
1

Locality Filtering
for Efficient Ride Sharing Platforms

Francesco Tosoni, Paolo Ferragina, Andrea Marino, Giovanni Resta, Paolo Santi

Abstract—Ride sharing has a tremendous potential to reduce
the number of vehicles needed to serve a certain mobility demand.
However, although ride sourcing services have flourished in recent
years and are widely available worldwide (e.g. Uber, Didi, Lyft,
Via), known ride sharing techniques still suffer severe scalability
limitations, especially if the goal is combining multiple on-
demand ride requests into a single trip within a large urban
area. In the context of on-demand mobility systems, a complete
enumeration of all candidate trip requests is unfortunately not a
practical approach to find the optimal ride sharing solution. An
efficient filtering approach is therefore needed in order to avoid
both the storage of quadratic shortest-path lookup tables, as well
as the exhaustive pairwise comparison of all mobility requests,
with their GPS coordinates and time constraints.

In this paper we present a ride sharing algorithm, which
combined with the shareability networks method, is able to
substantially speed up known approaches while only minimally
impacting on the quality of the computed solution. The key
building block is a novel locality filter, which allows to build
a pruned version of the shareability network more efficiently in
time and space than previous works. We corroborate this novel
proposal with a large set of experiments executed over a dataset
consisting of one month of trip requests (∼ 106) performed in two
different urban areas, namely Manhattan (NYC) and Singapore.
Our experiments show that our approach achieves a 5x speed-
up, or even more during so-called “rush times”, and it is robust
under different traffic conditions.

Index Terms—Intelligent transportation systems, ride sharing,
vehicle routing, urban mobility, locality filtering, geometric data
structures.

I. INTRODUCTION

Ride sharing services represent long-standing propositions
for decreasing road traffic while satisfying the need of mo-
bility for a population of travelers living in a well-defined
geographical area.

Ride sharing systems connect drivers with passengers shar-
ing similar origins, destinations, and departure times; drivers
notify their availability and GPS coordinates to the mobility

F. Tosoni is with the Department of Computer Science, Università di
Pisa, 56127 Pisa, Italy, and during this work he was with the TeCIP
Institute, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy. (e-mail:
francesco.tosoni@phd.unipi.it).

P. Ferragina is with the Department of Computer Science, Università di
Pisa, 56127 Pisa, Italy (e-mail: paolo.ferragina@unipi.it).

A. Marino is with the Department of Statistics, Informatics and
Applications, Università di Firenze, 50134 Firenze, Italy (e-mail: an-
drea.marino@di.unifi.it).

G. Resta is with Istituto Informatica e Telematica (IIT), Consiglio Nazionale
delle Ricerche, 56100 Pisa, Italy (e-mail: giovanni.resta@iit.cnr.it).

P. Santi is with Istituto Informatica e Telematica (IIT), 56100 Pisa, Italy
(e-mail: paolo.santi@iit.cnr.it), and with MIT Senseable City Lab, Cambridge,
MA 02139, USA.

This work has been supported in part by the 2019 MIT-UNIPI GRANT
PROGRAM.

system, collect trip requests, and modify their own travel needs
to accommodate passengers while saving resources and money.

In addition to ride sharing, several different technologies co-
exist in shared transportation services; the rich terminology in
this context includes ride sourcing, ride hailing, and transporta-
tion network companies (TNC) [1]. These terms are sometimes
used differently in the literature; for instance, some researchers
adopt the term “ride sharing” to denote peer-to-peer shared
transportation (e.g. car pooling, van pooling), whereas others
refer to “ride sharing” as for on-demand services. In this paper,
we prefer to use the terminology “ride sourcing” to denote
commercial services that manage fleets of drivers providing
an on-demand shared transportation service which connects
in real-time passengers and drivers. Ride sourcing techniques
are also referred to as TNC or ride hailing systems (in this
latter case, drivers generally use vehicles owned by third
parties); and unlike ride sharing, ride sourcing drivers operate
for profit and typically provide rides not incidental to their
own trips. Nowadays many ride sourcing services are available
(e.g. Uber, Didi, Lyft, Via, just to mention few of them), and
their impact is expected to become even more important in
the future with the introduction of self-driving vehicles [2],
[3], [4]. Recently, new shared mobility technologies have been
proposed which combine human and freight transportation
to make better use of available transportation resources, see
e.g. [4], [5]; in this regard, [6] introduced the share-a-ride
problem (SARP) in which people and parcels are handled in
an integrated way by the same taxi network. Throughout this
paper we focus on ride sharing/ride sourcing systems, with a
particular focus on taxi sharing applications.

The increasing need to develop new operations research
models and optimizations approaches, motivated an increasing
amount of research directed building new models and methods
that can efficiently operate these shared mobility systems [4].
Recent work has shown that in dense urban areas – such as
Manhattan (NYC) – it is in principle possible to combine most
point-to-point ride requests (e.g., taxi rides), and hence achieve
a significant reduction in the number of vehicles needed to
serve them and in the total kilometers traveled by the taxi
fleet [7], [8], [3].

Unfortunately, the application of these approaches to real-
time scenarios still poses significant scalability challenges.
In fact, an on-demand ride sharing service needs to collect
three types of input data in order to attempt to optimize
the combination of taxi requests into a single ride to be
eventually assigned to a vehicle. One type of input is made
of ride requests, that are typically collected from customers
through a (customer) smartphone app. Ride requests define,

2

among other parameters, the starting point of the trip and
the desired destination, which we call trip endpoints in the
following. A second type of input is the position and status
of the vehicles in the fleet, which is also acquired through
a (driver) smartphone app. The third type of input needed
to optimize the mobility service is an accurate estimate of
travel times between (a subset of) trip endpoints and (a subset
of) vehicles in the fleet. This last type of input is key to
the optimization process in order to accurately estimate the
efficiency of different combinations of trip requests into shared
rides, and make the corresponding assignment to available
vehicles. It goes without saying, that the smaller is the subset
of such candidate matching trips, the faster is the solution to
the optimization problem; nevertheless, an excessive reduction
in the number of examined request combinations generally
translates into a poor final ride sharing solution, both in terms
of total travelled kilometers, waiting time of the travellers, or
number of used vehicle. Moreover, a subset of candidate trip
pairs characterized by similar spatiotemporal constraints will
more likely produce good opportunities for a match; hence
an accurate selection of request candidates constitutes a key
factor in the mobility optimization process.

So far, research on scalable solutions for on-demand shared
mobility has mainly focused on the efficacy of the optimization
process itself, by assuming that its input of ride requests,
vehicle positions, travel time estimations and corresponding
candidate matching trips is given. This is the case, for instance,
of the approaches introduced in [7], [8], [3]. Providing ride
requests and vehicle positions is relatively straightforward to
implement and requires minimal computation; however, it is of
utmost importance to note that a complete enumeration of all
candidate trips is not a practical procedure to find the optimal
ride matching solution. Indeed, a brute-force approach that
computes the travel times for all possible combinations of trip
endpoints and vehicle positions is clearly not feasible, both
in terms of computational time (that would be quadratic in
the number of trip requests T), space occupancy, and cost for
querying commercial services. In fact, each trip comparison
results in a few (possibly expensive) shortest path calculations
[9], [10], [11], [12], which may lead to evaluate distances
even between trip pairs whose endpoints appear very far apart
from each other, and which will most probably not result in a
feasible match. Even in the case in which travel time estimates
are obtained from commercial services, like Google Traffic,
these charge costs based on the number of submitted queries,
which could be Θ(|T |2) in the naı̈ve approach. Thus, smarter
solutions must be found to efficiently filter, and then compute,
the travel time of only an appropriate subset of candidate
matching trips without looking to all their (quadratic) pair
combinations, and without losing the ones that contribute to
the computation of the optimal ride sharing solution.

To address this challenge, we introduce in this paper
a novel filtering approach based on spatial and geometric
considerations which is aimed at substantially reducing the
number of travel time estimates, and thus candidate matching
trips, needed as input to the subsequent optimization process.
While the proposed filtering approach is general enough to
be applied to a variety of other optimization problems in the

context of on-demand mobility, in this paper we show its
specific application to the problem of efficiently and effectively
approximating the optimal set of matching pairs of trips in a
taxi ride sharing application.

A. Our contribution

We present a novel algorithm and related data structures
which allow to efficiently solve the ride sharing problem.

Our algorithm improves the one proposed in [7], via a
proper orchestration of geometry-based conditions with time-
based conditions that allow to achieve a stronger pruning effect
on the number σ of candidate trips to be checked for matching.
We leverage empirical statistical metrics of the city graph to
introduce a filtering technique, able to define a locality area
in which it is more likely to find candidates for a combination
with a given trip request. The locality filter, which is a key
building block in our solution, can be adapted to deal with
different speed networks and traffic conditions. Furthermore,
it is able to self-tune itself when we consider heterogeneous
areas of the city (e.g. periphery and downtown), where it is
common to experience variations in the average speed.

In the following we will refer to the original approach [7] as
the legacy algorithm which incurs in the following two main
limitations:

• It lacks any spatio-temporal correlation, so that the fea-
sible match between two trips is verified even if these
two trips refer to locations within the city that are too
far from each other. For this reason, the number of pairs
(Ti, Tj) to be checked might grow quadratically in the
number of trips i.e. Θ(|T |2);

• It makes massive use of the expensive Dijkstra’s shortest-
path algorithm in order to evaluate the distance of each
pair of nodes (i.e. origins, destinations) in the city graph.

Our novel algorithm, instead, provides the following three-fold
contribution:

• It reduces the number of pairs (Ti, Tj) to be checked
by applying a set of conditions of geometric proximity
between trips Ti and Tj .

• It reduces the time for the retrieval of the pairs (Ti, Tj)
which appear geometrically close, by leveraging some
provably efficient geometric data structures for spatial
searches.

• It deploys state-of-the-art algorithms for distance calcula-
tions, by leveraging the planar structure of the city graph
and its embedded (and sometimes hidden) highways. As
a consequence, it significantly improves the time for the
shortest-path calculations with respect to standard Dijk-
stra’s algorithm, without needing to store any (quadratic)
lookup table.

As a result, our filtering approach builds efficiently in both
time and space a pruned version of the shareability network
introduced in [7], that allows to optimally match ride requests
and thus compute an optimal ride sharing solution in real
time. We will then evaluate the efficiency and effectiveness
of our filtering approach by comparing the optimality of the
ride sharing solution derived by our pruned network against

3

the optimal one obtained by considering a complete network
in which the travel times of all possible pairs of matching trips
are evaluated [7].

We will corroborate the asymptotic analysis of our algo-
rithms with a large set of experiments conducted on two
datasets of taxi hailings issued in 2011 and referring to
two urban areas of different magnitude: the small district of
Manhattan in New York City (59.1 km2), and the metropolis
of Singapore (721.5 km2). We have also analyzed the ef-
ficiency of our solution over different time slots (e.g. rush
time, nighttime). In our experimental investigation we have
observed that our approach is able to induce up to 5X (or
even more) speed-up over [7], especially during the so-called
“rush time”, namely when ride sharing systems have to deal
with larger numbers of user requests. We are also able to match
thousands of trip requests in few seconds, so that the possible
delay induced by the completion time of our algorithm can
be considered de facto negligible, and thus suitable for a ride
sharing app.

Overall, the results that we report in this paper clearly show
that our solution is robust under different scenarios, and is
flexible enough to balance recall (i.e. number of retrieved
feasible candidates) and time speed up, as well as to be
extended to the problem of the vehicle-to-trip association, thus
giving suggestions for the development of similar algorithms
and data structures in this context too.

II. RELATED WORK

App-based on-demand ride services (also known as ride
sourcing services) are transforming urban mobility by provid-
ing timely and convenient transportation to anybody, anywhere
and anytime.

While some users may choose to participate in a shared ride
to reduce their travel expenses, others may also be motivated
by the potential social and environmental benefits [13].

Several independent studies conducted in different urban
areas across the globe (i.e. Hangzhou [14], 62 cities of Japan
[15], New York [7], [3], San Francisco [16], Shenzen [17],
Singapore [18], Zurich [19]) provided several insights into the
expected usage characteristics of ride sharing (peer-to-peer
systems) or ride sourcing (commercial platforms), and their
potential economical and social impacts.

