

ACCORDION receives funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 871793

Adaptive edge/cloud compute and network continuum over a heterogeneous sparse
edge infrastructure to support nextgen applications

Deliverable D3.2

Edge infrastructure pool framework implementation (I)

Ref. Ares(2021)1538408 - 28/02/2021

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 2 of 49

DOCUMENT INFORMATION
PROJECT

PROJECT ACRONYM ACCORDION

PROJECT FULL NAME
Adaptive edge/cloud compute and network continuum over a
heterogeneous sparse edge infrastructure to support nextgen
applications

STARTING DATE 01/01/2020 (36 months)

ENDING DATE 31/12/2022

PROJECT WEBSITE http://www.accordion-project.eu/

TOPIC ICT-15-2019-2020 Cloud Computing

GRANT AGREEMENT N. 871793

COORDINATOR CNR

DOCUMENT INFORMATION

WORKPACKAGE N. | TITLE WP 3 | Edge infrastructure pool framework

WORKPACKAGE LEADER HPE

DELIVERABLE N. | TITLE D3.2 | Edge infrastructure pool framework implementation (I)

EDITOR Lorenzo Blasi (HPE)

CONTRIBUTOR(S)
Ioannis Korontanis (HUA), Vangelis Psomakelis (ICCS), Hanna
Kavalionak (CNR), Marco Di Girolamo (HPE), Alain Vailati (HPE), Felipe
Huici (NEC), Patrizio Dazzi (CNR)

REVIEWER Mateusz Kamiński (BSOFT)

CONTRACTUAL DELIVERY DATE 28/2/2021

ACTUAL DELIVERY DATE 28/2/2021

VERSION V1.5

TYPE Demonstrator

DISSEMINATION LEVEL Public

TOTAL N. PAGES 49

KEYWORDS Resource Management, Resource indexing, Resource Virtualization

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 3 of 49

EXECUTIVE SUMMARY
This document is the accompanying report documenting the software components that are released as part of
ACCORDION Deliverable D3.2 and explains how to install and use them. The report includes the description of the
first implementation provided by ACCORDION for the Edge infrastructure pool framework (or Edge minicloud),
developed by the tasks inside WP3. The implemented minicloud model can include only resources located in a
single site and typically owned by a single provider. The developed framework, representing one of the key
innovations realized by ACCORDION, puts together the different components that altogether implement the
functionalities requested to deploy and operate federated miniclouds inside the ACCORDION environment. It allows
to locate and assign edge resources to the client applications of ACCORDION, ensuring they are duly registered,
tracked, monitored and that the system is able to react whenever needed to ensure the quality of service to users
of client applications. The framework implements the architectural guidelines and requirements set by WP2, will
be further integrated with the higher (orchestration) layer components developed by WP4 and, once integrated,
will run the Pilot use case applications proposed by WP6.

Whereas deliverable D3.1 extensively describes the research work carried on by WP3 to investigate and find out
the best possible solutions to realize the different modules, D3.2 provides the actual implementation of the
framework components, complemented by the present document. This document includes a section for each
delivered software component: Edge minicloud VIM (sect. 2), Monitoring (sect. 3), Resource indexing and discovery
(sect. 4), Edge storage (sect. 5), Unikraft (sect. 6). Each section describes how the related component has been
actually implemented in the demonstrator (adopted software baseline, configurations and possible
customizations), how it has been packaged and deployed and provides a user guide with all the needed directions
to install and use the component in the ACCORDION system. It also includes information about the software license
scheme adopted for the component and/or any of its constituent submodules. The ultimate purpose of this report
is to make the reader potentially able to install and operate the ACCORDION framework software, besides
understanding how it is structured and what packages make up its foundation.

The Edge minicloud is currently partially integrated as its components already run on the provided VIM baseline
platform (K3s plus KubeVirt). Work for the next months includes increasing the integration level of the components
and integrating them with components from other ACCORDION Work Packages, typically the WP4 Orchestrators.
This integration phase will also allow analyzing the traffic that crosses the provider’s firewall and tuning its
configuration. Finally, the minicloud will be tested by running applications from the WP6 use cases, to evaluate if
the provided functionalities and performance are suitable to satisfy the requirements and to indicate which
improvements are needed. The next minicloud version will aim at maximizing users’ expectations’ satisfaction,
based on the validation feedbacks, and may include additional components as indicated in the ACCORDION
architecture. We will also explore the possibility of implementing a minicloud across multiple sites.

The deliverable D3.2, with both its prototypal and report constituents, represents the first release of the framework
in the ACCORDION lifecycle. A second release will occur at project month 29 (D3.4), and the final one will be
provided at project month 36 (D3.6). The second and third release will take advantage of the learnings collected
during the two pilot phases.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 4 of 49

DISCLAIMER
ACCORDION (871793) is a H2020 ICT project funded by the European Commission.

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures (public
clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of latency, that can
support NextGen application requirements. To mitigate the expectation that these pools will be “sparse”, providing
low availability guarantees, ACCORDION will intelligently orchestrate the compute & network continuum formed
between edge and public clouds, using the latter as a capacitor. Deployment decisions will be taken also based on
privacy, security, cost, time and resource type criteria.

This document contains information on ACCORDION core activities. Any reference to content in this document
should clearly indicate the authors, source, organisation and publication date.

The document has been produced with the funding of the European Commission. The content of this publication is
the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be considered to reflect the
views of the European Commission. The authors of this document have taken any available measure in order for its
content to be accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated the creation and publication of this document hold any
sort of responsibility that might occur as a result of using its content.

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht). There
are currently 27 members states of the European Union. It is based on the European Communities and the member
states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home Affairs. The five main
institutions of the European Union are the European Parliament, the Council of Ministers, the European
Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/).

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright holders.

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but modifying this
document is not allowed. You are permitted to copy this document in whole or in part into other documents if you attach the
following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.”

The information contained in this document represents the views of the ACCORDION Consortium as of the date they are
published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or up to date.
THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING THIS
DOCUMENT.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 5 of 49

REVISION HISTORY LOG
VERSION MODIFICATION(S) DATE AUTHOR(S)

V0.1 Created ToC 20/1/2021 Lorenzo Blasi (HPE)
V0.2 Monitoring section 11/2/2021 Ioannis Korontanis (HUA)

V0.3 Introduction and conclusions, list of figures and list
of tables 13/2/2021 Lorenzo Blasi (HPE)

V0.4 First version of Edge storage subsection 15/2/2021 Vangelis Psomakelis (ICCS)
V0.5 Resource Indexing and Discovery 16/2/2021 Hanna Kavalionak (CNR)
V0.6 Exec Summary 16/2/2021 Marco DI Girolamo (HPE)
V0.7 Updated version of Edge storage subsection 16/2/2021 Vangelis Psomakelis (ICCS)
V0.8 VIM Component subsection 16/2/2021 Alain Vailati (HPE)
V0.9 Editing 16/2/2021 Lorenzo Blasi (HPE)
V1.0 Released for internal review 16/2/2021 Lorenzo Blasi (HPE)
V1.2 Unikraft subsection 22/2/2021 Felipe Huici (NEC)

V1.4 Merge of updates after internal review. Section on
VIM moved just after the introduction 25/2/2021 Lorenzo Blasi (HPE)

V1.5 Final editing 25/2/2021 Lorenzo Blasi (HPE)
V1.6 Final typesetting 28/2/2021 Patrizio Dazzi (CNR)

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 6 of 49

GLOSSARY
ACES ACCORDION Edge Storage

AI Artificial Intelligence

API Application Programming Interface

ARM Advanced RISC (Reduced Instruction Set Computing) Machine

CPU Central Processing Unit

DHT Distributed Hash Table

DNS Distributed Naming Service

DoA Description of Action

EC European Commission

EU European Union

Gb Gigabit

GB Gigabyte

GPU Graphical Processing Unit

H2020 Horizon 2020 EU Framework Programme for Research and Innovation

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

ID IDentifier

IP Internet Protocol

K8s Kubernetes

KB Kilobyte

MB Megabyte

PC Personal Computer

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RDS Resource Discovery System

