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a b s t r a c t

The large amount of work on community detection and its applications leaves unaddressed
one important question: the statistical validation of the results. Amethodology is presented
that is able to clearly detect if the community structure found by some algorithms is
statistically significant or is a result of chance, merely due to edge positions in the network.
Given a community detection method and a network of interest, the proposal examines
the stability of the partition recovered against random perturbations of the original graph
structure. To address this issue, a perturbation strategy and a null model graph, which
matches the original in some of its structural properties, but is otherwise a random
graph, is specified. A set of procedures is built based on a special measure of clustering
distance, namely Variation of Information, using tools set up for functional data analysis.
The procedures determine whether the obtained clustering departs significantly from the
null model. This strongly supports the robustness against perturbation of the algorithm
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used to identify the community structure. Results obtained with the proposed technique
on simulated and real datasets are shown and discussed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Networks are mathematical representation of interactions among the components of a system and can be modelled by
graphs. A graphG = (V , E) consists of a collection of vertices V , corresponding to the individual units of the observed system,
and a collection of edges E, indicating some relation between pairs of vertices.

Graphs modelling real systems, i.e. social, biological, and technological networks, display non trivial topological features.
Indeed they present the properties that define a complex network: structural inhomogeneities, a broad degree distribution
and distribution of edges locally inhomogeneous. In the study of complex networks, a network is said to have a community
structure if the vertices can be divided in g groups, such that nodes belonging to the same group are densely connected and
the number of edges between nodes of different groups is minimal.

The problem of community detection (graph partitioning) has been widely studied by researchers in a variety of fields,
including statistics, physics, biology, social and computer science in the last 15 years. Finding communities within an
arbitrary complex network can be a computationally difficult task. The number of communities, if any, within the network is
typically unknown and the communities are often of unequal size and/or density. Despite these difficulties, however, several
methods for community finding have been developed and employed with varying levels of success, see Coscia et al. (2011),
Fortunato (2010), Goldenberg et al. (2010), Harenberg et al. (2014), Kolacyzk (2009) and Porter et al. (2009) for reviews.

Our work focuses on the problem of testing the robustness of the recovered partition of a given community detection
method. In the following we provide a brief review of the state of the art of the literature addressing this problem. Although
the remarkable work developed for community detection and its applications, the question of the significance of results still
remains open. Our proposal represents a first attempt to statistically define the robustness of a clustering and hence cannot
be directly compared to any of the following described methodologies.

2. State of the art

The modularity Q of Newman and Girvan (2004) was the first attempt to give an answer to this question. It is defined
as the fraction of the edges that fall within the given groups minus the expected such fraction if edges were distributed
at random and is based on the idea that a random graph is not expected to have a cluster structure. However, as pointed
out in Fortunato (2010) and Karrer et al. (2008), there is an important limit. Precisely, networks with a strong community
structure have high modularity, on the contrary high modularity does not imply networks with a community structure.
Other authors, see Guimera et al. (2004) and Reichardt and Bornholdt (2007), suggested the use of a z-score to compare
the maximum modularity of a graph to the maximum attainable modularity in purely random graphs of the same size and
expected degree sequence. The problem is that the distribution of the null model, though peaked, is not Gaussian, causing
false positives and false negatives.

A different approach was developed in Massen and Doye (2006), where the authors studied how canonical ensembles
of network partitions depend on temperature to assess the significance and nature of the community structure obtained
by algorithms that optimise the modularity. In this case −Q plays the role of energy, i.e. at temperature T , the statistical
weight of a given partition in the ensemble is proportional to exp(Q/T ). Typically, as the temperature increases, there is
a transition from low entropy/high Q partitions (significant cluster structure) to high entropy/low Q (random partitions).
If there is strong community structure, the transition is sharp. The peak is broader for networks with weaker community
structure, as there aremore reasonable alternative partitionswith intermediate values ofQ , and so the transition occurs over
a broader range of temperature. The authors also introduced an order parameter to measure the similarity of the sampled
partitions at a given temperature, i.e. whether there is just a single partitionwith highQ or a number of competing partitions.
Therefore, it is a useful tool to detect false positives. However the methodology is computationally onerous and cannot be
easily generalised to other optimisation methods.