In particular, Santi et al [7] were the first to propose a novel
graph-based method to evaluate the impact of the sharing
economies. Their work almost surprisingly highlighted that
up to 94.5% (or even more) taxi trips in Manhattan can be
shared by two taxi users, if a small tolerated delay (e.g. one
minute) is introduced. More recently, [3] proposed a real-
time dynamic trip sharing algorithm based on the request-trip-
vehicle shareability graph (RTV-graph). This algorithm starts
from a greedy trip-vehicle assignment, and improves it through
a constrained optimization process which converges over time
to the optimal trip-to-vehicle matching.

A more recent trend [20], [21] relies on producing the
vehicle-to-route assignment by solving a Linear Assignment
Problem (LAP).

Overall, a common and strong limitation of the approaches
proposed above is that they pre-compute and store in advance

an all-to-all shortest-path matrix consisting of a travel-time
lookup table between any source-destination pair within the
city road map. This matrix requires a space occupancy that
grows quadratically with the size of the city roadmap (i.e.
number of crossroads), thus posing severe scalability issues.

As far as the problem of computing shortest paths over city
graphs are concerned, the literature offers a very rich variety of
algorithms [9], [10], [11]. Generally, these solutions are based
on some pre-computed data structure, which is able to speed-
up the query time distance computation. As expected, the
solutions which pre-compute and store larger data structures
exhibit better query performance, so that it is up to the user
to choose the algorithm which offers the best space-time
tradeoff according to her application needs. In many cases,
the achieved speed-up is obtained by directing or pruning the
classical Dijkstra shortest-path algorithm. In APPENDIX A we
review some of the most efficient and effective approaches
to address this issue. Given the available literature, we will
leverage the Contraction Hierarchies technique (shortly, CH
[22]) as a distance-computation module for our ridesharing
approach. Nevertheless, it goes without saying that, any state-
of-the-art techniques can be used to solve the shortest-path
queries because our approach uses them as a black-box.

Summarizing, none of the existing work addresses the
problem of how to efficiently reduce the quadratic number
of candidate vehicle-trip combinations considered when com-
puting the optimal trip matching assignment, while at the
same time minimally impacting the quality of the computed
solution. Providing a first solution to this problem is the main
contribution of this paper.

III. RIDE SHARING MODEL

We model the demand for a taxi service in a certain
geographical area (e.g., a city) as a set T of taxi requests
issued by potential customers. Each trip/ride Ti ∈ T is defined
by (1) the GPS coordinates of its origin oi and destination di,
(2) and by its scheduled starting time sti.

Note that the scheduled arrival time ati is computed as
ati = sti + tt(oi, di), where tt(oi, di) is the estimated time
to go from the origin oi to the destination di. We are also
interested in the effective pick-up time pti ≥ sti and expected
drop-off time dti = pti + tt(oi, di) ≥ ati.

As in many other shared mobility models proposed in the
literature (such as [7], [23], [6]) we will assume throughout
this paper that each transportation request is served by a single
vehicle.

The road network of the geographical region in which
travelers can issue requests for the taxi service is modeled
by means of a city graph GA, where the set of nodes VA

represents crossroads, that are assumed to be the only valid
origins and destinations for Ti, and the set of (weighted) edges
EA provides estimates of the time needed to go across the
corresponding road segments. The weights on the edges of
the graph GA are time-varying according to different traffic
patterns during different hours of the day.
We borrow from [7] a set of constraints, to be fulfilled:

4

• A shareability parameter s, limiting the amount of trips
that can be “combined” together: namely, the maximum
number of customers that can share the same vehicle.

• A quality of service parameter ∆, limiting the delay that
passengers can incur due to ride sharing. A high value of
∆ may combine more trips, at the price of an increasing
delay (discomfort) for passengers to arrive to their final
destination. The value of ∆ should be determined by the
traffic managers of a city or the mobility operator, and it
is suggested to be 5 minutes in dense urban environments
as that considered in [7].

• A (pickup) time window parameter δ, which is used to
batch a number of trip requests for improving the quality
of the final solution. This parameter represents also an
upper bound to the time of a (customer) taxi app to return
a potential assignment to a customer request, and thus
the availability of the shared trip [4]. Parameter δ has the
effect of reducing the candidate rides to be matched to
the ones satisfying the condition |sti − stj | ≤ δ.

Given the tuple (GA, T , s,∆, δ), the ride sharing problem
consists of finding a feasible grouping M (also known as
matching) for the trips in T such that (1) each trip is combined
with at most s − 1 other trips of T , (2) each customer
experiences at most ∆ minutes of delay in getting to its
destination (w.r.t. the time the customer would have spent by
traveling alone), (3) the pick-up time pti of every trip is at
most δ minutes after its scheduled starting time sti.

The authors of [7] proposed two different models for the
computation of the matching M from the set of trips T :

• the Offline model (aka oracle model) represents an omni-
scient and artificial scenario in which trip-sharing deci-
sions can be taken by considering not only the current taxi
requests, but also all the future ones (hence δ = +∞),
thus offering a theoretical upper bound for sharing op-
portunities;

• the Online model represents a realistic scenario in which
a customer, using an “e-hailing” application, issues a taxi
request by reporting pick-up and drop-off locations, and
within the small time window δ receives feedback from
the taxi management system on whether and which shared
ride is available for her.

In this paper we will analyze both scenarios, with particular
focus on the Online model which is at the core of real-
time dynamic mobility platforms, where customers and their
schedule are revealed over time [24].

IV. THE SHAREABILITY NETWORK

The shareability network concept has been introduced in [7]
to quantitatively assess the benefits of large-scale ride sharing
on sustainability. The shareability network translates spatio-
temporal sharing problems into a graph-theoretic framework
where, namely, a solution for the ride sharing problem trans-
lates into the classical problem of finding a maximum match-
ing in a graph. The vast potential of this framework has been
confirmed by the significant traffic reduction in the borough
of Manhattan [7].

Following [7], we will limit our analysis to the case in
which a trip can be combined with at most one other trip:
hence, s = 2. This limitation has been introduced by the
authors of [7] for computational reasons. We argue that this
is a reasonable assumption which suits very well within the
taxi hailing scenario represented in this paper, given that
taxi cabs are small-capacity vehicles, and also considering
that an increment in the number of customers sharing the
same vehicles translates into greater customer discomfort.
Furthermore, it has been shown in [7] that s = 2 is enough to
provide immense benefits to a dense enough community like
the area of Manhattan (NYC).

For the concerns of the ride sharing problem over a given
set T of trips as defined in SECTION I), the shareability
network GSN associated with T is an unweighted non-directed
graph whose nodes represent the trips Ti in T , namely
VSN = {Ti | 1 ≤ i ≤ n}, and two nodes Ti and Tj are
connected through an edge (Ti, Tj) ∈ ESN iff it results that
|sti− stj | ≤ δ and that the two trips Ti and Tj can be served
by the same taxi ensuring the quality of service parameter ∆.

In this framework, any matching in GSN , i.e. any subset
of ESN consisting of edges not having common vertices,
corresponds to a feasible solution for the ride sharing problem,
as it translates in feasible pairings of trips in T . In particular, a
maximum matching corresponds to the combination of trips of
the largest size while respecting the delay requirements of the
ride sharing problem. Surprisingly, it has been shown in [7]
that, in dense enough urban areas such as Manhattan (NYC),
it is possible to combine 92% of trips even when considering
s = 2 and small values for the tolerated delays (i.e. δ = 1
minute and ∆ = 5 minutes).

It goes without saying, that in lieu of a maximum matching
algorithm one could have deployed a weighted shareability
network, hence optimizing any specific single global objective
function [4] which maximizes e.g. the number of total saved
kilometers (which eventually constitutes a proxy for the reduc-
tion of polluting emissions, see [7]), or the company revenues.
Price metrics are particularly important in distributed scenarios
and, in particular, the objective of maximizing profit has
been widely studied [25], [26], [27]; moreover, ridesourcing
companies like Uber and Lyft have used pricing strategies
to incentivize drivers to move to undersupplied locations
[28] hence enforcing fleet re-balancing. Our approach can
be seamlessly extended to work also in the context of price
metrics, via properly weighted shareability networks.

Unfortunately, populating the shareability network turns out
to be very expensive if it is approached in a brute-force
manner. In fact, we cannot afford neither Θ(n2) Dijkstra-
like computations, nor we can precompute and store (for
serving subsequent travel-time queries), the all-pairs-shortest-
path matrix (e.g. using Floyd Warshall algorithm, or repeated
Dijkstra computations) in Θ(n2) space.

In order to make the computation of GSN practically
affordable, we need to reduce the number of shortest-path
queries issued on the graph GA by selecting a proper subset of
pairs of trips to be checked for candidate matches. On the other
hand, working on a subset of the original shareability network,
the computed solution (i.e. maximum matching) might have

5

oistart

di

dj

oj

Ti

Tj

(a) Case 1.

oistart

di

dj

oj

Ti

Tj

(b) Case 2.

oi

di

dj

ojstart

Ti

Tj

(c) Case 3.

oi

di

dj

ojstart

Ti

Tj

(d) Case 4.

FIG. 1: Valid ways to combine a pair of trips.

lower quality (i.e. number of edges) than the original one. The
rest of the paper is therefore devoted to exploring this tradeoff
between computational/storage efficiency and quality of the
computed solution.

A. Necessary and sufficient conditions

In order to achieve the reduction of shortest path queries, it
is useful to reason in terms of necessary time conditions that
have to be met in order to match two trip requests with each
other, and hence form a combined trip.

In the rest of this paper we will (sometimes tacitly) assume
that the processed taxi requests are sorted for increasing
scheduled starting time1.

By assuming that s = 2, the authors of [7] observed that the
combination of two trips Ti and Tj can occur in four different
configurations, as shown in FIGURE 1. The red and blue lines
of FIGURE 1 represent resp. trips Ti and Tj , whereas the black
dashed lines represent the four different paths that the vehicle
can take in order to combine Ti and Tj .

A first way to combine two trips Ti and Tj is to collect (in
order) the corresponding passengers and deliver them in the
same order to their respective destinations. We call this kind
of match, match of the first kind. Alternatively, one can collect
(in order) the passengers of trips Ti and Tj , and then deliver to
destination first the passenger of trip Tj , and then the one of
trip Ti. We call this kind of match, match of the second kind.
There are two other (symmetric) cases to be considered, that
are obtained by inverting the roles of Ti and Tj in the two
cases described above; these symmetric cases correspond to
scheduling first the pick-up for trip Tj rather than the pick-up
for trip Ti.

1Batched requests can be sorted in internal memory, and hence the sorting
process is very fast and the corresponding computation delay can be neglected
in practice.

For matches of the first kind, the resulting trip corresponds
to the path oi → oj → di → dj . This occurs when the
following equations, denoted hereafter as A(i, j), are satisfied.

stj ≤ sti + tt(oi, oj) ≤ stj +∆ (1)
tt(oi, oj) + tt(oj , di) ≤ tt(oi, di) + ∆ (2)
sti + tt(oi, oj) + tt(oj , di) + tt(di, dj) ≤ atj +∆ (3)

Eq. 1 is needed to ensure that the second customer (of trip
Tj) is picked with a delay no longer than ∆ time after his
scheduled starting time (otherwise the delay of the combined
trip would surely be larger than ∆). Eq. 2 (resp. Eq. 3)
guarantees that the customer of trip Ti (resp. of trip Tj) is
delivered to the destination with a delay no larger than ∆.

For matches of the second kind, the resulting trip corre-
sponds to the path oi → oj → dj → di, and can be obtained
from the matches of the first kind by simply inverting the
delivery order of the two passengers. Similarly to the previous
combination, this case occurs whenever the following system
of inequalities, denoted hereafter as B(i, j), is satisfied:{

stj ≤ sti + tt(oi, oj) ≤ stj +∆ (4)
tt(oi, oj) + tt(oj , dj) + tt(dj , di) ≤ tt(oi, di) + ∆ (5)

Eq. 4 ensures that the customer of trip Tj is picked up no
later than ∆ time after her scheduled starting time (otherwise
the delay of the combined trip would surely be larger than ∆).
On the other hand, Eq. 5 guarantees that the first customer
(i.e. the customer of trip Ti) is served within the permitted
delay parameter ∆.

It is worth noting that in this case there is no need to
explicitly check that the second customer (of trip Tj) is served
within ∆ seconds of delay, because trip Tj is served without
intermediate steps, and thus the taxi follows the fastest route
for it. Hence, all that we need to check for trip Tj is just that
the pick-up operation is scheduled within a reasonable time,
as stated in condition 4.