REST Representational State Transfer

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 7 of 49

TCP Transmission Control Protocol

TOSCA Topology and Orchestration Specification for Cloud Applications

UDP User Datagram Protocol

VIM Virtual Infrastructure Manager

VLAN Virtual Local Area Network

VM Virtual Machine

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 8 of 49

TABLE OF CONTENTS
1	 Relevance to ACCORDION ... 13	

1.1	 Purpose of this document .. 13	

1.2	 Relevance to project objectives ... 13	

1.3	 Relation to other work packages ... 13	

1.4	 Structure of the document .. 13	

2	 VIM Component .. 15	

2.1	 Component description ... 15	

2.2	 Package information .. 15	

2.3	 Installation instructions ... 15	

2.4	 User manual ... 19	

2.4.1	 K3s Hello World tutorial ... 19	

2.4.2	 KubeVirt Hello World ... 20	

2.5	 Licensing information .. 21	

3	 Monitoring Component ... 22	

3.1	 Component description ... 22	

3.2	 Package information .. 24	

3.2.3	 Monitoring API ... 24	

3.2.4	 Characterization Agent .. 25	

3.3	 Installation instructions ... 26	

3.4	 User manual ... 29	

3.5	 Licensing information .. 34	

4	 Resource Indexing and Discovery .. 36	

4.1	 Component description ... 36	

4.2	 Package information .. 36	

4.3	 Installation instructions ... 37	

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 9 of 49

4.4	 User manual ... 38	

4.5	 Licensing information .. 39	

5	 ACCORDION Edge Storage Component (ACES) ... 40	

5.1	 Component description ... 40	

5.2	 Package information .. 40	

5.3	 Installation instructions ... 41	

5.4	 User manual ... 42	

5.5	 Licensing information .. 43	

6	 Unikraft ... 44	

6.1	 Component Description ... 44	

6.2	 Package Information .. 44	

6.3	 Installation Instructions ... 44	

6.3.5	 Building an Application .. 45	

6.4	 User Manual ... 45	

6.4.6	 Overview of commands ... 47	

6.5	 Licensing Information .. 48	

7	 Conclusions ... 49	

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 10 of 49

LIST OF FIGURES
Figure 1: First VIM master node installation ... 16	

Figure 2: Additional VIM master node installation ... 17	

Figure 3: VIM worker node installation (for both containers and VMs) ... 17	

Figure 4: Kubevirt installation ... 18	

Figure 5: Kubevirt pods status ... 18	

Figure 6: Virtctl installation ... 19	

Figure 7: Testing the K3s Hello World example .. 20	

Figure 8: Monitoring Pod Architecture ... 23	

Figure 9: Monitoring API file structure .. 24	

Figure 10: Successful Docker image .. 25	

Figure 11: Characterization Agent file structure ... 25	

Figure 12: Characterization agent ... 25	

Figure 13: monitoring-installation file structure ... 26	

Figure 14: Result of Prepare.py ... 27	

Figure 15: Configs.py ... 28	

Figure 16: Succesful Installation .. 28	

Figure 17: All Dashboards .. 32	

Figure 18: Physical Metrics Dashboard Part 1 ... 33	

Figure 19: Physical Metrics Dashboard Part 2 ... 33	

Figure 20: Virtual Metrics Dashboard Part 1 ... 34	

Figure 21: Virtual Metrics Dashboard Part 2 ... 34	

Figure 22: Resource Indexing and Discovery file structure ... 37	

Figure 23: Output of the build-run-docker.sh script ... 38	

Figure 24: Labeling process for a cluster of two workers and one master. .. 41	

Figure 25: Output from acesServerDeploy.sh: all commands were successful and the K8S items were created 42	

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 11 of 49

Figure 26: An example cluster running on two storage worker nodes (Raspberry PIs) having one service for each
worker and one for the master (access point) .. 42	

Figure 27: The MinIO web-based interface. .. 42	

Figure 28: An example connection with the command line MinIO client. .. 43	

Figure 29: An example file creation with Goofys, we create the file in the shared folder and it appears on the web
interface .. 43	

Figure 30: Kraft help menu .. 47	

Figure 31: Kraft up help menu ... 48	

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 12 of 49

LIST OF TABLES
Table 1: Relationship between Enablers, Tasks and delivered Components .. 13	

Table 2: Libraries & Licenses for Monitoring components .. 35	

Table 3: List of package files for Edge storage component ... 41	

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 13 of 49

1 Relevance to ACCORDION

1.1 Purpose of this document

The present document is the accompanying report documenting the software that is released as part of
ACCORDION Deliverable D3.2. The document describes each released software component and explains how to
install and use it.

1.2 Relevance to project objectives

The components described in this Deliverable make up a first version of what is indicated in the DoA as an “Edge
minicloud”. In the model implemented so far, each minicloud includes resources owned by a single provider and
located in a single site.

The project Objective related to the work reported in this document is Objective 1: “Maximize edge resource pool
size”. The sub Objectives (Enablers) listed in the DoA for this Objective are addressed by WP3 Tasks and their related
components as indicated in the following Table 1.

Table 1: Relationship between Enablers, Tasks and delivered Components

Enabler Sub-Objective Task Component Section
O1-E1 Resource monitoring & characterization Task 3.1 Monitoring component 3
O1-E2 Resource indexing and discovery Task 3.2 Resource indexing and discovery 4
O1-E3 Edge storage Task 3.3 Edge storage 5
O1-E4 Hybrid elasticity Task 3.4 Unikraft 6

Task 3.5 Minicloud VIM 2

1.3 Relation to other work packages

The software released as part of this Deliverable is a product of WP3, but the work done has been also guided by
WP2 (D2.1 - User requirements, D2.3 - Architecture design) and WP7 (D7.5 - Technoeconomic analysis). The Edge
minicloud, composed of results documented in this report, is expected to be used by the ACCORDION Orchestrators
developed by WP4 and once integrated, will run the Pilot use case applications proposed by WP6.

1.4 Structure of the document

The document is organized with a section for each delivered software component. Each section provides the
following subsections:

• Component description: includes a technical description of the component, specification of any reused
open-source components, and any prerequisite to be satisfied.

• Package information: describes the structure and content of the delivered package
• Installation instructions: explains how to install and start up the software

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 14 of 49

• User manual: provides details on how to use the software
• Licensing information: indicates the license applicable to the delivered component, plus version and license

of any included open source components and libraries

Section 2 is about the Edge minicloud VIM component produced by Task 3.5.

Section 3 is about the Monitoring component produced by Task 3.1.

Section 4 is about the Resource indexing and discovery component produced by Task 3.2.

Section 5 is about the Edge storage component produced by Task 3.3.

Section 6 is about the Lightweight virtualization system (Unikraft) produced by Task 3.4.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 15 of 49

2 VIM Component

2.1 Component description

This component is dedicated to the management of hardware and software infrastructure, in order to permit
execution and management of workloads of three kinds: Docker1 container, virtual machine and unikernel. Vim
offers all services needed to run workloads like network connections, persistent volumes, kernel functions etc. The
VIM choose for Accordion is named K3s2: a Kubernetes3 distribution tailored for edge computing by Rancher team
and released to the open-source community. This orchestrator customization keeps compatibility with mainstream
Kubernetes but has modifications for optimizing installation on the edge. K3s reorganize Kubernetes agent/server
processes running on hosts: there is only one process “k3s-server” on master’s node and only one process “k3s-
agent” on worker creating a Kubernetes cluster, and lots of packages are not included in the simplified installation
to keep as light as possible. More details can be found on the K3s project website2.

On top of K3s cluster will be installed KubeVirt4, a Kubernetes extension that can run a virtual machine, KubeVirt
leverage Custom Resources Definitions (CRD) to add virtual machine (VM) and virtual machine instance (VMI) to
Kubernetes objects.

2.2 Package information

The current version of the VIM installation scripts can be cloned with the following command (credentials are
needed, which could be available upon request):

$ git clone -b v1.0.0 https://gitlab.com/accordion-project/wp3/vim-installation.git .

The released package is composed of five installation Shell scripts. These scripts will download necessary packages
from the Internet network.

• install_first_node.sh
• install_secondary_master.sh
• install_worker.sh
• install_kubevirt.sh
• install_virtctl.sh

2.3 Installation instructions

VIM installation is performed via Linux CLI scripts that must be executed with sudo grant, also execution permission
could be necessary for the environment once copied the selected installation script to the host.

1 https://www.docker.com/
2 https://k3s.io/
3 https://kubernetes.io/
4 https://kubevirt.io/

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 16 of 49

To grant execute permission you can use chmod as below:

$ chmod 744 install_first_node.sh

In our VIM installation procedure, the first step is to install the K3s cluster starting from the first master node.

Execute install_first_node.sh script, the sudo password will be requested during installation, as shown in
Figure 1 below:

Figure 1: First VIM master node installation

Result of this installation is the first cluster node working, this is a K3s master with etcd cluster initialized and ready
to accept join request from other nodes. The second result is the node token, the key needed to log into the cluster.
As can be seen in the figure, the K3s token5 is placed in the file: /var/lib/rancher/k3s/server/node-token and
kept for the next installation steps.