In Bianconi et al. (2009) the authors introduced the notion of entropy of graph ensembles to assess the relevance of
additional information about the nodes of a network using the information that comes from the topology of the network
itself. The indicator of clustering significance Θ introduced in the paper can also reveal statistical regularities that shed light
on possible mechanisms underlying the network stability and formation.

In Lancichinetti et al. (2011) the authors presented the Order Statistics Local Optimisation Method (OSLOM), a technique
based on the local optimisation of a fitness function, the C-score (Lancichinetti et al., 2010), expressing the statistical
significance of a cluster with respect to random fluctuations. Given a subgraph C in a graph G, the C-score measures the
probability that the number of links connecting a node to nodes in C , where C is embedded within a random graph, is
higher than or equal to the value seen in the original graph G. This score permits to rank all the vertices external to C (in
increasing order of the C-score), having at least one connection with C , and to calculate its order statistic distribution Ω .
The minimum of Ω is the random variable whose cumulative is the score of the community C . To assess its significance a
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threshold parameter P is fixed. The procedure is iterated to analyse the full network. The novelty of this approach is the local
estimate of the significance, i.e. of single communities, not of partitions; on the contrary a serious limit is due to the lack of
a data driven procedure to estimate P , indeed the authors fix its value to 0.1.

Recently, Wilson et al. (2014) proposed a testing based community detection procedure called Extraction of Statistically
Significant Communities (ESSC). The ESSC procedure measures the statistical significance of connections between a single
vertex and a set of vertices in undirected networks under a null distribution derived from the configuration model (Bender
and Canfield, 1978). Given an observed network G0 with n vertices and a vertex set B, the authors introduce the statistics
d̂(u : B), measuring the number of edges between a vertex u and B in the random model Ĝ, and show that d̂n(u : B) is
approximately binomial as n → ∞ in the total variation distance between two probability mass functions. This permits to
obtain the p-values of the null distribution using the binomial approximation and gives origin to an iterative deterministic
procedure that recovers robust communities. The technique has some similarities with OSLOM, indeed both are extraction
methods and use the configurationmodel as reference distribution, but differentiates because the probabilities have a closed
form.

Another group of techniques was proposed in Gfeller et al. (2005), Karrer et al. (2008), Rosvall and Bergstrom (2010),
and their conceiving was completely different from previous described methodologies. Indeed all the authors introduce a
stochastic component in the network by perturbing the graph structure, measure the effect of the perturbation and compare
it with the corresponding value for a null model graph. The basic idea is that a significant partition should not be altered
by small modifications, as long as the modification is not too extensive. An interesting feature of these methods is their
independence from the community detection technique adopted.

In this paper we present a methodology able to clearly detect if the community structure found by some algorithms
is statistically significant or is a result of chance, merely due to edge positions in the network. Given a community
detection method and a network of interest, our proposal examines the stability of the partition recovered against random
perturbations of the original graph structure. To address this issue, following ideas from Karrer et al. (2008), we specify a
perturbation strategy and a null model to build some procedures based on Variation of Information as stability measure.
Given this measure we address the question of evaluating its significance. This permits to build the Variation of Information
curve as a function of the perturbation percentage and to compare it with the corresponding null model curve using analysis
tools set up for functional data analysis. Functional data analysis (FDA) is about the analysis of information on curves or
functions and collects all the computational statistical methodologies set up for the analysis of data measured by some
instruments on discrete grids, but representing curves. Moreover, what is unique about functional data is the possibility of
also using information on the rates of change or derivatives of the curves Ramsay and Silverman (1997, 2002).

The rest of the paper is organised as follows. In Section 3 we introduce the proposed procedures based on Variation of
Information and the functional data analysis techniques, including their detailed description. Section 4 shows the results
achieved applying our methodology on simulated and real datasets. Conclusions and ideas for future research are drawn in
Section 6.