In summary, we have:
Lemma 4.1: Two trips Ti, Tj ∈ T can be matched if, and

only if, |sti − stj | ≤ δ and the following holds

A(i, j) ∨B(i, j) ∨A(j, i) ∨B(j, i).

Indeed, a shared trip between Ti and Tj can be formed either
by means of a first kind combination (if conditions A(i, j) or
A(j, i) are met), or by means of a second kind combination
(if conditions B(i, j) or B(j, i) are met).

V. LOCALITY FILTERING

All of the matching conditions presented in the previous
section are exclusively time based. Here we introduce some
novel geometric-based conditions for a match between two
trips which exploit some statistical properties of the city graph.
Our intuition is clearly stated in the following claim, which
we first prove empirically.

Claim 5.1: There exists a strong correlation between: (1)
the traversal time of a source-to-destination path (shortly, s-d
path), and (2) the s-d Euclidean distance.

In order to experimentally verify Claim 5.1 we considered
the set P = P(∆S) of all possible paths in the city graph GA

6

which can be traversed in less than ∆S . Many recent works,
including [25], [7], [3], [20], [21] tacitly assumed travel times
within a city to be deterministic. We take herein the same
assumption, given that existing navigation apps (e.g. Google
Maps) can accurately predict the travel time based on the real
time traffic conditions [29], [30].

Let us denote with d(p) the distance covered by a path
p ∈ P . We also denote by FP(·) the empirical cdf of the
distribution of the distance values l, i.e.:

FP(l) =
|{p ∈ P| d(p) ≤ l}|

|P|
(6)

Let us denote with d(P) the support of the empirical distri-
bution of path distances, namely d(P) = {d(p) | p ∈ P}.

We noticed that the examined distance sets d(P) are often
characterized by outliers, i.e. few paths in P(∆S) are able to
cover distances close to the maximum distance value in d(P).
For this reason, we logically discard from d(P) the top 5%
distance values, hence considering the 95-percentile value of
the d(P) distribution, denoted in the following as l95.

For the computation of distance d we used in our ex-
periments the Euclidean distance between the points in the
Cartesian plane corresponding to the origin and to the des-
tination of the evaluated path. Given the curvature of the
earth’s surface, a known alternative to distance estimation is
the Haversine formula, which finds application e.g. in the
calculation of ocean routes, and it is often used within very
wide geographical areas. However, the geographic scale of our
study is small (i.e. a city), so that the use of the Euclidean
distance as a close approximation of geodesic distance is
justified.

Our experimental spatio-temporal analysis is synthesized
in APPENDIX B where it is evident that time and distance
values exhibit a strong correlation, which motivates us to
approximate distance values starting from time values via a
e.g. linear regression approach. We hence introduce the symbol
γ to denote the time-to-distance mapping which assigns to
each time value ∆S a corresponding (bound on the) travelled
distance l95: i.e., γ(∆S) = l95. In the experimental section,
we will investigate experimentally how the change in the
percentile, i.e. from l95 to l40, will change the speed up versus
recall of our proposed solution.

Repeating the percentile preprocessing for different time
values ∆S (e.g. multiples of 5 minutes) we collected enough
samples which are then interpolated to define γ-mappings for
every continuous time value. We have also specialized the
γ-mapping for different districts within the city graph; this
is equivalent to collecting local (i.e. per node) rather than
global (i.e. per graph) statistics. This specialization turns out
to be particularly effective at capturing the complexity and
heterogeneous nature of speed networks, especially for maps
from the old world (i.e. Europe, Asia), where there can be
substantial differences in registered vehicle speeds in various
city areas (i.e. downtown versus periphery), as reported in the
Appendix of [7].

A. From time conditions to necessary space conditions

Leveraging the time-to-distance mapping γ and Claim 5.1,
we can thus reformulate the time-based conditions for trip
matches of SECTION IV into geometric-based conditions, as
follows.

(a) A first kind match. (b) A the second kind match.

FIG. 2: Combined trips of the two different kinds. The
colored rectangles wrapping the ellipses are described in
APPENDIX D.

Let us start by considering the matches of the first kind, and
refer to FIG. 2 (A) where the trips Ti and Tj are indicated with
dashed lines and the solid line is used to denote the combined
trip Tij . Without loss of generality, we restrict ourselves to
the case in which the origin of Tij coincides with the origin
oi of the trip Ti. In the symmetric case where the combined
trip Tij has its origin in oj rather than in oi, we can follow
similar considerations to derive conditions A(j, i).

The set of conditions A(i, j) introduced in SECTION IV
correspond to the (necessary and sufficient) conditions for
the realization of a match of the first kind. Let Di = γ(∆)
be the distance value associated to the tolerance parameter
∆ of SECTION I, derived by means of the time-to-distance
mapping γ. Notice that Di depends on source i whereas ∆
does not depend on i; this is a direct consequence of the fact
that the time-to-distance mapping γ has been specialized for
different districts, and hence the distance Di associated to ∆
is not uniform within the city graph GA. Furthermore, let
li = γ(tt(oi, di)) be the distance associated with the expected
service time tt(oi, di) of trip Ti. The parameters Dj and lj
can be defined in a similar manner.

Because of the definition of γ-mapping, we can reformulate
the equations of A(i, j) in geometric queries specified in the
following lemma, proved in APPENDIX C. Here the reformu-
lation is “approximate” because the γ-mapping reflects the
time-to-distance relation up to the 95% of the paths in our
city graphs. In the experimental section we will evaluate the
accuracy of this approximation over our dataset of city graphs
referring to Manhattan and Singapore.

Lemma 5.2: We can translate the feasibility condition
A(i, j) of a matching of the first kind into the (approximately
equivalent) geometric-based system of inequalities:{

d(oi, oj) + d(oj , di) ≤ li +Di (7)
d(oj , di) + d(di, dj) ≤ lj +Dj (8)

We can provide a geometric interpretation of the first (resp.
the second) inequality above: it corresponds to the membership

7

of the node/point oj (resp. di) to an ellipse with oi and di as
focus (resp. oj and dj) – see FIGURE 2-A.

We now focus on the matches of the second kind. Again,
without loss of generality, we restrict ourselves to the analysis
of the case in which the combined trip Tij includes in its
entirety the optimal (i.e. shortest) path for the trip Tj (the
case of Tij including the shortest-path for Ti boils down
to analogous considerations). The feasibility of a combined
match of the second kind is determined by the two conditions
defined in B(i, j) (see SECTION IV), which can be rephrased
again as the two geometric queries specified in the following
lemma, proved in Appendix C.

Lemma 5.3: We can translate the feasibility condition
B(i, j) of a matching of the second kind into the (approx-
imately equivalent) geometric-based system of inequalities:{

d(oi, oj) + d(oj , di) ≤ li +Di (9)
d(oi, dj) + d(dj , di) ≤ li +Di (10)

This system of inequalities corresponds geometrically to the
membership of the nodes/points oj and dj into an ellipse with
oi and di as focus – see FIGURE 2-B. The ellipse for this
second kind match is the very same ellipse that we discussed
for first kind matching cases.

VI. OUR PROPOSAL

Our algorithm can be sketched as follows:
• Set T is defined as the set of (taxi) requests issued during

the last time window δ.
• For each request T ∈ T ,

– The locality filtering module selects a subset Σ ⊆ T
of candidate requests to be matched with T which
satisfy the properties of Lemmas 5.2 and 5.3. The
ellipses that define the locality regions are shaped
based on the service parameter ∆ and on the spatio-
temporal mapping γ (see previous SECTION V).

– Candidate matching requests in Σ are then checked
to be feasible by means of an explicit post-check
which is performed in accordance to the time-based
feasibility conditions of previous SECTION IV, for-
mulated in terms of parameter ∆ (see next SECTION
VII).

– The shareability network is then populated by adding
one edge per confirmed pair of matched requests (see
previous SECTION IV).

• A maximum matching algorithm is executed to determine
the shared trips. Each shared trip is then assigned to a
vehicle, e.g. solving the minimum fleet problem of [8].

• Finally, the customers receive a notification for the avail-
ability or unavailability of a shared route for their trip, and
in the former case, the trip matching their taxi request.

In the remaining part of the section we will detail how the
locality filtering module is used to retrieve the subset ST of
candidate matching requests for the trip T , as described above;
whereas in the next section VII we will show how to retrieve
the feasible matches by the explicit post-check of the candidate
ones in ST .

Using Lemmas 5.2 and 5.3, we can efficiently find a set
of candidate trips for feasible matches satisfying the condi-
tions A(i, j), B(i, j), A(j, i), B(j, i). They are retrieved by
executing ellipse-based range search over the Cartesian plane.
Since our geometric conditions are necessary but not sufficient
to guarantee the feasibility of the match between two trips,
these range search will find some false positive matches, so
that we need to execute a post-check over the retrieved set of
candidate trips. We will show that these false positives are not
many in practice and thus the overall resulting algorithm will
show effective performance.

More specifically, our algorithm proceeds as follows. We
construct two posting lists OT [i] and DT [i] for each trip Ti

in the input set T .
• OT [i] is defined as the set of trips whose origin belongs

to the ellipse of trip Ti.
• DT [i] is the set of trips whose destination belongs to the

ellipse of Ti.
For DT we also build the inverse posting list DT−1 such

that, for every pair of trips (Ti, Tj) ∈ T 2 it results that: Ti ∈
DT−1[j] if, and only if, Tj ∈ DT [i].

The key algorithmic observation here is that we can turn
the retrieval of candidates trips for a match with trip Ti into
the execution of some posting-list intersections. In particular,
according to the geometric interpretation of LEMMA 5.2 in
SECTION V, we can obtain the candidate set for a first kind
match by computing OT [i] ∩ DT−1[i]. Similarly, according
to the geometric interpretation of LEMMA 5.3 in SECTION V,
the candidate set for a second kind match can be obtained by
computing OT [i] ∩DT [i].

APPENDIX D contains the pseudocode and an exhaustive
explanation of the algorithmic procedures which compute the
candidate sets of feasible matches of either of the two kinds.

VII. FULL CHECK OF THE CANDIDATE MATCHES

We are left with the description of the algorithmic twists
we introduce to speed up the check of candidate matches
that are retrieved in SECTION VI using posting lists OT , DT
and DT−1. For each trip Tm we hence determine whether or
not the retrieved candidates Tk,1, Tk,2, ..., Tk,σ turn out to be
feasible matches for either of the two match kinds.

In order to check conditions A() and B(), we need to
evaluate a certain number of shortest path queries between
a single endpoint of trip Tm (i.e. either om or dm) and the set
of multiple endpoints (origins or destinations) belonging to the
candidate trips Tk,1, Tk,2, ..., Tk,σ . If we imagine to pin Tm

and take Tk,i among all trips resulting from the intersections
OT [i] ∩ DT [i] and OT [i] ∩ DT−1[i], then we are turning
several one-to-one path queries, into a single one-to-many path
query. This is the key observation underlying the speed up
introduced for testing candidates.

This check could be very expensive if approached by means
of a brute-force processing of the underlying city graph (as e.g.
the classic Dijkstra’s algorithm) because each of the queries
involved in those checks could spur a certain number of
traversal calculations in the city graph.

8

The literature also offers several graph reduction (lossy
compression) techniques for shortest-path distance estimation
within a (quasi-)planar graph like the one of a road network
(see e.g. [9], [10], [11]). The proposed techniques are based
on several heuristics that compute some auxiliary data, such
as additional edges (shortcuts) and labels or values associated
with vertices or edges, which are then used to accelerate an
arbitrary number of shortest path queries, typically by pruning
or directing Dijkstra’s algorithm. Heuristics within this frame-
work are based on a wide variety of ideas, such as arc flags,
landmarks, (contracted) highway hierarchies and transit nodes,
just to mention a few (see [11] and refs therein). Recently,
Akiba et al. proposed in [31] an algorithm, called pruned
highway labeling (PHL), that achieves provably good results
in terms of both query and pre-processing time. Nevertheless,
a main limitation of the distance estimation algorithm of [31]
is that it deals exclusively with undirected graphs, which are
not able to capture the presence of one-way streets, as well as
the variation of average speed that a taxi user can experience
while traversing the same road segment in either of the two
directions.

In our experiments we have used the Contraction Hierar-
chies (CH) technique described in [32] for two main reasons:

• it is able to treat directed graphs;
• the API offers the possibility to perform optimized one-

to-many and many-to-one shortest path calculations.
One should also notice that the shortest path calculation of
our approach can be looked at as a black box, so many other
alternative solutions could be plugged in our code without
changing its algorithmic structure.