If high availability is required, a second master and possibly a third master node must be installed. On those nodes’
shell prompt, with sudo privilege, execute the script install_secondary_master.sh, passing two mandatory
parameters: K3s token and the IP address of the first master installed, as shown in Figure 2.

5 See https://rancher.com/docs/k3s/latest/en/quick-start/

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 17 of 49

Figure 2: Additional VIM master node installation

Once all master nodes are installed, it’s time for any worker nodes to join the cluster. On each worker node, with
sudo privileges, execute the script install_worker.sh passing two mandatory parameters: K3s-token and the IP
address of the first master installed. A third parameter called skipKubeVirt, if present, will disable all KubeVirt
system checks in the installation script. These checks verify if the host OS can run KVM virtual machines. If you have
multiple worker nodes you can choose to dedicate some of them only to containers: the skipKubeVirt parameter
should be used when installing these container-only nodes.

Figure 3: VIM worker node installation (for both containers and VMs)

After the installation of all worker nodes, the K3s cluster is complete and it’s time to install KubeVirt.

From a master node console run the script install_kubevirt.sh, it will install all Kubernetes object for KuberVirt
engine and will instantiate it.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 18 of 49

Figure 4: Kubevirt installation

Depending on HW resources this process can take several minutes. Even if, as in Figure 4, a time out occurs, the
startup is going on and can be verified after the script termination. To check if startup is complete, just query the
K3s cluster for Pods status in the KubeVirt namespace as in the following Figure 5:

Figure 5: Kubevirt pods status

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 19 of 49

To manage VMs KubeVirt provides its own command-line tool: virtctl6. Installation of virtctl on the master node
can be done with the script install_virtctl.sh as shown in Figure 6 below.

Figure 6: Virtctl installation

You can check the installed tool by running:

$./virtctl version

2.4 User manual

K3s is a Kubernetes CFCN distribution, therefore user manuals can be found on the K8S official site
(https://kubernetes.io) for the majority of cases, while for details on customizations please refer to Rancher
documentation website (https://k3s.io/).

KubeVirt user manual can be found at official site: https://kubevirt.io/user-guide/docs/latest/welcome/index.html.
KubeVirt has been started and is mainly supported by RedHat, which uses it to support VMs within RedHat
OpenShift. Therefore some documentation on KubeVirt can also be found in OpenShift manuals and blog sites. For
example the list of command line parameters for virtctl can be found in an OpenShift document12.

2.4.1 K3s Hello World tutorial

In this section, there are instructions on how to run a simple “Hello World” example on a K3s cluster. This example
will deploy an NGNIX container7 with a web page that shows details on the web requests.

To start this tutorial you need a running K3s cluster with at least one master node (installation instructions can be
found in section 2.3).

First, create a basic deployment “hello-node” pointing to nginx demo container image. This image runs an NGINX
webserver with a webpage showing HTTP request details. The needed K8S objects can be created using kubectl8, a
tool installed for root user during the K3s installation process:

$ kubectl create deployment hello-node --image=nginxdemos/hello

deployment.apps/hello-node created

Check if the deployed Pod is in running state:

6 https://docs.openshift.com/container-platform/4.2/cnv/cnv_users_guide/cnv-using-the-cli-tools.html
7 https://hub.docker.com/r/nginxdemos/hello/
8 https://kubernetes.io/docs/reference/kubectl/overview/

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 20 of 49

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-node-7bc5b6d85d-qfcsj 1/1 Running 0 3s

Now expose the deployment as a service type NodePort:

$ kubectl expose deployment hello-node --type=NodePort --port=80

service/hello-node exposed

To see details about the created Service:

$ kubectl describe service
Name: hello-node
Namespace: default
Labels: app=hello-node
Annotations: <none>
Selector: app=hello-node
Type: NodePort
IP Families: <none>
IP: 10.43.86.127
IPs: 10.43.86.127
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 30592/TCP
Endpoints: 10.42.1.10:80
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

Highlighted in yellow you can find the port number to use the service: from a browser on the host network it is
possible to reach the NGINX server as http://hostipaddr:port/request

For example:

Figure 7: Testing the K3s Hello World example

2.4.2 KubeVirt Hello World

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 21 of 49

This section shows a simple example of KubeVirt flow taken from KubeVirt GitHub repository9. To execute this
example you need a running K3s cluster with KubeVirt installed on it (installation instructions can be found in
section 2.3).

Create a vm
$ kubectl apply -f https://raw.githubusercontent.com/kubevirt/demo/master/manifests/vm.yaml

Check VM description
$ kubectl describe vm testvm

The vm is not running by now, to start a vm use follow command that create a virtualm
machine instance VMI
$./virtctl start testvm

Inspect instance created
$ kubectl describe vmi testvm

Log into the vm console
$./virtctl console testvm

To shut the VM down:
$./virtctl stop testvm

To delete
$ kubectl delete vm testvm

2.5 Licensing information

Both KubeVirt and K3s are licensed under the Apache License 2.0, a permissive license whose main conditions
require preservation of copyright and license notices. Contributors provide an express grant of patent rights.
Licensed works, modifications and larger works may be distributed under different terms and without source
code.

9 https://github.com/kubevirt/demo

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 22 of 49

3 Monitoring Component

3.1 Component description

The goal of the monitoring component is to be able to monitor Cloud & Edge resources, it is needed to monitor
nodes and their Pods in a K3s cluster to be able to know the workload. Prometheus10 pulls metrics from the
exporters (Node Exporter11, Kube-state-metrics12 and Prometheus Operator13) then Grafana14 queries Prometheus
to visualize the data on graphs, and Monitoring API queries Prometheus to return JSON responses to the rest
components of ACCORDION that communicate with monitoring. Monitoring API is a component running in a Pod
that pulls hardware information from the characterization agents to store them in MongoDB and creates the
characterization description. Monitoring API also queries Prometheus to retrieve metrics that other ACCORDION
components need. All Docker images can be found on Dockerhub except from monitoring_api and char-agent
images, these images are a custom solution based on Debian (stable version) Docker image15and their code has to
be pulled from a private Gitlab repository16 that was created for ACCORION components and then you can build
the Docker images. The monitoring component can only be installed on ARM and AMD x86-64 architectures. The
monitoring component has been tested in K3s Client Version v1.20.0+k3s2 and Docker version 20.10.0 (build
7287ab3) and it has a multi Pod architecture (Figure 8):

• Node exporter for hardware and OS metrics. (Docker image: prom/node-exporter: v1.1.110)
• Kube-state-metrics expose critical metrics about the condition of a Kubernetes cluster (health of nodes, pods,

deployments, etc.), it generates them from the Kubernetes API server. (Docker image:carlosedp/kube-state-
metrics:v1.9.6 17)

• Grafana to visualize the metrics with graphs. (Docker image: grafana/grafana:7.0.318)
• Prometheus monitoring system and time series database. (Docker image: prom/prometheus:v2.19.119)
• Prometheus Operator for Kubernetes provides easy monitoring definitions for Kubernetes services and

deployment and management of Prometheus instances. (Docker image: carlosedp/prometheus-
operator:v0.40.020)

• Prometheus Adapter is an implementation of the Kubernetes resource metrics, custom metrics, and external
metrics APIs. (Docker image: directxman12/k8s-prometheus-adapter:v0.7.021)

• Alert Manager that handles alerts sent by client applications such as the Prometheus server. (Docker image:
prom/alertmanager:v0.21.022)

10 https://prometheus.io/
11 https://hub.docker.com/r/prom/node-exporter/tags?page=1&ordering=last_updated
12 https://github.com/kubernetes/kube-state-metrics
13 https://github.com/carlosedp/prometheus-operator
14 https://grafana.com/
15 https://hub.docker.com/_/debian?tab=tags&page=1&ordering=last_updated
16 https://gitlab.com/accordion-project
17 https://hub.docker.com/r/carlosedp/kube-state-metrics/tags?page=1&ordering=last_updated
18 https://hub.docker.com/r/grafana/grafana/tags?page=1&ordering=last_updated
19 https://hub.docker.com/r/prom/prometheus/tags?page=1&ordering=last_updated
20 https://hub.docker.com/r/carlosedp/prometheus-operator/tags?page=1&ordering=last_updated
21 https://hub.docker.com/r/directxman12/k8s-prometheus-adapter/tags?page=1&ordering=last_updated
22 https://hub.docker.com/r/prom/alertmanager/tags?page=1&ordering=last_updated

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 23 of 49

• Characterization-agent exposes hardware information for a device/node. (Docker image: char-agent)
• Monitoring API which queries Prometheus to retrieve information and represent it in JSON in the endpoints.

