1.36 4.05 0.83 3.56 0.67 

Peclet number Mean, - 3.45⋅10− 4 1.41⋅10− 2 5.53⋅10− 3 0.225 4.51⋅10− 2 1.66 
St.dev., - 4.98⋅10− 5 1.86⋅10− 3 8.16⋅10− 4 0.031 5.18⋅10− 3 0.63  
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Pei Peclet dimensionless number of each CNP 
pout Pressure outside the domain 
PSD Particles sized distribution 
q Total charged carried by a CNP 
qr Heat flux by radiation 
Qgen Heat sources other than viscous dissipation 
Re(fCM) Real part of the Clausius-Mossotti factor 
Rp Radius vector 
T Absolute Temperature 
tins Insertion time-time for a single insertion 
U Relative CNP velocity 
u Flame velocity vector 
uinlet Normal inflow inlet velocity vector 
uwall Flame velocity vector on the physical walls of the domain 
V Electric potential 
V0 Electric potential applied to the deposition substrate 
Vb Electric potential at the burner exit 
Vp Electric potential at the stabilization plate 
vi CNP impact velocity modulus 
z Distance from the deposition surface 
Z Charge number ‒ ratio between the CNP electric charge and the elementary charge constant 
Δt Time-step for particle integration 
γ CNP sticking coefficient 
φAFM Experimental degree of coverage obtained by AFM 
φsim Simulation degree of coverage 
εm Medium (flame) permittivity 
εp CNP permittivity 
ε*m Complex permittivity for the flame 
ε*p Complex permittivity for CNP 
λ Fluid mean free path 
∇ Nabla operator 
∇T Temperature gradient 
∇V Electric potential gradient 
∇u Velocity gradient tensor 
∇uT Transposed velocity gradient tensor 
∇⋅u Divergence of the velocity vector 
ξi Collisional probability 
ρg Gas mass density 
ρsc Net space charge density 
σm Flame electrical conductivity 
σp CNP electrical conductivity 
ω CNP Angular velocity 
ωe Angular frequency of the electric filed 
ζ Zero-mean, unit-variance independent Gaussian random vector number 
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performance of organic heterojunction solar cells fabricated by electrospray method. Solar Energy Materials and Solar Cells, 134, 140–147. https://doi.org/ 
10.1016/j.solmat.2014.11.029 

Zheng, F. (2002). Thermophoresis of spherical and non-spherical particles: A review of theories and experiments. Advances in Colloid and Interface Science, 97, 
255–278. 

Zhitomirsky, I. (2006). Electrophoretic deposition of organic-inorganic nanocomposites. Journal of Materials Science, 41, 8186–8195. https://doi.org/10.1007/ 
s10853-006-0994-7 

Zigan, L. (2018). Overview of electric field applications in energy and process engineering. Energies, 11. https://doi.org/10.3390/en11061361 

A. Parisi et al.                                                                                                                                                                                                          

https://doi.org/10.1016/j.solmat.2014.11.029
https://doi.org/10.1016/j.solmat.2014.11.029
http://refhub.elsevier.com/S0021-8502(23)00058-7/sref133
http://refhub.elsevier.com/S0021-8502(23)00058-7/sref133
https://doi.org/10.1007/s10853-006-0994-7
https://doi.org/10.1007/s10853-006-0994-7
https://doi.org/10.3390/en11061361

	Modelling the electrophoretically-enhanced in-flame deposition of carbon nanoparticles
	1 Introduction
	2 Experimental methods
	3 Model description
	4 Numerical methods
	5 Experimental results
	6 Modelling results
	7 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	List of Symbols
	References