In order to understand what is the role played by the one-
to-many and many-to-one shortest path calculations, one can
look to TABLE I which lists the shortest-path queries needed
to assess the conditions A(i, j), B(i, j), A(j, i) and B(j, i). In
that TABLE, the needed shortest-path computations are marked
with a tick (✓); those that are not needed, are instead marked
with a cross (✗). This way readers can convince themselves of
the reduced computations introduced by our novel approach.

The pattern of shortest path calculations in TABLE I are
derived from FIGURE 2 and also pictorially represented in
FIGURES 3 (A) and (B).

In FIGURES 3 we have denoted with Tm the trip that we
process during the m-th iteration of ALGORITHM 2, whereas
ok,i and dk,i for k = 1, ..., σ represent origins and destinations
of the candidate trips that we are going to check. In sub-Figure
(a), all the needed traversal times (red arrows) can be evaluated
by using one-to-many and many-to-one distance computation
techniques. In sub-FIGURE (B) – instead – the red arrows
correspond to traversal times which can be computed by means
of many-to-many distance computations, while the σ incoming
arrows represent instead σ different one-to-one Dijkstra-like
path calculations. These one-to-one traversal times correspond
to estimating, for each of the σ involved trips, the time
needed to serve the corresponding passenger when considered
in isolation and by using one single taxi.

We notice that first we need to evaluate the traversal times
from the origin to the destination of each trip (first two rows
of the table, or blue arrows in FIGURE 3 (B)). These times can

SOURCE DEST. A(i, j) B(i, j) A(j, i) B(j, i)

oi di ✓ ✓ ✓ ✓
oj dj ✓ ✓ ✓ ✓
oi oj ✓ ✓ ✗ ✗
oj oi ✗ ✗ ✓ ✓
di dj ✓ ✗ ✗ ✓
dj di ✗ ✓ ✓ ✗
oi dj ✗ ✗ ✓ ✗
oj di ✓ ✗ ✗ ✗

TABLE I: Shortest-path queries executed to assess A()s and
B()s conditions.

be pre-computed and stored in a global vector, so that they can
be easily retrieved each time they are needed for subsequent
checks.

(a) Path computations for first
kind matches.

(b) Path computations for sec-
ond kind matches.

FIG. 3: Shortest path calculations needed to find candidates
for: (A) the condition A(m, k) (feasible match of the first
kind), and (B) the condition B(m, k) (feasible match of the
second kind).

VIII. EXPERIMENTAL EVALUATION

This section is devoted to show the results obtained by
applying our approach to two real datasets of taxi requests
issued in February-March 2011 in the borough of Manhattan
(NYC) and Singapore. The dataset of Manhattan has been
utilized also by the authors of [7], and consists of a subset
of a larger dataset which comprises 172 million trips served
by 13,586 taxi cabs in New York during the calendar year
2011. For Singapore we have utilized a dataset with roughly
11 million taxi requests issued between the 14th February and
14th of March 2011, which has been used in [33].

Times are accurate to the second, whereas positional in-
formation has been collected via Global Positioning System
(GPS) technology by the data provider (New York Taxi and
Limousine Commission). Out of our control are possible biases
due to urban canyons which might have slightly distorted the
GPS locations during the collection process.

As in [7], we also matched GPS points to street intersections
rather than to points on the closest street segments as a reason-
able compromise between high accuracy (the average length
of street segments in Manhattan is 126 m) and granularity of
discretization that is mainly relevant in the estimation of travel
times.

Inspired by [33] who compared the shareability curves for
different cities across the globe, we aim herein at investigating
the shareability impact of our locality filter under different

9

urban parameters and scenarios, such as: day and night time,
and different spatio-temporal mappings.

We hence compare the results of our algorithm with the
results achieved by the legacy solution in [7]. Both algorithms
have been implemented in c++. They have been compiled with
the g++ compiler of the GNU suite using the option −O3.
We have then executed the compiled code on a commodity
laptop equipped with an i5-8250 CPU and 8GB of DDR4
RAM Memory. All experiments ran in internal memory.

a) Dataset Description: For both Manhattan and Singa-
pore we have considered trip requests issued in the time span
between 14th February 2011 1 p.m. (UTC) and 14th March
2011 1 p.m. (UTC). We have considered several time windows
in order to test the performance of our solution under different
scenarios (e.g. rush time, nighttime). In particular, we have
extracted those requests which have been performed in the
time intervals: [1.00–1.20 a.m.], [7.00–7.20 a.m.], [1.00–1.20
p.m.], [7.00–7.20 p.m.]. For the experiments we have used the
parameter values ∆ = δ = 5 minutes.

For both Manhattan and Singapore we estimated the average
time speed of the cabs during different time slots using the
methods presented in the Appendix of [7]. For the estimation
of the average travel times in Singapore we also differenti-
ated between: weekdays (wd), Saturdays (sat), and Sundays
(sun), whereas for the city graph of Manhattan we use instead
the same travel estimations for both weekdays and weekends
given the quite similar travel times. TABLE II reports some
dataset metrics, whereas FIGURES 4(a) and (b) show the
variation in the number of trip requests as a function of the
issuing hour. It is of great importance to correctly estimate the
traffic congestion in terms of number of taxi requests issued
within a certain time span; this because vehicle traffic has a
serious impact on the average time speed and hence on the
estimated traversal times within locations of the city.

DATASET
TRIP CROSSROADS ROADS WD

REQUESTS (NODES) (EDGES) SAT/SUN

manhattan 581 631 4 091 9 452 ✗
singapore 688 383 11 789 26 223 ✓

TABLE II: Dataset description. In the trip requests column we
report the number of requests in the extracted portion of the
dataset.

b) Performance Measures: We will denote as R the num-
ber of taxi requests. Let us denote by N and L, respectively, our
new algorithm and the legacy algorithm. Given an algorithm
A ∈ {N, L}, let us consider the following quantities:

• SA be the number of shortest path queries performed by
A,

• TA be the completion time of algorithm A (including the
construction of the shareability network and its matching
phase),

• FA be the number of feasible matches (that is, the number
of edges in the shareability network computed by A). We
have FN ⊆ FL.

• MA be the size of the maximum matching found by A,
which equals the number of matched trip pairs.

(a) Manhattan trip requests (b) Singapore trip requests

FIG. 4: Box-and-whisker plots reporting the number of trip
requests issued in (a) Manhattan and (b) Singapore around four
time-slots. The data refer to a 20 minutes batch of requests.

By making use of this notation, in order to study the
performance of N and L, we define the following measures.

• The matching size reduction, that is the reduction in the
number of matched trip pairs (expressed in percentage):
(ML −MN)/ML.

• The speed up factor achieved by N wrt L, as TL/TN.
• The feasible matches reduction (expressed in percentage):

(FL − FN)/FL.
• The reduction of the evaluated distances, namely the

reduction in the number of issued shortest-path queries
(expressed in percentage): (SL − SN)/SL.

Furthermore, we will denote with γ40 (resp. γ95) the time-
to-distance mapping built by using 40-percentile (resp. 95-
percentile) distance values. The γ40 and γ95 settings are
represented in FIGURES 5 and 6 through empty and filled
dots, respectively.

c) Performance plots: FIGURES 5(a) and 6(a) show
the matching size reduction as a function of the number
of requests, resp. for Manhattan and for Singapore. Namely
for each experiment considering x number of requests and
y = (ML −MN)/ML reduction of matched trips, we draw a
circle in position (x, y). Clearly, the reduction is desired to
be as small as possible, meaning that the matching achieved
by N is not much smaller compared to the one found by L.
Interestingly, FIGURES 5(a) and 6(a) show that the gap in
the number of matched trips between N and L decreases as
the number of trip requests increases (i.e. the matching size
reduction becomes negligible). This result is verified under all
the considered scenarios.

Different colors represent varying time slots, in particular:
red stands for 1 a.m., orange stands for 7 a.m., blue stands for 1
p.m., and green stands for 7 p.m.. In the case of Manhattan, the
blue and orange cases perform better with γ95 rather than with
γ40. Instead, for the green and red distribution (“rush time”)
we register no significant difference in the figures when using
either of the two time-to-distance mappings. Furthermore, for

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

m
a
tc

h
in

g
 s

iz
e
,

re
d

u
ct

io
n
 %

number of trip requests

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7

m
a
tc

h
in

g
 s

iz
e
,

re
d

u
ct

io
n
 %

speed up factor

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100fe
a
si

b
le

 m
a
tc

h
e
s,

 r
e
d

u
ct

io
n
 %

number of evaluated distances, reduction %

(c)

FIG. 5: Performance metrics collected for Manhattan (NYC). Filled dots (•) represents metrics obtained using γ95 (95-percentile
distance values), whilst empty dots (◦) represent distance values obtained using γ40 (40-percentile distance values). Different
colors represent varying time slots, in particular: red (•,◦) stands for 1 a.m., orange (•,◦) stands for 7 a.m., blue (•,◦) stands
for 1 p.m., green (•,◦) stands for 7 p.m.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2000 4000 6000 8000 10000 12000

m
a
tc

h
in

g
 s

iz
e
,

re
d

u
ct

io
n
 %

number of trip requests

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9

m
a
tc

h
in

g
 s

iz
e
,

re
d

u
ct

io
n
 %

speed up factor

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100fe
a
si

b
le

 m
a
tc

h
e
s,

 r
e
d

u
ct

io
n
 %

number of evaluated distances, reduction %

(c)

FIG. 6: Performance metrics collected for Singapore. Conventions as in FIGURE 5.

green and red distributions the matching size obtained by L
and N can be considered the same. In the case of Singapore,
for the blue, orange, and green distributions, we also observe
that the results for γ95 are strictly better than the ones for
γ40, while in the red distribution, the matching size does not
substantially change when using either of the two algorithms
or time-to-distance mappings.

Overall, if we look at the γ95 distributions in Manhattan
(FIG. 5(a)), only at 1 p.m. we register a (very small) reduction
in the matching size (about 10% on average); for the other
time slots no significant reduction is actually observed, as
the reduction is consistently negligible. On the other hand,
looking at the γ95 distributions in Singapore (FIG. 6(a)), we
register a reduction of about 15% on average only for the
7 p.m. distribution; for the other time slots no significant
reduction is actually observed. The reduction in matching
size corresponds to the time slots with a smaller number of
taxi requests, and hence to the scenarios in which there are
fewer feasible candidates for a given match (see FIGURES 4,
5 (A), 6 (A)). In those cases, the shareability network is rather
sparse, so that a further pruning can induce some (indeed
small) reduction in the number of combined trips. When
considering γ40 distributions in cases with fewer trip requests
(for instance, looking at FIGURE 4, 1 p.m. for Manhattan and
7 p.m. for Singapore), this sparsity is even more extreme and
the matching found by N can be considerably smaller than the
one found by L (see respectively blue and green distributions
in FIGURES 5 (a), and 6 (a)). But in those (verifiable) cases
the N algorithm could automatically turn to the L algorithm,

thus preserving the speed and accuracy because of a sparse
graph GSN .

Vice versa, it is interesting to notice that our novel solution
performs very well in situations of traffic congestion (the
so-called “rush time”) where we can indeed register a win-
win situation: (a) the same matching size as in the legacy
algorithm, and (b) much faster response time, and especially
when compared to the legacy solution which is characterized
by long computation latencies, as shown next.

FIGURES 5(b) and 6(b) show the matching size reduction
y = (ML−MN)/ML as a function of the achieved time speed
up x = TL/TN in both Manhattan and Singapore. Clearly, an
higher speed up x and a lower matching size reduction y is
desired. Looking at FIGURES 5(b) and 6(b), the speed up is
very high in the case of γ40, showing an implicit trade-off
between the size of the matches found and the speed up factor.
However, with a negligible matching size reduction, our N is
often up to 3 times faster than L in the case of Manhattan and
up to 5 times faster than N in the case of Singapore.

The reason for the achieved speed-up can be immediately
clarified looking at FIGURES 5(c) and 6(c). For each experi-
ment we draw a circle at position indicated by the reduction of
evaluated distances x = (SL−SN)/SL and the feasible matches
reduction y = (FL − FN)/FL. Both these plots highlight the
reasons behind our time speed up, which allowed us to process
thousands of requests in just few seconds. On one hand, this
is clearly due to the reduction of the number of evaluated
shortest path queries of N with respect to L. On the other hand,
as y corresponds to the reduction of the size of GSN (i.e.