(Docker image: monitoring_api)
• MongoDB which stores the information of the characterization agents. (Docker image: mongo:4.0.2123)

Figure 8: Monitoring Pod Architecture

The monitoring Pods which have to be deployed on the K3s master node are Prometheus, Grafana, Alert Manager,
MongoDB, Kube-state-metrics, Prometheus Adapter and Monitoring API pod. Prometheus Adapter and kube-state-
metrics have to be deployed on the master to be able to communicate with the Kubernetes API server. In the
experiments of deployment that we conducted when Prometheus, Grafana and Alert manager pods were deployed
on worker nodes they failed to run. The procedure of pulling the code and building the Docker images is described
in the following Section 3.2 Package Information. Then there is Section 3.3 Installation instructions which describes
the installation procedure. Please note that before moving to Section 3.3 and perform the installation procedures

23 https://hub.docker.com/_/mongo?tab=tags&page=3&ordering=last_updated

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 24 of 49

you should disable the firewall on every machine (master and workers) of your K3s cluster, the command24 to
perform this action is:

$ sudo ufw disable

3.2 Package information

3.2.3 Monitoring API

Before installing the monitoring component, the first step would be to clone the Monitoring API project from the
repository to the master node of K3s and then create the Docker image of the Monitoring API. For this procedure
credentials are needed, which could be available upon request. The following command is the one that clones the
project to your K3s master node:

$ git clone -b v1.0.0 https://gitlab.com/accordion-project/wp3/monitoringapi.git

When cloning is done the structure of the project should look like this:

Figure 9: Monitoring API file structure

File named monitoringAPI.py is basically the API which is based on Flask 25 . For the monitoring endpoint
monitoringAPI.py calls methods from PrometheusInterface.py which have the PromQL26 queries predefined to
perform them on the Prometheus pod. For the characterization endpoint monitoringAPI.py calls methods from
Characterization.py. The file Characterization.py is the one that pulls hardware information from the
characterization agents, then MongoDB.py is being used to store this information in the MongoDB pod and creates
the data.yml file which is an extended TOSCA description that can describe the nodes of a K3s cluster. Node.py
and Disk.py are basically classes with getters and setters that are being used by Characterization.py to parse
the JSON responses of characterization agents. The procedure of building the Docker image could take a couple of
minutes. To build the Docker image the command is:

$ docker build -f Dockerfile -t monitoring_api .

24 https://help.ubuntu.com/community/UFW
25 https://flask.palletsprojects.com/en/1.1.x/
26 https://prometheus.io/docs/prometheus/latest/querying/basics/

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 25 of 49

If the procedure was successful in the result the last two lines should like this:

Figure 10: Successful Docker image

More information for the usage of the Monitoring API can be found in the Section 3.4 User manual.

3.2.4 Characterization Agent

Another project that should be cloned from a repository is the characterization agent. This time, characterization
should be cloned to every node of K3s and then the image should be built in each of them. The cloning command
is the following, as it is obvious from the previous cloned project, credentials are needed to clone the project:

$ git clone -b v1.0.0 https://gitlab.com/accordion-project/wp3/char-agent.git

The structure of the project should look like this:

Figure 11: Characterization Agent file structure

Char-agent.py file is actually an API that calls disk.py and location.py to retrieve the required information
about the hard disk and location of the node. The uuid-gen.py is also called by Char-agent.py to generate a UUID
for the device. Char-agent.py by its own retrieves CPU, RAM, OS, GPU information and if the device has a battery
or not.

Figure 12: Characterization agent

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 26 of 49

 The Docker image build command has the same syntax as the previous one. If it is successfully built, then the result
would have to show the same message as before:

$ docker build -f Dockerfile -t char-agent .

Afterwards it is required to run the following commands in the worker nodes (bare metals or VMs) of the K3s
cluster:

$ xhost local:root
$ export DISPLAY=':0.0'

Without these commands, characterization-agent containers won’t be able to find the GPU model and
characteristics of the workers. The GPU information is retrieved from the mesa-utils27 and to be more specific from
the glxinfo which also requires connection to the Internet. There was also a trick for the export command in
Raspberry Pi 4B to avoid the errors you have to configure a static screen resolution or else export will give you an
error in the next boot if the Raspberry is not connected to a monitor.

3.3 Installation instructions

After cloning and building the components, as indicated in the previous subsection, the next operation would be to
clone the installation scripts from the repository to the K3s master node to start the installation procedure:

$ git clone -b v1.0.0 https://gitlab.com/accordion-project/wp3/monitoring-installation.git

Figure 13: monitoring-installation file structure

The first step would be to install pip328. If it not already installed in your machine run the following command:

$ sudo apt-get -y install python3-pip

Then you could run the Prepare.py to prepare your machine for the installation:

$ sudo python3 Prepare.py

27 https://wiki.debian.org/Mesa
28 https://help.dreamhost.com/hc/en-us/articles/115000699011-Using-pip3-to-install-Python3-modules

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 27 of 49

By running the Prepare script, that is located in the monitoring-installation project, the appropriate folders that will
store the data of Prometheus and Grafana of the monitoring stack are created by calling prometheus-pv.sh and
grafana-pv.sh. In addition, required python libraries are going to be installed by the pip.sh script called by
Prepare.py. It also makes the GPU of the master available for the characterization-agent by executing the same
commands that were previously executed on the workers. If the operation was successful the output would be as
shown in Figure 14.

Figure 14: Result of Prepare.py

The final step would be to run the config python script to install the monitoring stack. By running the following
command in the master node the script the Monitoring component will be installed in the K3s cluster nodes:

$ python3 Configs.py

The script will find the IP of the master to configure the Ingress29 address of Alert manager, Prometheus and Grafana
pods. The first two YAML files are needed for Prometheus Operator to configure the endpoints of Prometheus.
YAMLwriter.py uses the master node IP to create:

• prometheus-kubeControllerManagerPrometheusDiscoveryEndpoints.yaml
• prometheus-kubeControllerSchedulerPrometheusDiscoveryEndpoints.yaml
• ingress-prometheus.yaml
• ingress-grafana.yaml
• ingress-alertmanager.yaml

Configs.py secures that Prometheus, Grafana, kube-state-metrics, Monitoring API and Prometheus Operator Pods
are going to be deployed on the master node, a label is applied to the master node and in the associated files, in
the nodeSelector30 segment, the label is also added. Then a password is randomly generated to be used in the
Prometheus Ingress to add basic-auth to it and is stored with htpasswd31 then from this file a Kubernetes secret is

29 https://kubernetes.io/docs/concepts/services-networking/ingress/
30 https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
31 https://httpd.apache.org/docs/2.4/programs/htpasswd.html

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 28 of 49

created that is known to the Monitoring API. The password and the key are stored in encrypted YAML files at the
home path of the local machine, the encryption algorithm is Fernet symmetric. Configs.py calls
KubernetesInfo.py to parse the result of kubectl get nodes -o wide finds the rest nodes of the cluster, this is
done to store the IPs of the nodes to the MongoDB pod with the help of MongoDB.py for characterization purposes,
when Monitoring API is deployed adds the rest of information to the MongoDB. The manifests folder which contains
several K3s configuration files is based on the Github project Cluster Monitoring stack for ARM / X86-64,32 these
files are applied along with those that are outside the folder to K3s with the kubectl.sh script that is being called by
Configs.py.

Figure 15: Configs.py

The Configs.py script should take a few seconds to deploy the pods, its response of messages is too long but you
can check if the installation was successful (Figure 16) by running the following command which retrieves all the
pods of the monitoring and their current state:

$ kubectl get -n monitoring pods -o wide

Figure 16: Succesful Installation

32 https://github.com/carlosedp/cluster-monitoring

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 29 of 49

3.4 User manual

After the successful installation of the monitoring stack, the user should be able to access the Monitoring API and
the graphical user interface of Grafana. The Monitoring API is configured with the IP of the host, which is the IP of
the K3s master node. The monitoring endpoint of the Monitoring API is using two HTTP parameters: metric and
namespace. The metric parameter indicates which queries will run on the Prometheus to return the appropriate
results, for the queries that are related to Pods, namespace parameter has also to be defined to return pods of the
same namespace. The characterization endpoint of the Monitoring API has only one HTTP parameter which is the
format of the response, there are two options

a. JSON which will return a response in JSON
b. TOSCA which will download an extended TOSCA YAML file.

In the following examples for the case of the monitoring endpoint you will see a namespace named application,
this was an experiment to monitor WordPress (Docker image 4.8-apache33) and MySQL (Docker image 5.634) Pods
under this namespace. If you do not have another namespace except monitoring namespace in your K3s cluster
please replace application namespace with monitoring namespace. Here are some examples:

1. http://0.0.0.0:3000/monitoring?metric=pod_info&namespace=application

An endpoint that provides information about Pods of the same namespace (pod-name, namespace, pod-IP,
pod-name, k3s kind, replica node-name, node-IP). As the second parameter is the namespace of the application
it will be easier that each K3s namespace of the use case will have the name of its owner or the name of the
application.

{"timestamp": 1613918373.292831, "Pod Info Results": [{"pod": "wordpress-
86885f548-44m8z", "pod_ip": null, "namespace": "application", "created_by_kind":
"ReplicaSet", "replica": "1", "node": "giannis", "node_ip": "192.168.1.2"},
{"pod": "mysql-bfc5c9f44-477rv", "pod_ip": "192.168.1.2", "namespace":
"application", "created_by_kind": "ReplicaSet", "replica": "1", "node": "giannis",
"node_ip": "192.168.1.2"}]}

2. http://0.0.0.0:3000/monitoring?metric=virtual_metrics&namespace=application

An endpoint that provides metrics (CPU usage, RAM usage) of Pods that belong on the same namespace, this
is done to monitor pods of a specific application. As the second parameter is the namespace of the application
it will be easier that each K3s namespace of the use case will have the name of its owner or the name of the
application.

{"Results": [{"timestamp": 1613918536.169836, "Pod Info Results": [{"pod": "mysql-
bfc5c9f44-477rv", "pod_ip": "192.168.1.2", "namespace": "application",

33 https://hub.docker.com/_/wordpress?tab=tags&page=1&ordering=last_updated
34 https://hub.docker.com/_/mysql?tab=tags&page=1&ordering=last_updated

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 30 of 49

"created_by_kind": "ReplicaSet", "replica": "1", "node": "giannis", "node_ip":
"192.168.1.2"}, {"pod": "wordpress-86885f548-44m8z", "pod_ip": "10.42.0.46",
"namespace": "application", "created_by_kind": "ReplicaSet", "replica": "1",
"node": "giannis", "node_ip": "192.168.1.2"}]}, {"timestamp": 1613918536.238763,
"Kube Pod Status Phase Results": [{"kube_pod_status_phase": "Running", "pod":
"mysql-bfc5c9f44-477rv", "instance": "10.42.0.42:8443", "namespace":
"application"}, {"kube_pod_status_phase": "Running", "pod": "wordpress-86885f548-
44m8z", "instance": "10.42.0.42:8443", "namespace": "application"}]},
{"timestamp": 1613918536.300128, "Pod CPU Usage Results": [{"node": "giannis",
"pod": "mysql-bfc5c9f44-477rv", "pod_cpu_usage(seconds)": "0.018315272811091667"},
{"node": "giannis", "pod": "wordpress-86885f548-44m8z", "pod_cpu_usage(seconds)":
"0.004569118139741808"}]}, {"timestamp": 1613918536.368414, "Pod Memory Usage
Results": [{"node": "giannis", "pod": "mysql-bfc5c9f44-477rv",
"pod_memory_usage(bytes)": "20627632.01304764"}, {"node": "giannis", "pod":
"wordpress-86885f548-44m8z", "pod_memory_usage(bytes)": "2882807.349989445"}]}]}

3. http://0.0.0.0:3000/monitoring?metric=physical_metrics

An endpoint that provides the monitoring metrics for bare metal and VMs of the cluster (CPU usage, RAM
usage, disk write and read latencies, filesystem usage, disk size, disk free space disk IO).

{"Results": [{"timestamp": 1613918256.884719, "Cpu Usage Results": [{"node":
"giannis", "cpu_usage(percentage)": " 11.39"}, {"node": "raspberrypi",
"cpu_usage(percentage)": " 6.08"}, {"node": "raspberrypi1", "cpu_usage(percentage)": "
6.80"}]}, {"timestamp": 1613918256.948491, "Memory Usage Results": [{"node":
"giannis", "mem_usage(percentage)": " 43.58"}, {"node": "raspberrypi",
"mem_usage(percentage)": " 87.23"}, {"node": "raspberrypi1", "mem_usage(percentage)":
" 75.87"}]}, {"timestamp": 1613918257.013779, "Disk Write Latency Results": [{"node":
"giannis", "device": "sdc", "disk_write_latency(percentage)": " 0.80"}, {"node":
"giannis", "device": "sdd", "disk_write_latency(percentage)": " 1.22"}, {"node":
"raspberrypi", "device": "mmcblk0", "disk_write_latency(percentage)": " 1.20"},
{"node": "raspberrypi", "device": "mmcblk0p2", "disk_write_latency(percentage)": "
1.20"}, {"node": "raspberrypi1", "device": "mmcblk0",
"disk_write_latency(percentage)": " 18.77"}, {"node": "raspberrypi1", "device":
"mmcblk0p2", "disk_write_latency(percentage)": " 18.77"}]}, {"timestamp":
1613918257.075608, "Disk Read Latency Results": [{"node": "giannis", "device": "sdc",
"disk_read_latency(percentage)": " 0.02"}]}, {"timestamp": 1613918257.137085,
"Filesystem Usage Results": [{"node": "giannis", "mountpoint": null, "fstype": null,
"filesystem_usage(percentage)": " 19.49"}, {"node": "raspberrypi", "mountpoint": null,
"fstype": null, "filesystem_usage(percentage)": " 74.97"}, {"node": "raspberrypi1",
"mountpoint": null, "fstype": null, "filesystem_usage(percentage)": " 74.55"}]},
{"timestamp": 1613918257.198618, "Disk Size Results": [{"node": "giannis",
"disk_total_size(bytes)": "2204823101440"}, {"node": "raspberrypi",
"disk_total_size(bytes)": "17658145792"}, {"node": "raspberrypi1",
"disk_total_size(bytes)": "17658145792"}]}, {"timestamp": 1613918257.258936, "Disk
Free Space Results": [{"node": "giannis", "disk_free_space(bytes)": "2170876522496"},
{"node": "raspberrypi", "disk_free_space(bytes)": "6878654464"}, {"node":
"raspberrypi1", "disk_free_space(bytes)": "6956704256"}]}, {"timestamp":
1613918257.318943, "Disk IO Usage Results": [{"node": "giannis",
"disk_io_time_spent(seconds)": "0.007369490285714287"}, {"node": "raspberrypi",
"disk_io_time_spent(seconds)": "0.00036869494949545245"}, {"node": "raspberrypi1",
"disk_io_time_spent(seconds)": "0.08465387434343274"}]}]}

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 31 of 49

4. http://0.0.0.0:3000/characterization?format=json/tosca

This endpoint provides characterization information of every node (bare metal or VM) of the cluster. There are
two parameters, the first one is JSON which returns the results in json format and the second one which
provides a TOSCA YAML file with the same description.