11

the number of feasible matches) we again impact positively
on time speed up, since a sparsification of the shareability
network translates into a faster execution of the final maximum
matching algorithm. We also note that the shareability network
produced using γ40 is in general smaller than the one produced
using γ95. In any case, both for γ40 and γ95, our new algorithm
reduces the number of distance queries of one or two orders
of magnitude.

IX. CONCLUSION

In this paper we have presented a novel locality filter which
we have leveraged to implement a new and more efficient ride
sharing algorithm which improves the state-of-the-art in [7].
Experiments over two city graphs of Manhattan and Singapore
showed that our solution is very efficient in practice and robust
under various parameter settings and time slots.

The computational delay incurred by our ride sharing solu-
tion is negligible (roughly 1 second every 1000 input trips),
especially when compared with the time delay imposed by the
parameters ∆ and δ, which the authors of [7] called quality of
service and time window (see the introduction). As a result, the
delay experienced by a potential customer of our ride sharing
system is only dominated by: (1) the waiting for the batch δ,
and (2) the extra delay (at most ∆) introduced when being
served together with another customer.

We notice that our locality filtering approach could be
applied not only to speed up the trip-to-trip matching (as
largely discussed throughout this paper), but also to solve
the trip-to-vehicle matching: aka the minimum fleet problem
[8], which consists of finding the minimum number of taxi
cabs to serve a set of taxi requests. In this case, we can
again figure out to use a locality filtering technique which
at each iteration: (1) selects for each taxi driver a set of
n candidate trip requests (e.g. the closest), (2) populates a
shareability network keeping track of opportunities for a trip-
to-vehicle match, and (3) finally executes a matching algorithm
on top of this shareability network to compute the optimal fleet
dispatching scheme.

REFERENCES

[1] H. Wang and H. Yang, “Ridesourcing systems: A framework and
review,” Transportation Research Part B: Methodological, vol. 129, pp.
122–155, 2019.

[2] M. W. Levin, K. M. Kockelman, S. D. Boyles, and T. Li, “A general
framework for modeling shared autonomous vehicles with dynamic
network-loading and dynamic ride-sharing application,” Computers,
Environment and Urban Systems, vol. 64, pp. 373 – 383, 2017.

[3] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle assign-
ment,” Proceedings of the National Academy of Sciences, vol. 114, no. 3,
pp. 462–467, 2017.

[4] A. Mourad, J. Puchinger, and C. Chu, “A survey of models and
algorithms for optimizing shared mobility,” Transportation Research
Part B: Methodological, vol. 123, pp. 323 – 346, 2019.

[5] V. Ghilas, E. Demir, and T. V. Woensel, “The pickup and delivery
problem with time windows and scheduled lines,” INFOR: Information
Systems and Operational Research, vol. 54, no. 2, pp. 147–167, 2016.

[6] B. Li, D. Krushinsky, H. A. Reijers, and T. Van Woensel, “The share-
a-ride problem: People and parcels sharing taxis,” European Journal of
Operational Research, vol. 238, no. 1, pp. 31 – 40, 2014.

[7] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and C. Ratti,
“Quantifying the benefits of vehicle pooling with shareability networks,”
Proceedings of the National Academy of Sciences, vol. 111, no. 37, pp.
13 290–13 294, 2014.

[8] M. Vazifeh, P. Santi, G. Resta, S. Strogatz, and C. Ratti, “Addressing
the minimum fleet problem in on-demand urban mobility,” Nature, vol.
557, 05 2018.

[9] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path
distance estimation in large networks,” in Proceedings of the 18th ACM
Conference on Information and Knowledge Management, ser. CIKM ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
867–876.

[10] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. Werneck, Route Planning in Transporta-
tion Networks, 11 2016, vol. 9220, pp. 19–80.

[11] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck, “Highway
dimension, shortest paths, and provably efficient algorithms,” in Pro-
ceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’10. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2010, pp. 782–793.

[12] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact routing
in large road networks using contraction hierarchies,” Transportation
Science, vol. 46, no. 3, p. 388–404, Aug. 2012.

[13] M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang, and
S. Koenig, “Ridesharing: The state-of-the-art and future directions,”
Transportation Research Part B: Methodological, vol. 57, pp. 28 – 46,
2013.

[14] X. M. Chen, M. Zahiri, and S. Zhang, “Understanding ridesplitting
behavior of on-demand ride services: An ensemble learning approach,”
Transportation Research Part C: Emerging Technologies, vol. 76, pp.
51 – 70, 2017.

[15] R. Abe, “Introducing autonomous buses and taxis: Quantifying the
potential benefits in japanese transportation systems,” Transportation
Research Part A: Policy and Practice, vol. 126, pp. 94 – 113, 2019.

[16] L. Rayle, D. Dai, N. Chan, R. Cervero, and S. Shaheen, “Just a
better taxi? a survey-based comparison of taxis, transit, and ridesourcing
services in san francisco,” Transport Policy, vol. 45, pp. 168 – 178, 2016.

[17] Y. M. Nie, “How can the taxi industry survive the tide of ridesourc-
ing? evidence from shenzhen, china,” Transportation Research Part C:
Emerging Technologies, vol. 79, pp. 242 – 256, 2017.

[18] Y. Wang, B. Zheng, and E.-P. Lim, “Understanding the effects of taxi
ride-sharing — a case study of singapore,” Computers, Environment and
Urban Systems, vol. 69, pp. 124 – 132, 2018.

[19] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous vehicle
fleet sizes required to serve different levels of demand,” Transportation
Research Record, vol. 2542, no. 1, pp. 111–119, 2016.

[20] A. Simonetto, J. Monteil, and C. Gambella, “Real-time city-scale
ridesharing via linear assignment problems,” Transportation Research
Part C: Emerging Technologies, vol. 101, pp. 208 – 232, 2019.

[21] V. Pandey, J. Monteil, C. Gambella, and A. Simonetto, “On the needs
for maas platforms to handle competition in ridesharing mobility,”
Transportation Research Part C: Emerging Technologies, vol. 108, pp.
269 – 288, 2019.

[22] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in Experimental Algorithms, C. C. McGeoch, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 319–333.

[23] H. Hosni, J. Naoum-Sawaya, and H. Artail, “The shared-taxi problem:
Formulation and solution methods,” Transportation Research Part B:
Methodological, vol. 70, pp. 303 – 318, 2014.

[24] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for
dynamic ride-sharing: A review,” European Journal of Operational
Research, vol. 223, no. 2, pp. 295 – 303, 2012.

[25] Z. Bian, X. Liu, and Y. Bai, “Mechanism design for on-demand first-
mile ridesharing,” Transportation Research Part B: Methodological, vol.
138, no. C, pp. 77–117, 2020.

[26] A. Biswas, R. Gopalakrishnan, T. Tulabandhula, K. Mukherjee, A. Me-
trewar, and R. S. Thangaraj, “Profit optimization in commercial rideshar-
ing,” in Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, ser. AAMAS ’17. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2017, p.
1481–1483.

[27] M. Asghari and C. Shahabi, “An on-line truthful and individually
rational pricing mechanism for ride-sharing,” in Proceedings of the 25th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ser. SIGSPATIAL ’17. New York, NY, USA:
Association for Computing Machinery, 2017.

[28] J. Hall, C. Kendrick, and C. Nosko, “The effects of uber’s surge pricing:
A case study,” The University of Chicago Booth School of Business,
2015.

12

[29] F. Wang and Y. Xu, “Estimating o–d travel time matrix by google
maps api: implementation, advantages, and implications,” Annals of GIS,
vol. 17, no. 4, pp. 199–209, 2011.

[30] P. Amirian, A. Basiri, and J. Morley, “Predictive analytics for enhanc-
ing travel time estimation in navigation apps of apple, google, and
microsoft,” in Proceedings of the 9th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, ser. IWCTS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
31–36.

[31] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp.
349–360.

[32] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest
path queries,” in Algorithms – ESA 2005, G. S. Brodal and S. Leonardi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 568–
579.

[33] R. Tachet, O. Segarra, P. Santi, G. Resta, M. Szell, S. Sobolevsky,
S. H. Strogatz, and C. Ratti, “Scaling law of urban ride sharing,” Nature
Scientific Reports, no. srep42868, 2017.

[34] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In transit
to constant time shortest-path queries in road networks,” in ALENEX.
SIAM, 2007.

[35] J. Arz, D. Luxen, and P. Sanders, “Transit node routing reconsidered,” in
Experimental Algorithms, V. Bonifaci, C. Demetrescu, and A. Marchetti-
Spaccamela, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 55–66.

[36] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A
hub-based labeling algorithm for shortest paths in road networks,”
in Experimental Algorithms, P. M. Pardalos and S. Rebennack, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 230–241.

[37] T. Columbus and R. Bauer, “On the complexity of
contraction hierarchies,” Student Thesis, available at
https://i11www.iti.kit.edu/_media/teaching/theses/
studienarbeittobiascolumbus.pdf, 2009.

Francesco Tosoni is a Ph.D. Student in Computer
Science and a member of the Acube laboratory
directed by professor Paolo Ferragina. His research
interests range from algorithms for real world appli-
cations to information retrieval and big data analysis.
He received in 2020 the M.Sc. degree in Computer
Science and Networking jointly from the University
of Pisa and from the Sant’Anna School of Advanced
Studies. His master’s thesis was focused on the
development of locality filtering techniques applied
to on-demand urban mobility problems.

Paolo Ferragina is Professor of Algorithms at the
University of Pisa, where he serves also as Vice-
Rector on ICT. He funded and leads the Acube
Lab, where researchers design algorithms for Big
Data, mainly in the form of texts and graphs, in
collaboration with companies worldwide: Google,
Bloomberg, Tiscali, Yahoo!, ST Microelectronics,
etc.. His research results got four US Patents and
some international awards: e.g. “1995 Best Land
Transportation Paper Award” from IEEE Vehicu-
lar Technology Society; “1997 EATCS PhD Thesis

Award”; “1997 Philip Morris Award on Science and Technology”; and three
Google Research Awards. He’s serving in the Editor Board of the Journal
of Graph Algorithms and Applications (JGAA), he was in the Steering
Committee of the European Symposium on Algorithms (ESA), and one of the
Area Editors of two Encyclopedias: Algorithms and Big Data Technologies
(Springer). He (co-)authored more than 160 (refereed) publications, some
books and chapters, achieving an H-index of 31 on Scopus and more than
8500 citations on Google Scholar.

Andrea Marino is Assistant Professor at the Univer-
sity of Florence. Previously, he was Assistant Pro-
fessor at the University of Pisa, post-doc at the Lab-
oratory of Web Algorithmics of University of Milan.
He got a PhD in Computer Science at University of
Florence and his thesis was awarded the best Italian
PhD Thesis on “Algorithms, Automata, Complexity
and Game Theory” in 2013 according to the Italian
Chapter of the EATCS (European Association for
Theoretical Computer Science). His current research
interests concern with graph algorithms and their

applications to enumeration, web crawling, bioinformatics, and real-world
graph analysis.

Giovanni Resta is a Senior Researcher at the Istituto
di Informatica e Telematica (IIT-CNR) in Pisa, Italy.
His past research interests include computational
complexity (especially in relation to linear algebra
problems), parallel and distributed computing, and
the modeling and analysis of wireless ad hoc net-
works. In the last few years his research area broad-
ened to include intelligent transportation systems
and smart mobility. In particular he is interested
in optimization problems related to ride sharing
potential and fleet reduction.

Paolo Santi is Research Director at the Istituto
di Informatica e Telematica, CNR, Pisa, and af-
filiated with MIT Senseable City Lab where he
leads MIT/Fraunhofer Ambient Mobility initiative.
Dr. Santi holds a “Laurea” degree and the PhD in
computer science from the University of Pisa, Italy.
Dr. Santi is a member of the IEEE Computer Society
and has recently been recognized as Distinguished
Scientist by the Association for Computing Machin-
ery. His research interest is in the modeling and
analysis of complex systems ranging from wireless

multi hop networks to sensor and vehicular networks and, more recently,
smart mobility and intelligent transportation systems. In these fields, he has
contributed more than 140 scientific papers and two books.