[{"device": {"_id": {"$oid": "60326f8f528bf960d6b36ce3"}, "device_name":
"raspberrypi", "ip": "192.168.1.205", "UUID": "e7cd9caa-7451-11eb-85aa-dca632298c4f",
"RAM(bytes)": 4095737856, "Battery": "None", "CPU": {"Arch": "armv7l", "bits": "32",
"cores": 4}, "GPU": {"GPU_name": "llvmpipe (LLVM 7.0, 128 bits) (0xffffffff)",
"GPU_type": "Intergated graphics processing", "GPU_video_memory(bytes)": 4095737856,
"unified_memory": "no"}, "OS": {"OS_name": "Linux", "OS_version": "4.19.118-v7l+"},
"DISK": [{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-
log"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"}, {"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/etc/hosts"}], "K3s": {"node_role": ""},
"Region": {"continent": "Europe", "country": "Greece", "city": "Athens"}}}, {"device":
{"_id": {"$oid": "60326fa4528bf960d6b36ce4"}, "device_name": "raspberrypi1", "ip":
"192.168.1.203", "UUID": "e7344550-7451-11eb-9473-dca632299078", "RAM(bytes)":
4095737856, "Battery": "None", "CPU": {"Arch": "armv7l", "bits": "32", "cores": 4},
"GPU": {"GPU_name": "llvmpipe (LLVM 7.0, 128 bits) (0xffffffff)", "GPU_type":
"Intergated graphics processing", "GPU_video_memory(bytes)": 4095737856,
"unified_memory": "no"}, "OS": {"OS_name": "Linux", "OS_version": "4.19.118-v7l+"},
"DISK": [{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-
log"}, {"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"},
{"device": "/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"}, {"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/etc/hosts"}, {"device": "/dev/root",
"fstype": "ext4", "mountpoint": "/dev/termination-log"}, {"device": "/dev/root",
"fstype": "ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/root", "fstype": "ext4",
"mountpoint": "/etc/hosts"}], "K3s": {"node_role": ""}, "Region": {"continent":
"Europe", "country": "Greece", "city": "Athens"}}}, {"device": {"_id": {"$oid":
"60326fa4528bf960d6b36ce5"}, "device_name": "giannis", "ip": "192.168.1.2", "UUID":
"ea831f38-7451-11eb-8bc7-fcaa149d94de", "RAM(bytes)": 8396820480, "Battery": "None",
"CPU": {"Arch": "x86_64", "bits": "64", "cores": 6}, "GPU": {"GPU_name": "AMD BONAIRE
(DRM 2.50.0, 4.15.0-135-generic, LLVM 7.0.1) (0x665f)", "GPU_type": "Dedicated
graphics processing", "GPU_video_memory(bytes)": 2147483648,
"GPU_total_available_memory(bytes)": 4289724416, "unified_memory": "no"}, "OS":
{"OS_name": "Linux", "OS_version": "4.15.0-135-generic"}, "DISK": [{"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/dev/termination-log"}, {"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/etc/resolv.conf"}, {"device":
"/dev/root", "fstype": "ext4", "mountpoint": "/etc/hostname"}, {"device": "/dev/root",
"fstype": "ext4", "mountpoint": "/etc/hosts"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/dev/termination-log"}, {"device": "/dev/root", "fstype":
"ext4", "mountpoint": "/etc/resolv.conf"}, {"device": "/dev/root", "fstype": "ext4",
"mountpoint": "/etc/hostname"}, {"device": "/dev/root", "fstype": "ext4",
"mountpoint": "/etc/hosts"}, {"device": "/dev/sdc1", "fstype": "ext4", "mountpoint":
"/dev/termination-log"}, {"device": "/dev/sdc1", "fstype": "ext4", "mountpoint":
"/etc/resolv.conf"}, {"device": "/dev/sdc1", "fstype": "ext4", "mountpoint":
"/etc/hostname"}, {"device": "/dev/sdc1", "fstype": "ext4", "mountpoint":
"/etc/hosts"}], "K3s": {"node_role": "control-plane,master"}, "Region": {"continent":
"Europe", "country": "Greece", "city": "Athens"}}}]

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 32 of 49

5. http://0.0.0.0:3000/monitoring?namespace=all

This endpoint provides all the namespace of the clusters along with their CPU and memory usage. Each
endpoint could be an application, so this is a way to monitor an application as a whole.

{"Results": [{"timestamp": 1613918683.353328, "Namespace CPU Results":
[{"namespace": "monitoring", "cpu_usage(seconds)": "0.1492824091256434"},
{"namespace": "kube-system", "cpu_usage(seconds)": "0.01201474498433889"},
{"namespace": "application", "cpu_usage(seconds)": "0.0007409287284330483"}]},
{"timestamp": 1613918683.416821, "Namespace Memory Results": [{"namespace": "kube-
system", "memory_usage(bytes)": "232685568"}, {"namespace": "monitoring",
"memory_usage(bytes)": "1953517568"}, {"namespace": "application",
"memory_usage(bytes)": "1104633856"}]}]}

For the case of Grafana endpoints the IP configured and once more is the IP of the K3s master node. If the master
node of your K3s cluster has 192.168.1.2 as an IP, Ingress of Grafana configures a prefix and a suffix so the whole
address would be https://grafana.192.168.1.2.nip.io. By accessing this address, you will be redirected to a login
page which will ask for the credentials. Right now only the admin credentials are available which are username
admin and password admin. In the next steps we definitely have to create a stronger password for the administrator
account, but also we have to create a group of users with different permissions on Grafana dashboards.

All the dashboards are in the https://grafana.192.168.1.2.nip.io/dashboards inside the default folder (Figure 17).

Figure 17: All Dashboards

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 33 of 49

Figure 18: Physical Metrics Dashboard Part 1

Figure 19: Physical Metrics Dashboard Part 2

The Physical Metrics dashboard represent the same values that we can find in the respective endpoint of the
Monitoring API (Figure 18, Figure 19).

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 34 of 49

Figure 20: Virtual Metrics Dashboard Part 1

Figure 21: Virtual Metrics Dashboard Part 2

The Virtual metrics dashboard (Figure 20, Figure 21) presents the same values of the virtual metrics in the
Monitoring API. There is a parameter on the dashboard named namespace, which basically gives you all the
namespaces of the cluster, by selecting one of the namespaces all the graphs and tables will return information
about pods that belong to the same namespace. If there is no additional namespace in your K3s cluster, please
select monitoring.

3.5 Licensing information

Most of the YAML configuration files for the monitoring component were produced from Cluster Monitoring stack
for ARM / X86-64 open-source component which is under MIT license. This license permits commercial use,
modification, distribution and private use. Then these files were modified to add some more configurations to
them.

The rest of the open-source components that are used as Pods (PrometheusARM, Node exporter, Alert Manager,
Prometheus Operator, Prometheus Adapter, kube-state-metrics, Grafana) are under Apache 2.0 license. In
addition, the open-source components that are used to configure the monitoring component (configmap-reload
and kube-rbac-proxy). This license permits commercial use, modification, distribution, patent use and private use.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 35 of 49

As characterization agent and Monitoring API are custom solutions that were created for ACCORDION purposes we
think that they will use Apache 2.0 license. The libraries that have been used for developing characterization agent
and Monitoring API are shown in the following table along with their licenses.

Table 2: Libraries & Licenses for Monitoring components

License Library

MIT35 oyaml36, py-cpuinfo37, mesa-utils38

BSD 2-Clause License39 cryptoyaml340

Apache 2.041 pymongo42

BSD License (BSD-3-Clause)43 flask44, flask_restful45, psutil46

Public Domain (UNLICENSE)47 ipify48

35 https://opensource.org/licenses/MIT
36 https://pypi.org/project/oyaml/
37 https://pypi.org/project/py-cpuinfo/
38 https://wiki.debian.org/Mesa
39 https://opensource.org/licenses/BSD-2-Clause
40 https://pypi.org/project/cryptoyaml3/
41 https://www.apache.org/licenses/LICENSE-2.0
42 https://pypi.org/project/pymongo/
43 https://opensource.org/licenses/BSD-3-Clause
44 https://pypi.org/project/Flask/
45 https://pypi.org/project/Flask-RESTful/
46 https://pypi.org/project/psutil/
47 https://unlicense.org/
48 https://pypi.org/project/ipify/

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 36 of 49

4 Resource Indexing and Discovery

4.1 Component description

Computational resources in ACCORDION are defined by their static and dynamic characteristics. The dynamic
characteristics depend on the workload imposed on the ACCORDION nodes by the applications and are subject to
continuous changing. In order to provide an effective resource orchestration and allocation, the ACCORDION
system has to rely on the up-to-date state of the characteristics of resources. The role of the Resource Indexing &
Discovery (RID) component is then twofold. First, the RID component has to keep updated on the state of the
available computational resources distributed among the nodes in the system. Second, the RID component provides
the functionality for effective information retrieval based on the predefined characteristics. These characteristics
can be static (amount of CPU/RAM/DISK available) or dynamic (current load of the resource). The main source of
information about the state of the nodes load is the Resource monitoring & characterization component. The RID
component periodically pulls updates on resource characteristics from the monitoring component. For now, the
main component that is aimed to use RID is intelligent Orchestrator. Nevertheless, any component in the system
can query the required resources via RID component. A more detailed view of the RID components was presented
in Deliverable 3.1.

The current implementation of the RID component consists of a Python application, with an instance of the RID
running in each minicloud. The RID component contains a client that periodically pulls the data from the monitoring
component of the same minicloud, and (in the current implementation) stores this data in its local storage. The
long-term plan is that the local storage does not necessarily keep only local data, or that a minicloud information is
not necessarily stored in the local storage. In fact, advanced distributed indexing techniques are one of the ultimate
objectives of the RID, such as to distribute data among all their instances, in order to scale retrieval of resource
information. The RID accepts queries from other ACCORDION components by exposing a REST server. Currently,
multi-attribute range queries are supported. The RID is containerized into a Docker image, which has to be deployed
inside each of the ACCORDION miniclouds. For testing purposes, the RID exposes also a custom web interface,
which makes it possible to submit queries and observe the results.

4.2 Package information

The current version of the RID can be download as a GIT project with the following command:

$ git clone -b v1.0.0 https://gitlab.com/accordion-project/wp3/resource-indexing-discovery.git

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 37 of 49

Figure 22: Resource Indexing and Discovery file structure

The project contains four folders, as indicated in Figure 22:

- docker - This folder contains the Dockerfile to build the docker image. The docker file copies all necessary
code from the src folder to the Docker image.

- Installation - This folder contains shell scripts to install the component. There are two installation scripts,
one that builds a docker image using a Dockerfile and runs it by using docker (build-run-docker.sh), and
another one that builds the same docker image and runs it on K3s (build-docker-run-k3s.sh).

- k3s - This folder contains the YAML file (rid-deployment.yaml) that describes the K3s deployment, starting
from the built docker image.

- component - This folder has two subfolders.
- The src subfolder contains the source code of the component, which is two Python files. The file

rid_server.py contains the implementation of the REST and web servers. The file rid_data.py
contains the implementation of local storage and query management. The src subfolder also has
several data files that serve to populate the local storage in case the monitoring service is down or
not reachable. These files are meant to be used only in the test phase. In the following versions of
the components, the data will be retrieved automatically from the monitoring component.

- The web subfolder contains an HTML file (index.html) that is the implementation of a simple
testing web interface.

Finally, the file readme.txt describes the purpose and the installation procedure of the component.

4.3 Installation instructions

The installation procedure assumes that the content of the git project (see above) is currently available on the
target machine. The installation folder (as described above) contains two shell scripts that build and run a docker
image in the target machine. The scripts assume a UNIX system to be running. Currently, it has been tested on a
Ubuntu 18.04 Linux distribution and a macOS High Sierra 10.13.6 (only the Docker installation).

To install and run the RID using only Docker, it is necessary only to execute:

$./installation/build-run-docker.sh

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 38 of 49

Once finished the REST server is up and running, as shown in Figure 23.

Figure 23: Output of the build-run-docker.sh script

To install and deploy using K3s, it is necessary to execute:

$./installation/build-docker-run-k3s.sh

4.4 User manual

The RID exposes a REST interface on port 5000 that accepts a single multi-attribute range query.

POST http://0.0.0.0:5000/query

The query must be in the JSON format with the given schema:

{
 "type": array,
 "items": -{
 "type": object,
 "required": -[],
 "properties": -{
 "name": -{
 "required": true,
 "type": string
 },
 "value_min": -{
 "required": true,
 "type": number
 },
 "value_max": -{
 "required": true,
 "type": number
 }
 }
 }
}

Essentially, the query is an array of objects. Each object has a name and a minimum and maximum numerical value.
For example, a correct query would be:

[{"name":"device.RAM(bytes)", "value_min":8396832768, "value_max":8396832768}]

The response will provide information on the resources that satisfy the criteria expressed in the query. The JSON
schema of the answer looks like the following:

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 39 of 49

{
 "type": "object",
 "required": [],
 "properties": {
 "device._id.$oid": {
 "type": "string"
 },
 "device.device_name": {
 "type": "string"
 },
 "device.ip": {
 "type": "string"
 },
……………...
 "device.Region.country": {
 "type": "string"
 },
 "device.Region.city": {
 "type": "string"
 }
 }
}

For example, here is shown the result of the example query (visualized with the custom web interface of the RID).

4.5 Licensing information

Currently, the RID component does not use any third-party software. Therefore, licensing is the one adopted by the
ACCORDION project.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 40 of 49

5 ACCORDION Edge Storage Component (ACES)

5.1 Component description

The ACCORDION Edge Storage Component (ACES for short) is responsible for providing optimized edge storage
services to the ACCORDION framework and its hosted applications. These services include data storage, retrieval
and migration tasks, security and privacy protection capabilities, QoS and QoE violation prevention and mitigation
as well as other data-related services that serve the runtime requirements of ACCORDION and the hosted
applications.

The component is based on the MinIO49 , Prometheus50 and Kubernetes (K3s51) technologies, combining and
optimizing them in order to better serve the needs of ACCORDION. The first version of the component is designed
to run on nodes with public IPs, allowing the direct communication of nodes with each other, using the K3s
framework as an orchestrator, allowing us to easily deploy and configure the edge storage services.

Prometheus is used to gather monitoring data about the real-time performance of the nodes and the component
as a whole in order for us to be able to analyze the behaviour of different applications and optimize the cluster
architecture, the options and the data distribution. Finally, MinIO is a highly scalable and decentralized platform,
allowing us to deploy it freely on usable nodes, which we have labelled as storage workers. Adding Goofys52 on top
of MinIO we have the capability of using the edge storage component as a file system folder which is useful for
applications that we cannot or do not want to integrate with the Restful API of MinIO. A figure depicting the full
architecture and the interactions between the sub-components can be found in deliverable D3.1.

5.2 Package information

ACES is a package including Kubernetes deployment files in YAML format, installation scripts in bash script format
and a configuration file in JSON format that contains all options needed to configure the component.

All files of the package will be available on the official ACCORDION Gitlab page53 and can be obtained with the
following command:

$ git clone -b v1.0.0 https://gitlab.com/accordion-project/wp3/edge-storage-component.git

In detail, we have one YAML file called acesServerDeployment.yaml which is the Kubernetes deployment file for
the storage server. This file will install all necessary services, authentication keys, roles and images on the
Kubernetes cluster, reading information from the configuration file. It will use the Kubernetes architecture,
deploying most services on the Kubernetes master. Of course, the actual MinIO instances that store the data will
be deployed on the nodes labelled as “storage-worker”. The second yaml file is called acesClientDeployment.yaml

49 https://min.io/
50 https://prometheus.io/
51 https://k3s.io/
52 https://github.com/kahing/goofys
53 https://gitlab.com/accordion-project/wp3/edge-storage-component

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 41 of 49

and it will allow nodes labelled as “storage-client” to use ACES as a file system folder by deploying the Goofys
framework on them and mounting the MinIO storage server.

The bash scripts are again two, acesServerDeploy.sh that configures and deploys the acesServerDeployment.yaml
on the Kubernetes master and acesClientDeploy.sh that configures and deploys the acesClientDeployment.yaml
on the client nodes. These scripts are just applying the options selected in the configuration file to the YAML files
and then run the necessary commands to deploy the YAML files on the Kubernetes cluster.

Table 3: List of package files for Edge storage component

Filename Description
acesServerDeployment.yaml Kubernetes deployment file for ACES master
acesClientDeployment.yaml Kubernetes deployment file for ACES clients
acesServerDeploy.sh Bash script for deploying the ACES servers
acesClientDeploy.sh Bash script for deploying the ACES clients
acesConfig.conf JSON file containing the configuration options for ACES

5.3 Installation instructions

The installation of the component is separated into three steps, the Kubernetes configuration, the ACES
configuration and the ACES installation.

Kubernetes configuration contains all the required steps that need to be taken on the Kubernetes platform as a
preparation for the installation of ACES. For the first version of ACES this step contains two actions:

• Label at least one node as “storage-worker” and one as “storage-master”.
• Create a folder on the storage-worker nodes and make sure that the Kubernetes user has full permissions

on it and that it has enough free space to act as a data storage device.
• If we plan to deploy the acesClientDeployment.yaml file, we also need to create a folder with the

necessary permissions on the client node and label the node as “storage-client”.

Figure 24: Labeling process for a cluster of two workers and one master.

ACES configuration is the process of setting the required and optional settings present in the configuration file
(acesConfig.conf) in JSON format. The options are listed in the file for reference while comments are available to
clearly define what each option does and how it should be filled. The administrator of the edge storage platform
needs to fill them in order for the system to be installed in an optimized fashion on the cluster.

ACES installation is just running the bash scripts with elevated privileges in order to apply the configurations to the
YAML files and then deploy them on the local Kubernetes cluster. It is important to remember that the scripts need
to be executed on the Kubernetes master with the YAML and configuration files in the same folder.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 42 of 49

Figure 25: Output from acesServerDeploy.sh: all commands were successful and the K8S items were created

Figure 26: An example cluster running on two storage worker nodes (Raspberry PIs)
having one service for each worker and one for the master (access point)

5.4 User manual

We have three ways to use ACES, the first way is through the MinIO Web GUI which is clearly described in detail on
the official MinIO documentation54. A sample MinIO storage deployment can be seen in Figure 27.

Figure 27: The MinIO web-based interface.