13

APPENDIX A
DISTANCE COMPUTATION TECHNIQUES

The Transit Node Routing (TNR) approach [34], [35] is
characterized by almost constant-time queries especially for
long paths but, in turns, it results in a much slower (sometimes
not scalable) preprocessing phase. A key component of TNR
is the so-called locality filter, which is able to discriminate
between close and far destinations. We will borrow from [34]
the term “locality filter” to denote in this paper a completely
new spatio-temporal filtering approach. The Contraction Hier-
archies (CH) [22] is another well known distance-estimation
technique which builds upon the observation that road net-
works are usually hierarchical. So the speed-up in the shortest
path computations is achieved by creating “shortcuts” in a
preprocessing phase, which are then used during a shortest-
path query either to skip over “unimportant” crossroads, or
to save the distance between two important junctions so that
the algorithm doesn’t have to explore the full path between
these junctions at query time. Another approach is called
Hub-Labelling method (HL) [36]. A label L(V) (i.e. string
containing distance information) is pre-computed in advance
for every node v. At query-time the distance between two
nodes u and v is estimated looking only at L(u) and L(v)
labels. This labelling method supports very fast queries, as
it requires about five accesses in main memory according to
some experimental results [10]. A drawback with respect to
other state-of-the-art approaches is the pre-processing time
as well as the space occupancy. In fact, some experiments
conducted over the “Western Europe” road map [10] have
shown that, with respect to CH, the preprocessing phase of
HL is roughly 7 times slower and generates 47 times larger
data structures.

Lastly, the Pruned Landmark Labeling (PLL) [31] has been
recently proposed to exploit the (almost) planar structure of
road maps. However, this approach deals with undirected
graphs, hence it is unsuitable for real road networks.

APPENDIX B
SPATIO-TEMPORAL CORRELATION

We report herein the result of our experimental analysis
described in SECTION V. The scatter plots of FIGURE 7 refer
to the cities of (a) Manhattan, and (b) Singapore.

More in detail, each of the 103 blue dots refers to a shortest
path between two random locations either in (a) Manhattan,
or in (b) Singapore. Traversal times are measured in minutes.
Distance values are computed as Euclidean distances by using
global positioning system (GPS) coordinates, and hence are
pure numbers. It is straightforward to note that time and
distance values exhibit a strong correlation, which motivates
us to approximate distance values (y-axis) by means of time
values (x-values) via a linear regression approach. Indeed, the
green line in the plots represents a linear approximation of
d = d(τ) as a · τ + b, where d stands for distances, and τ
stands for traversal times; a and b represent the slope and
intercept respectively. Using this linear regression technique
we obtained a coefficient of determination R2 = 0.83 for

(a) Manhattan (NYC)

(b) Singapore

FIG. 7: Plots (a) and (b) report Euclidean distance values (y-
axis) as a function of travel time values (x-axis).

Manhattan (a = 3.63·10−3, b = −1.39·10−2), and R2 = 0.85
for Singapore (a = 6.55 · 10−3, b = −3.40 · 10−2).

During our experiments we have registered a rather large
gap between the distance values corresponding to the 100-
percentile and the 95-percentile of the distributions in FIG-
URE 7. This suggests that very few shortest-paths with duration
bounded by ∆S manage to cover large distances. Further-
more, we noticed clustered occurrences of distance values,
concentrated in small ranges. This clustering effect further
justifies our good approximation of travelling times in cities
with Euclidean distances.

As a result of these two observations, we have limited
the range of distances covered by trips that travel for less
than ∆S time to the only ones that have destinations not
farther than l95. This will discard just the 5% of the valid
paths. As in SECTION V we use the symbol γ to denote
the time-to-distance mapping. From the linear regression of
FIGURE 7 we can derive an approximation for the time-to-
distance association γ as:

γ(∆S) ≈ a · 0.95 ·∆S + b (11)

where a and b represent the slope and the intercept (resp.) of
the green line.

14

APPENDIX C
FROM TIME CONDITIONS TO NECESSARY SPACE

CONDITIONS

Claim 5.1 is central in our algorithm design as it allows
us to re-formulate time-based queries in terms of (almost)
equivalent, but more time efficiently computable, space-based
queries.

Repeating the percentile preprocessing for different time
values ∆S (e.g. multiples of 5 minutes) we collected enough
samples which are then interpolated to define γ-mappings for
every continuous time value.

During our investigation we have also specialized the
mapping γ for different districts within the city graph. This
specialization turns out to be particular effective to capture
the complexity and heterogeneous nature of speed networks,
especially for maps from the old world (i.e. Europe, Asia),
where there can be substantial differences in registered vehicle
speeds in various city areas (i.e. downtown versus periphery).
For details, see the Appendix to the original paper [7].

Leveraging the time-to-distance mapping γ and Claim 5.1,
we can thus reformulate the time-based conditions for trip
matches of SECTION IV into geometric-based conditions, as
follows.

Let us start by considering the matches of the first kind, and
refer to FIG. 2 (A) where the trips Ti and Tj are indicated with
dashed lines and the solid line is used to denote the combined
trip Tij . Without loss of generality, we restrict ourselves to
the case in which the origin of Tij coincides with the origin
oi of the trip Ti.

The set of conditions A(i, j) introduced in SECTION IV
corresponds exactly to the (necessary and sufficient) conditions
for the realization of a match of the first kind. In fact, two
necessary conditions for A(i, j) are:

{
tt(oi, oj) + tt(oj , di) ≤ tt(oi, di) + ∆ (12)
tt(oj , di) + tt(di, dj) ≤ tt(oj , dj) + ∆ (13)

Indeed, Eq. 12 corresponds to Eq. 2, whereas Eq. 13
is derived through the combination of Eq. 1 and Eq. 3,
remembering that atj = stj + tt(oj , dj).

In the symmetric case where the combined trip Tij has
its origin in oj rather than in oi, we can follow similar
considerations to derive conditions A(j, i).

Let then Di = γ(∆) be the the distance value associated to
the tolerance parameter ∆ of SECTION I, derived by means of
the time-to-distance mapping γ. Notice that Di depends on i
whereas ∆ does not depend on i; this is a direct consequence
of the fact that the time-to-distance mapping γ has been
specialized for different districts, and hence the distance Di

associated to ∆ is not uniform within the city graph GA. For
simplicity of exposition, we have nonetheless removed any
reference in γ to the district.

Furthermore, let li = γ(tt(oi, di)) be the distance associated
with the expected service time tt(oi, di) of trip Ti. The
parameters Dj and lj can be defined in a similar manner.

Because of the definition of γ-mapping, we can reformulate
Eq. 12 and Eq. 13 in geometric queries specified in the

following lemma. Here the reformulation is “approximate”
because the γ-mapping reflects the time-to-distance relation up
to the 95% of the paths in our city graphs. In the experimental
section we will evaluate the accuracy of this approximation
over our dataset of city graphs referring to Manhattan and
Singapore.

Lemma C.1: It is possible to translate the feasibility con-
dition A(i, j) of a matching of the first kind into the fol-
lowing (approximately equivalent) geometric-based system of
inequalities. {

d(oi, oj) + d(oj , di) ≤ li +Di (14)
d(oj , di) + d(di, dj) ≤ lj +Dj (15)

We can provide a geometric interpretation of the first (resp.
the second) inequality above: it corresponds to the membership
of the node/point oj (resp. di) to an ellipse with oi and di as
focus (resp. oj and dj) – see FIGURE 2-A.

We now focus on the matches of the second kind. Again,
without loss of generality, we restrict ourselves to the analysis
of the case in which the combined trip Tij includes in its
entirety the optimal (i.e. shortest) path for the trip Tj (the
case of Tij including the shortest-path for Ti boils down
to analogous considerations). The feasibility of a combined
match of the second kind is determined by the two conditions
defined in B(i, j) (see SECTION IV). Remembering that
ati = sti + tt(oi, di), Eq. 5 for B(i, j) can be re-formulated
as:

tt(oi, oj) + tt(oj , dj) + tt(dj , di) ≤ tt(oi, di) + ∆ (16)

Now let a, b, c be three arbitrarily chosen nodes/locations
in the city network. For the minimum traversal time tt(a, c)
from a to c, the relation tt(a, c) ≤ tt(a, b)+tt(b, c) must hold.
Given this consideration as well as Eq. 16, we can derive the
following system of inequalities:

{
tt(oi, oj) + tt(oj , di) ≤ tt(oi, di) + ∆ (17)
tt(oi, dj) + tt(dj , di) ≤ tt(oi, di) + ∆ (18)

which represents a set of necessary conditions for the realiza-
tion of Eq. 16, and hence necessary conditions for B(i, j).

In the following, using again the notations Di and li
introduced above, we approximate the time-based conditions
17 and 18 via the geometric queries specified in the following
lemma.

Lemma C.2: It is possible to translate the feasibility con-
dition B(i, j) of a matching of the second kind into the
following (approximately equivalent) geometric-based system
of inequalities.{

d(oi, oj) + d(oj , di) ≤ li +Di (19)
d(oi, dj) + d(dj , di) ≤ li +Di (20)

We can provide a geometric interpretation of this system
of inequalities which correspond to the membership of the
nodes/points oj and dj to an ellipse with oi and di as focus
– see FIGURE 2-B. The ellipse for this second kind match is
the very same ellipse that we discussed for first kind matching
cases.

15

APPENDIX D
ALGORITHM DESCRIPTION

Below, we present the pseudocode of the two algorithms
which implement our ride sharing solution. The pseudocode
of ALGORITHM 1 logically precedes the pseudocode of AL-
GORITHM 2, i.e., the former must be executed before the latter.

In ALGORITHM 1 we use range search in order to find – for
each trip Ti – a list of destinations dj falling in the geometric
area defined by the ellipse of Ti (we will discuss more deeply
the latter aspect in SUBSECTION D-C). In ALGORITHM 2 we
run a similar procedure in order to find a list of origins oj
falling in the geometric area of trip Ti. The procedure of
ALGORITHM 2 then computes for each trip Ti two candidate
sets for a match of the first kind and of the second kind. These
candidates are then verified by means of an explicit check of
conditions A(i, j) and B(i, j). For the pairs (Ti, Tj) which
result in a feasible match, the corresponding edge is inserted in
the (initially empty) shareability network GSN . The procedure
of ALGORITHM 2 terminates with the execution of a maximum
matching algorithm that computes the final set of combined
trips.

Let us now dig into the algorithmic details of our approach
by focusing in SECTION D-A on ALGORITHM 1, and in
SECTION D-B on ALGORITHM 2.

A. Computing destinations close to each trip

We assume that trips in T are stored in a vector T [1, n]
that is ordered for increasing st∗ (starting time). Moreover,
as already anticipated, we consider the online model in our
study, and hence we fix the time window δ which defines, in
a hypothetical ride sharing service, the maximum latency that a
user can tolerate in waiting for an answer from the ride sharing
system. Thus, for each trip Ti, we limit the search for trips Tj

shareable with Ti to just those for which |stj − sti| ≤ δ.
For the concern – instead – of the oracle model (aka offline

model, see SECTION III), we know that the time window
parameter δ should be set to +∞, or to a sufficiently high
value. However, this might induce the unreasonable matching
of trips which are far away in time. So it is better to limit our
following discussion to the case of a finite δ, keeping in mind
that the higher is its value, the larger is the computational cost
of the algorithm for the creation of the shareability network,
which would get increasingly denser. In conclusion, the actual
value of δ in the Oracle model must be chosen carefully to
trade computational time against the significance/optimality of
the matching result.

In ALGORITHM 1 we maintain three indexes l, m and r
(l ≤ m < r) that iterate over the vector T , and maintain the
following invariant. At the m-th iteration (initially l = m =
1, r = 2), trip Tm is processed and the following conditions
hold:

1) l is the leftmost index in the array T for which the
relationship stl ≥ stm − δ holds;

2) r is the leftmost index in the array T for which the
relationship str > stm + δ holds;

3) we denote by Cd the set of coordinates p∗ =
(plat∗, plon∗), expressed in terms of latitude-longitude

Algorithm 1 Compute destinations close to each trip.

Require: T , δ, ∆
Ensure: DT,DT−1

1: n← |T |
2: sort T for increasing starting time
3: DT and DT−1 are new inverted lists.
4: Cd = ∅
5: l = 1, r = 2
6: for m = 1 to n do
7: while stl < stm − δ do ▷ managing trips starting

before trip Tm

8: ++ l
9: remove dl from Cd

10: end while
11: while r ≤ n and str ≤ stl + δ do ▷ managing trips

starting after trip Tm

12: insert dr into Cd

13: ++ r
14: end while
15: R = compute rectangle(m,∆) ▷ compute

rectangle wrapping Tm

16: N = range search(Cd, R) ▷ retrieve destinations
close to Tm

17: for each trip-identifier k with N do ▷ insert in the
inverted lists

18: if scalar product(dm − om,dk − ok) > 0 then ▷
cosine similarity filter

19: insert Tk in DT [m]
20: insert Tm in DT−1[k]
21: end if
22: end for
23: end for
24: return DT,DT−1

pairs, of destinations of the trips Tk for each k ∈
[l, r − 1].