The second way is through the MinIO client which is a command line tool that is also documented in detail on the
official MinIO website55. A connection to a remote host can be seen as an example in Figure 28.

54 https://docs.min.io/docs/minio-quickstart-guide.html
55 https://docs.min.io/docs/minio-client-complete-guide.html

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 43 of 49

Figure 28: An example connection with the command line MinIO client.

The third way is through the Goofys framework which mounts the remote storage bucket as a local file system
folder, creating a direct connection. This way enables users to perform standard file operations like create, move,
delete, rename and update on their local filesystem while Goofys performs the related operations to the remote
storage in the background. An example file creation can be seen in Figure 29.

Figure 29: An example file creation with Goofys, we create the file in the shared folder and it appears on the web interface

5.5 Licensing information

This component, including all originally created source files, scripts and other resources will be published as free
software under the terms of the GNU General Public License version 3 or later, as published by the Free Software
Foundation.

MinIO is provided under GNU Affero General Public License version 3 licensing which enables us to use it as an
open-source component providing that we also use a GNU public License.

Prometheus and K3s are protected under Apache License which gives us full usability of their open-source
components.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 44 of 49

6 Unikraft

6.1 Component Description

Unikraft56 is a comprehensive toolchain and library operating system which builds highly specialized unikernels,
software bundles that consist of a target application along with just the operating system primitives and libraries
features it needs to run. Unikraft breaks the status quo of building unikernels manually, providing an automated
toolchain that builds tailored unikernels that meet your (and your application's) needs. As such, it fits perfectly well,
and plays a key role, in ACCORDION’s lightweight virtualization target, where we’re targeting and investigating how
to enhance the project’s use cases and application with light-weight, Unikraft-built unikernel images.

To make it much more user-friendly, Unikraft comes with a companion command-line tool called kraft which makes
it easier to build and run Unikraft images. As future work, we are working towards Kubernetes integration, such
that users of the popular framework can use much more efficient (Unikraft-built) images transparently, without
having to change any Kubernetes configuration settings. We will report on the progress of this activity in future
deliverables and will concentrate on kraft in the rest of this section of this deliverable.

6.2 Package Information

The kraft application is distributed as a public, open-source repo at https://github.com/unikraft/kraft. We are also
in the process of providing Debian packages and Docker images with kraft already in them; we are also integrating
this with Unikraft’s CI/CD system (based on Concourse) so that it will regularly, and automatically, publish new
versions of the Debian and Docker distribution mechanisms.

6.3 Installation Instructions

The present instructions are adapted from https://github.com/unikraft/kraft.

The kraft tool and Unikraft build system have a number of package requirements; please run the following
command (on apt-get-based systems) to install the requirements:

$ apt-get install -y --no-install-recommends build-essential libncurses-dev libyaml-dev flex \
 git wget socat bison unzip uuid-runtime;

To install kraft simply run:

$ pip3 install git+https://github.com/unikraft/kraft.git

You can then type kraft to see its help menu (see Figure 30).

56 http://www.unikraft.org/

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 45 of 49

6.3.5 Building an Application

The simplest way to get the sources for, build and run an application is by running the following commands:

$ kraft list
$ kraft up –p PLATFORM –m ARCHITECTURE APP

At present, Unikraft and kraft support the following applications:

• C "hello world" (helloworld57);
• C "http reply" (httpreply58);
• C++ "hello world" (helloworld-cpp59);
• Golang (helloworld-go60);
• Python 3 (python361);
• Micropython (micropython62);
• Ruby (ruby63);
• Lua (lua64);
• Click Modular Router (click65);
• JavaScript (Duktape) (duktape66);
• Web Assembly Micro Runtime (WAMR) (wamr67);
• Redis (redis68);
• Nginx (nginx69);
• SQLite (sqlite70);

6.4 User Manual

The present user manual is adapted from http://unikraft.neclab.eu/kraft.html.

Once kraft it installed you can begin by initializing a new unikernel repository using the command

57 https://github.com/unikraft/app-helloworld
58 https://github.com/unikraft/app-httpreply
59 https://github.com/unikraft/app-helloworld-cpp
60 https://github.com/unikraft/app-helloworld-go
61 https://github.com/unikraft/app-python3
62 https://github.com/unikraft/app-micropython
63 https://github.com/unikraft/app-ruby
64 https://github.com/unikraft/app-lua
65 https://github.com/unikraft/app-click
66 https://github.com/unikraft/app-duktape
67 https://github.com/unikraft/app-wamr
68 https://github.com/unikraft/app-redis
69 https://github.com/unikraft/app-nginx
70 https://github.com/unikraft/app-sqlite

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 46 of 49

$ kraft init

Then, as an example, you can build a Python 3 unikernel application by running the following:

$ kraft list
$ mkdir ~/my-first-unikernel && cd ~/my-first-unikernel
$ kraft up -a helloworld -m x86_64 -p kvm

Note that, if this is the first time you are running kraft, you will be prompted to run an update that will download
Unikraft core and additional library pool sources. These sources are saved to the directory indicated by the
environment variable UK_WORKDIR, which defaults to ~/.unikraft.

With a newly initialized unikernel application, the ./my-first-unikernel directory will be populated with
a deps.json file that contains references to the relevant library dependencies which are required to build a
unikernel with support for Python 3. This file is used by kraft to configure and build against certain Unikraft library
versions. In addition to this file, a new .config file will also be placed into the directory. This file is used by
Unikraft’s build system to switch on or off features depending on your application’s use case.

The unikernel application must now be configured against the Unikraft build system so that it can resolve any
additional requirements:

$ kraft configure ./my-first-unikernel

Note that this step can be made more interactive by launching into Unikraft’s Kconfig configuration system. Launch
an ncurses71 window in your terminal with the command

$ kraft configure --menuconfig

The configuration step used in kraft will perform the necessary checks pertaining to compatibility and availability
of source code and will populate your application directory with new files and folders, including:

• kraft.yaml – This file holds information about which version of the Unikraft core and additional libraries to
use, which architectures and platforms to target and which network bridges and volumes to mount during
runtime,

• Makefile.uk – A Kconfig target file you can use to create compile-time toggles for your application,
• build/ – All build artefacts are placed in this directory including intermediate object files and unikernel images,
• .config – The selection of options for architecture, platform, libraries and your application (specified

in Makefile.uk) to use with Unikraft.

When your unikernel has been configured to your needs, you can build the unikernel to all relevant architectures
and platforms using:

$ kraft build ./my-first-unikernel

This step will begin the build process. All artefacts created during this step will be located under ./my-first-
unikernel/build.

71 https://en.wikipedia.org/wiki/Ncurses

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 47 of 49

6.4.6 Overview of commands

The overview of the commands can be simply obtained by the tool’s help menu:

Figure 30: Kraft help menu

The easiest way to configure, build and run a Unikraft image is via the kraft up command. The syntax of this
command is shown in the following Figure 31.

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 48 of 49

Figure 31: Kraft up help menu

For more advanced command and additional information please refer to the kraft user manual at
http://docs.unikraft.org/kraft.html.

6.5 Licensing Information

The kraft and Unikraft software systems are released under a commercially-friendly BSD license. The full license
can be accessed online, for both kraft72 and Unikraft73.

72 https://github.com/unikraft/kraft/blob/staging/COPYING.md
73 https://github.com/unikraft/unikraft/blob/staging/COPYING.md

ACCORDION – G.A. 871793

D3.2 Edge infrastructure pool framework implementation (I) Page 49 of 49

7 Conclusions

This document is the accompanying report documenting the software that is released as part of ACCORDION
Deliverable D3.2 and explains how to install and use it. The document provides a technical description and licensing
information for each delivered software component, along with installation and user guides. Most sections include
screenshots showing how the related component appears during its installation and use.

The software components described make up the first version of an “Edge minicloud”. The implemented minicloud
model can include only resources located in a single site and typically owned by a single provider. There should not
be any firewall among the minicloud resources, even if the main firewall is expected to exist, shielding the provider’s
network from the internet. The upcoming integration phase will analyze the traffic that will be expected to cross
the provider’s firewall and will define which ports should be left open in its configuration. Research in the next year
will be done to explore the possibility of implementing a minicloud across multiple sites.

After the integration phase, the ACCORDION minicloud will be tested by running real applications on it, typically
those from the WP6 use cases. This validation phase will evaluate if the provided functionalities and performance
are suitable to satisfy the requirements and will indicate which improvements are needed. Based on the feedbacks,
the needed improvements will be done to the next minicloud version and more minicloud components may be
added to more completely match the intended architecture and satisfy the users’ expectations.