After each iteration:
• the index m is incremented by one, and m ≤ n;
• the indexes l and r are (possibly) incremented to new

values l′ > l and r′ > r which guarantee the conditions
(1) and (2) above;

• the set Cd is updated by removing the coordinates of
the destinations of the trips Tu, with l ≤ u < l′; and by
inserting the destinations of the trips Tv , with r ≤ v < r′,
so to maintain the condition (3) above.

During the m-th iteration, we perform a search for the
destinations of trips Tk, l ≤ k < r, which fall in the geometric
proximity of trip Tm. We keep track of the retrieved points in
the list DT [m] described in SECTION V, which contains the
trip Ta iff its destination da is “geometrically close” to trip
Tm. While constructing DT , we also construct the inverted
list DT−1 which stores in DT−1[m] all trips that are “close”
to the destination dm of Tm. Therefore, DT [m] is indexed
by the full trip Tm, whereas DT−1[m] is indexed only by its
destination dm.

In Line 18 a further (geometric-based filtering) condition is

16

checked before the insertion of Tk into DT and DT−1. More
precisely, we discard trip Tk if its direction is rotated for more
than 90 degrees with respect to the direction of trip Tm. This
filter, which is both very simple and effective, is implemented
by a simple check on the sign of the scalar product between
the two vectors dm − om and dk − ok.

We have therefore proved that, for each pair of trips
Tk, Tm ∈ T , Tk ∈ DT [m] iff Tm ∈ DT−1[k]. It is worth
remarking that trips are processed in an increasing order of
identifiers, via the iterator m, hence the elements are inserted
in DT−1 in increasing order, and so each list DT−1[m] is
ordered too.

Line 15 makes use of a sub-procedure called
compute_rectangle which takes as input the trip-
identifier m, and returns a set of points describing the area
“wrapping” trip Tm. Here, we are adopting a conservative
approach which turns the search within ellipses into a search
within rectangles, as illustrated in the previous FIGURE 2.
This choice is dictated by the fact that the Boost C++
Library offers a template type, called ring, which allows
to describe polygons (hence, rectangles) as a sequence of
vertices. We then use compute_rectangle in Line 15
to return the rectangle “wrapping” the trip Tm. More details
about this step will be provided in SUBSECTION D-C.

Finally, Line 16 makes use of procedure range_search
that accepts as formal parameters: a set of locations Cd

and a rectangle R (computed in the previous step via
compute_rectangle) and returns the subset of locations
in Cd which are contained within R. The set of locations
retrieved by this call are the ones satisfying the first geometric
relation of LEMMA 5.2 (or, equivalently, the first equation of
LEMMA 5.3). In both cases, the role of trip Tm of ALGO-
RITHM 1 is the one of trip Ti in the geometric relationship;
the retrieved trip-identifiers correspond then to the trips Tj

satisfying the two geometric relationships above.

B. Computing the shareability network
ALGORITHM 2 is executed after ALGORITHM 1 to populate

the shareability network (SN) by leveraging the locality infor-
mation stored in the posting lists DT and DT−1 (see Section
VI for their definitions). This computation takes advantage
also of the list OT , described in SECTION V and derived by
following the same approach used for DT in ALGORITHM 1
as follows.

Specifically, we introduce the point set Co containing the
coordinates, expressed in terms of latitude-longitude pairs, of
the origins of the trips Tk, with k ∈ [l, r − 1] (instead of trip
destinations as in Cd). However, differently from DT , OT [m]
is computed on the fly at each iteration m, and discarded as
m moves to the next value, so that the corresponding memory
portion can be safely deallocated. Another difference between
DT and OT is that the latter does not need its inverse OT−1.

ALGORITHM 2 uses again the three iterators l, m and r,
where the parameter m is the one driving the scan of DT
and OT ; and it maintains the same invariant as the one in
ALGORITHM 1.

Hence, at iteration m, we have available OT , DT and
DT−1. These three inverted lists are passed to a function

Algorithm 2 Compute the shareability network GSN

Require: T , δ, ∆, DT , DT−1

Ensure: GSN

1: n← |T |
2: GSN is a new undirected graph
3: VSN ← {T1, T2, ..., Tn}
4: ESN ← ∅
5: Co = ∅
6: l = 1, r = 2
7: for m = 1 to n do
8: while stl < stm − δ do ▷ managing trips starting

before trip Tm

9: ++ l
10: remove ol from Co

11: end while
12: while r ≤ n and str ≤ stl + δ do ▷ managing trips

starting after trip Tm

13: insert or into Co

14: ++ r
15: end while
16: OT [m] is a new vector of trip-identifiers
17: R = compute rectangle(m,∆) ▷ compute

rectangle wrapping Tm

18: N = range search(Co, R) ▷ retrieve origins close
to Tm

19: for each trip-identifier k ∈ N do ▷ compute OT [m]
on the fly

20: insert Tk in OT [m]
21: end for
22: C1k, C2k = find candidates(

OT [m], DT [m], DT−1[m])
▷ Candidates for a

match with Tm

23: F1k = check candidates 1k(C1k,m)
24: F2k = check candidates 2k(C2k,m)
25: for each trip-identifier k ∈ F1k do
26: insert (Tm, Tk) in ESN

27: end for
28: for each trip-identifier k ∈ F2k do
29: insert (Tm, Tk) in ESN

30: end for
31: end for
32: return GSN

find_candidates which deploys geometric proximity in-
formation to determine the two sets of feasible candidates for
a match with trip Tm of the first and of the second kind,
as defined in SECTION V. ALGORITHM 2 uses the symbols
C1k and C2k to denote these candidate sets. As a remark, we
notice that a feasible match between Tm and Tk is discovered
for both cases as follows: if the passenger of trip Tm is
picked up as the first passenger (and hence before the one
of Tk), then the candidate match is discovered at iteration
m; otherwise, if the passenger of trip Tm is picked up as
the second passenger after the one of Tk, then the candidate
match is discovered at iteration k. This remark leads to the
introduction of another invariant condition, which adds to the

17

three invariant conditions of ALGORITHM 1:
4) At iteration m we have already discovered all the trips

Tk that could be combined with Tm and whose first
passenger to be picked up is the one of Tk, with k < m.

The key property of our approach is that the set C1k∪C2k is
argued to contain only a small fraction of the whole quadratic
number of compatible trip pairs of the city graph under con-
sideration. So the last step is to run a (costly) explicit check on
the candidates in that set. This is implemented in procedures
check_candidates_1k and check_candidates_2k.

The following subsections will explain the details of the
procedures employed in ALGORITHMS 1 and 2.

C. Range queries

Range queries are at the core of ALGORITHM 1 (lines
15-16) and ALGORITHM 2 (lines 17-18). There, we need
to compute first the parameters of the ellipse including the
examined trip Ti, according to the rules of SECTION V, and
then turn that ellipse into a rectangle because the Boost
C++ library does not offer specific support for elliptic
range search. For the rectangle associated with the geometric-
proximity region of a trip Ti, the following considerations
hold:

• the point that bisects the diagonals of the rectangle
corresponds to the center of the ellipse, and so to the
midpoint of the segment that joins oi and di;

• the rotation angle Θ of the rectangle and the one of the
ellipse are the same; and

• the dimensions of the rectangle correspond to the dimen-
sions of the axes of the ellipse.

FIGURE 2 pictorially represents some elliptic locality areas
as well as the related rectangles. For the li and Di values,
we use the “typical distances” which are precomputed off-
line for each location in the city graph using the methodology
presented in SECTION V. We have indeed already seen that
we leverage the time-to-distance mapping γ in order to:
(a) dimension the ellipses (rectangles) wrapping each trip
(SECTION V), and (b) execute range search queries within
those ellipses/rectangles in order to find feasible candidates
for a match (see the range_search procedure call in
ALGORITHMS 1 and 2).

While solving the ride sharing problem, we often need
to map continuous time values into the discrete set of pre-
computed distance values. In our implementation we proceed
following this simple idea: we precompute typical distances
for time values which are all multiple of 5 minutes, using
the methodology of SECTION V. At query time, in the
compute_rectangle procedure of ALGORITHMS 1 and
2 we first approximate each time values t to a the closest
upper bound t′ ≥ t which is multiple of 5 minutes; then,
we estimate the distance d associated to t by using the typical
distance d′ precomputed for t′. Clearly this can be regarded as
a conservative estimation, given that t ≤ t′ implies d ≤ d′, and
hence we will query larger ellipses (rectangles), and retrieve
consequently more retrieved candidates for a match.

Given the rectangle denoting the proximity region of
Ti, the range_search procedure is implemented via an

R-tree data structure, as the one offered by the Boost
C++ Library, which is able to retrieve the points within
the input rectangle in a time which is proportional to the
number of retrieved points plus a term that scales with the
logarithm of the number of indexed points (i.e. trips). Boost
offers different ways to instantiate the R-tree data structure.
One of the most important aspects of this setting is the
choice of the algorithm for its load balancing: the more
sophisticated algorithms result in a better balancing and hence
in an improved query time, at the cost however of a worse
update performance.

a) Combined trips of the first kind: Referring to FIGURE
2 (A), let us consider the trips Ti (colored red) and Tj

(colored blue). As shown in the picture, and commented in
SUBSECTION V-A, the combination is possible whether the
destination di of Ti is contained in the blue ellipse and the
origin oj of Tj is contained in the red ellipse.

Using the inverted lists OT and DT , we can rephrase the
previous two conditions for the combination of Ti and Tj in
a trip whose origin coincides with the origin of the first trip,
only if:

Ti ∈ DT [j] and Tj ∈ OT [i] (21)

or – equivalently – only if:

Tj ∈ DT−1[i] and Tj ∈ OT [i] (22)

It is not difficult to notice that Eq. 22 corresponds to
the geometric-based condition stated in LEMMA 5.2 of SEC-
TION V.

Hence, the retrieval of the candidates of the matches of
the first kind boils down to computing the set intersection
DT−1[i]∩OT [i]. This operation is very fast because we know
that DT−1[i] is sorted, and OT [i] can be sorted too, so that
the intersection can be executed in a merge-sort-like fashion.

b) Combined trips of the second kind: Referring to
FIGURE 2 (B), let us consider again the trips Ti (colored red)
and Tj (colored blue). In order to generate a combined trip
of the second kind, both the destination dj and the origin oj
of Tj must be contained in the red ellipse. By leveraging the
inverted lists OT and DT , we can rephrase these conditions
as:

Tj ∈ DT [i] and Tj ∈ OT [i] (23)

This equation corresponds exactly to the geometric-based
condition stated in LEMMA 5.3 of SECTION V.

Hence, the retrieval of the candidates for the second-
kind match boils down to computing the set intersection
DT [i] ∩OT [i]. This operation corresponds to the retrieval of
all trips which have both origin and destination falling within
the ellipse surrounding trip Ti. In FIGURE 8 it is depicted an
example in which we represented with red dots the (A) origins
and (B) destinations retrieved during the range search within
the ellipse defined by trip Ti (which is represented by the red
dashed line).

18

(a) Range search over Co. (b) Range search over Cd.

FIG. 8: (a) and (b) depict a range search over the sets Co and
Cd, respectively.

Every dot in FIGURE 8 (a) corresponds to the origin of a
trip Tk with k ∈ [l, r − 1], whilst every dot in FIGURE 8
(b) represents a valid destination for those Tk. Every dot is
annotated with the id of the corresponding trip. The valid
candidates for B(i, j) are obtained by trip-ids retrieved by
intersecting the two (red ellipsoidal) range queries. According
to FIGURES (A)-(B), only trip T6 satisfies this property, which
corresponds to condition 23.

At the m-th iteration of ALGORITHM 1, the examined trip
is Tm and the range search of FIGURE 8 (B) is executed over
the set Cd which includes the destination of all trips Tk with
k ∈ [l, r − 1]. This computation creates the set DT [m].

At the m-th iteration of ALGORITHM 2, the examined trip
is Tm and the range search of FIGURE 8 (A) is executed over
the set Co which includes the origin of all trips Tk with
k ∈ [l, r − 1] (see definition in SUBSECTION D-B). This
computation creates the set OT [m] (line 16).

These two sets of trips are then used in the final part of
the procedure ALGORITHM 1 to retrieve the candidates for a
combined match of the second kind.

One more time, the set intersection (between OT [m] and
DT [m]) can be executed in a merge-sort-like fashion. For this,
we need first to sort OT [m] and DT [m]. We have that OT [m]
is already sorted (we have sorted it while computing first kind
candidates), and DT [m] can be sorted too.

As a final remark, we point out that subsections a) and
b) have explained how the two sets DT−1[m] ∩ OT [m] and
DT [m]∩OT [m] ∀m = 1, 2, ..., |T |, can be computed so that
the final part of ALGORITHM 2 can eventually retrieve the
candidate set of all first and second kind matches.

D. Further (on-the-fly) matching

Our algorithm can also be easily and seamlessly extended
in order to include on-the-fly matching with already matched
trips. Indeed, even when considering matched user, it is
actually possible for that user to sit in a empty-cruise taxi
for a portion of his travel towards the destination. Thus one
can think to extend matching conditions, which are expressed
in terms of ∆ in SECTION IV, in order to try to operate further
matching for those (empty) taxi cabs. It is enough to add in
the next batch of taxi requests also some mock requests, which
describe those partially combined paths, which can be further
combined. For these portions of paths:

• we already know the origin and the destination, as well
as the time schedule, i.e. starting and arrival times

• we re-compute the maximum tolerated delay as ∆′ ≤ ∆,
taking into account that the taxi user is already facing
some delay on the previously matched trip.

This dynamic approach offers the advantage to increase
the vehicle utilization, thus possibly leading to further fuel
and money savings. On the other hand, it is worth to notice
that dynamic approaches increase also the user discomfort
which have to face larger path delays, and also see their
scheduled path possibly re-scheduled abruptly while they are
experiencing the service. For these reasons we have not further
investigated the on-the-fly matching in the remainder of this
paper, hence limiting each taxi user to at most one single match
with any other user.

APPENDIX E
TIME AND SPACE COST

In the following three subsections we dissect the asymptotic
time and space complexity of our proposal in their main
parts. We will also compare this asymptotic cost with the
one required by the legacy all-to-all shortest path algorithm
adopted in [7].

A. Building time

First of all, we notice that our algorithm deploys some
sophisticate data structures, such as the R-tree or the Con-
traction Hierarchies (CH). The former is a well-known two-
dimensional range queries data structure. The latter are pre-
computed una tantum and then used by ALGORITHMS 1 and 2.

For evaluating the cost of the building time, we need to take
into account the following two contributions:

• The first one is given by the construction of CH, which
is a speed-up technique for finding shortest-paths within
a road map. A central component of the preprocessing
consists of computing a so-called contraction order by
means of shortcuts. Shortcuts enable to exploit some pre-
computed distances between important junctions within
the city graph so that, at query time, there is no need
to explore the full path between these junctions thus
saving time in its distance calculation. Given a city
graph GA and given an integer K, the problem of
finding a node ordering for GA such that the resulting
contraction hierarchy for GA has at most K shortcuts is
an NP-complete problem [37], and hence it is approached
through heuristics. The precomputation for CH turns out
to be very fast, as it takes few hundreds of milliseconds
for both the city graph of Manhattan and Singapore.

• The second one is the time needed to precompute the
time-to-distance association γ. This can be easily per-
formed by means of a pruned Dijkstra search around
each of the crossroads in the input city graph. Since
these statistics are used within our geometric-based filter,
their computation could tolerate some inaccuracies, so
it is possible to speed up the γ computation by means
of some proper sampling of the crossroads where these
statistics are estimated. For instance, it is possible to

19

sample a sufficiently large amount of random paths to
derive a linear approximation for γ, as it is reported
in FIGURE 7. Furthermore, there is no need to store
percentile values for each of the possible crossroads in
the city graph. In fact, one could consider clustering
groups of neighboring crossroads/nodes, and then select
for each of these clusters a representative node which
assumes the role of centroid for the cluster. Instead of
keeping statistics for all nodes, it is then possible to
restrict the time-to-distance association analysis to just
those centroids, thus saving both precomputing time and
occupied space.

B. Time complexity

Once the data structures have been built, ALGORITHMS 1
and 2 start their computation, and their overall time complexity
can be estimated as follows.

• For what concerns the shortest-path computations we
leverage the Contraction Hierarchies (CH) technique
[22], whose API has been recently enriched in order to
optimally solve many-to-many shortest-path calculations,
as needed by the ride sharing problem. It turns out that
both the legacy and the new approach execute Θ(|T |)
total CH queries. However, the number of involved end-
points in the two cases is remarkably different, as in
the legacy algorithm all the path-computations are 1-to-
|T | (or |T |-to-1), whereas our new approach restricts the
computation to a narrower set of C candidates, and hence
we run 1-to-C (or C-to-1), where C is not greater than
|T |, and possibly much smaller than |T | (C << |T |).
It goes without saying that the literature offers other
solutions to many-to-many shortest path calculations,
which are alternative to CH, and could be used for path-
queries. These other solutions could be adopted in place
of CH without changing the overall algorithmic structure
of our proposal, in which that computation is considered
as a black-box.

• The R-tree is a very efficient data structure for the
retrieval of points/objects within a rectangular area in the
Cartesian plane. Thanks to its self-balanced structure, the
R-tree guarantees to serve a range search in O(K logU)
time, where K is the number of retrieved trips and U
corresponds to the set of points on which the range-
search is performed. In our case, U is either |Co| or
|Cd|, and they are trivially upper bounded by the number
of input trips |T |. This upper bound turns out to be
a good estimate in the case of the Oracle model, in
which we are going to consider many more trips than in
the Online model, including those ones that will appear
in a possibly far “future”. The number K has been
denoted with |OT [i]| and |DT [i]| in the previous sections.
Consequently, the asymptotic cost for every range query
on the R-tree is O((|OT [i]|+ |DT [i]|) log |T |).

• Computing the set of feasible trip pairs requires the eval-
uation of Conditions (22) and (23). This needs to execute
the intersection between lists OT [i] and DT [i]. We have
already mentioned that a fast way to implement this

intersection is to first order those lists and then proceed
by means of a merge-based procedure which takes linear
time in the cardinality of the two merged sets. Overall,
the cost of an intersection is dominated by the cost of
the two sorting steps, thus O(|OT [i]| log |OT [i]|) and
O(|DT [i]| log |DT [i]|). This cost is in turn dominated by
the cost of the range-search queries above, and therefore
these sorting operations have no impact in the asymptotic
time analysis of our algorithm.

• Finally, we consider the cost of executing the maxi-
mum cardinality matching (MCM) algorithm over the
shareability network GSN . The time complexity of the
Edmond’s MCM algorithm is asymptotically equal to
Θ(mnα(m,n)), where m and n are the number of
nodes and edges (respectively) inserted into GSN by
ALGORITHM 2, whilst α(·) is a slow growing function
that is at most 4 for any feasible input size. As already
reported in the appendix to [7], the MCM algorithm takes
in practice just few seconds on the city of Manhattan and
thus can be considered negligible.

Let us denote with TMCM the time complexity for the
maximum matching calculation step. As just seen, the actual
cost TMCM depends on the dimension (in terms of number of
nodes and edges) of the SN.

We also denote with TCH the worst case time complexity
for a one-to-many distance computation within the city graph.

We finally have that the time complexity for the legacy
solution enriched with the CH strategy for path-queries can
be characterized by:

Told ≤ N · TCH + TMCM (24)

whilst our novel solution solves the same problem in:

Tnew ≤ N · TCH + TMCM +N C logN (25)

Let’s comment out the result of Eq. 24 and 25 above. In
the equations we have used N = |T | to denote the number
of trip requests; C denotes instead the average number of
(first and second kind) candidates retrieved at each iteration
of ALGORITHM 2 (C << N). The logarithmic term in
Tnew is introduced by the Θ(N) r-tree queries executed in
ALGORITHMS 1 AND 2. The logarithmic term depends on the
number on the input dimension, and can be de facto upper
bounded by a small constant (e.g. 13 for a 20 minutes batch
of requests).

Comparing the formulas of Eq. 24 and 25, we can state
that the novel algorithm is not slower than the legacy one.
Actually, it is reasonable to expect (see SECTION VIII) that
our algorithm performs better than the legacy one, for a few
different reasons: (a) we have hidden in the common worst
case TCH notation the fact that one-to-many queries have
different cardinality in the two approaches (1-to-N in the
legacy, 1-to-C in the novel, with C << N), (b) the computed
paths are usually much shorter (and hence faster to compute)
in the novel approach, as are bounded by locality areas, and
(c) the MCM algorithms runs faster in the novel approach as
it is executed over a pruned GSN .

20

C. Space complexity

As far as the space occupancy is concerned, we observe the
following:

• For what concerns the Contraction Hierarchies (CH)
technique, the authors of [22] demonstrated that their
solution offers a good compromise between speed and
amount of data generated during the preprocessing phase.
In particular, they have shown that in many practical
situations, CH occupies less space than the input graph
itself. Thus, asymptotically speaking this space cost is de
facto dominated by the space needed to store the travel
estimates over the road segments.

• At query time the search of CH can indeed be regarded as
a bidirectional version of Dijkstra’s algorithm, operating
an upward and a downward search within two proper
parts of the input graph and of the precomputed hierar-
chies. In particular the authors of [22] demonstrated that
CH visits only a few hundreds vertices (out of ten mil-
lions) even when running on top of huge continental road
networks [22]. One should also notice that the auxiliary
information computed for the city graph GA are exactly
the same under the legacy and the new approach. Again,
both the legacy and the new approach need to execute
Θ(|T |) CH computations, but with different cardinality:
1-to-|T | in the case of the legacy approach, and 1-to-C
in the case of our new approach (with C << |T |, see
above).

• The R-tree is built on the trip set T and thus it takes
O(|T |) space.

• Another contribution to space occupancy is the one
related to the construction of the postings list OT and
DT . As described in SECTION VI, we initially build a
full posting list for all the destinations close to each trip
and then, in a second phase, we determine on-the-fly the
origins close to each trip. If we use the symbols |DT |
and |OT | to denote the (average) length of each of these
posting lists, we can conclude that the space occupancy of
our solution includes also a term O(|T | ·(|DT |+ |OT |)).
Since |DT | and |OT | are in practice few hundreds, then
this additional space cost is O(|T |).

• The previous linear term applies also to all other data
structures that our filtering algorithm builds and pro-
cesses. In fact, we are referring to: (1) the lists of
candidates for a match of the first and of the second
kind, which are determined via an intersection among
the postings lists OT and DT , and (2) the final pairs of
trips which are confirmed to be valid matches either of
the first or of the second kind, and which are clearly a
subset of (1). Since those final matches correspond to the
edges of the shareability network GSN , we can also state
that GSN occupies O(|T |) space.

• Other space is occupied by the auxiliary data structure
that stores the statistics (95-percentiles) about the typical
Euclidean distances of shortest-paths outgoing from each
vertex in the road network, and whose duration can be
bounded within multiples of ∆ minutes. We store those
distance values for just few multiples of ∆: in our code,

we have considered just 5, 10, 15, ..., 55 and 60 (namely,
12 different samples). Therefore, we can state that the
space occupancy for these statistics is just (12 · 4) · N
bytes, which leads to the asymptotic notation O(N),
where N is the number of nodes in the city graph.

Overall we can conclude that, let SCH and SMCM denote
the space complexity for the one-to-many CH path compu-
tations over GA, and for the maximum matching execution
over GSN , the asymptotic space occupancy of both the legacy
and our new approach can be bounded by SCH + SMCM +
Θ(|GA| + |T |). So our solution is not worse than the legacy
one by [7].

Digging further into the algorithmic details of the two
algorithms, it can be shown that the described worst-case
scenario is very pessimistic in practice as, indeed, our solution
is more succinct in space than the legacy solution. In fact,
we have hidden in the notation SCH the dependency on the
number of selected destinations in the 1-to-many shortest path
computations. As this number increases, CH visits more nodes
in the city graph and, possibly, these nodes are spread over
a large geographical area. Conversely, our approach selects
just C << |T | candidate trips (hence destinations or sources),
which are very short because they are selected only among the
ones clustered within a (narrow) locality area wrapping T .