3. Overall procedure

We propose to compare two different partitions on the same graph building on a special metric called Variation of
Information (VI) (Meilă, 2007). We will show how to build a VI curve (VIc) comparing the partition of our original network
and the partition of a perturbed version of the original network. We will describe a new hypothesis testing procedure to
test if the VIc is significantly different from a random VI curve (referred to as VIcrandom), obtained computing VI between the
partition of a null random network and the partition of different perturbed version of such null network. The Variation of
Information is an information theoretic criterion for comparing two partitions, or clusterings, of the same dataset introduced
in Meilă (2007). It is a metric and measures the amount of information lost and gained in changing from clustering C to
clustering C′. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and
hard clusterings.

Given a dataset D of cardinality n and two clusterings C and C′ of D, with K and K ′ non empty clusters, respectively, VI is
defined as

VI
(
C, C′

)
= H (C) + H

(
C′

)
− 2I

(
C, C′

)
, (3.1)

where H (C) is the entropy associated with clustering C

H (C) = −

K∑
k=1

P(k) log P(k), (3.2)

and I
(
C, C′

)
is the mutual information between C and C′, i.e the information that one clustering has about the other

I
(
C, C′

)
=

K∑
k=1

K ′∑
k′=1

P
(
k, k′

)
log

P
(
k, k′

)
P (k) P (k′)

. (3.3)
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P (k) is the probability of a point being in cluster Ck and P
(
k, k′

)
is the probability that a point belongs to Ck in clustering C

and to Ck′ in C′, i.e. P(k) = |Ck|/n and P(k, k′) = |Ck ∩ Ck′ |/n.
Another equivalent expression for VI is

VI
(
C, C′

)
= H

(
C|C′

)
+ H

(
C′

|C
)
. (3.4)

The first term measures the amount of information about C that we loose, while the second measures the amount of
information about C′ that we gain, when going from clustering C to clustering C′.

In the original paper Meilă (2007) the VI is juxtaposed to some indices and metrics for comparing clusterings, namely
Rand, adjustedRand, Fowlkes − Mallows, Jaccard and Wallace, and the superiority of VI is discussed. More recently in Wade
and Ghahrmani (2015) the authors introduced the use of VI as a loss function in the context of Bayesian cluster analysis
showing several desirable properties.

VImetric is the basis of the hypothesis testing procedureswepropose to establish the statistical significance of a recovered
community structure in a complex network. Our original idea is to generate two different curves based on the VI measure
and to statistically test their difference. The first curve VIc is obtained computing VI between the partition of our original
network and the partition of different perturbed version of our original network. The second curve VIcrandom is obtained
computing VI between the partition of a null random network and the partition of different perturbed version of such null
network. The comparison between the two VI curves turns the question about the significance of the retrieved community
structure into the study of the stability/robustness of the recovered partition against perturbations. We expect that it must
be robust to small perturbations, because if ‘‘small changes’’ in the network imply a completely different partition of the
data, it means that the found communities are not trustworthy, and this cannot be due to the failure of the chosen algorithm
for the community detection. Indeed the proposed testing procedure is independent from the clustering algorithm and it is
easy to check if such a behaviour is due to it. To understand well this point we must consider the behaviour of the VI curve
for networks having a real community structure and those having a very poor community structure. In the first case the VI
curve starts at 0, when the perturbation level p is 0% (unperturbed graph), rises rapidly (perturbation level between 0% and
40%), then levels off when 50% < p < 100%; in the second case the VI curve immediately grows up to a certain value and
levels off that value. This last case means that whatever partition has been found, at each level of perturbation, the found
community structure is a result of chance fluctuations and it is not plausible.

Obviously the set up of a testing procedure is more necessary for all cases where the community structure is moderate
or weak and the behaviour of the VI curve could be similar to that of a random graph.

This explains why a small p-value is a good indicator that the community structure is reliable and can be considered
believable, supporting greater evidence as the null model is able to reproduce closely local and global structural properties
of real networks. Therefore, the choice of the null random network is really delicate, because we expect that it has the same
structure of our original graph but with completely random edges.

This is why our choice relapses on the Configuration Model (Bender and Canfield, 1978) associated with the degree
sequence of the observed graph d = {d(1), . . . , d(n)} with vertex set V = {1, . . . , n}, i.e. CM(d). It is a model able in
capturing and preserving strongly heterogeneous degree distributions often encountered in real networks datasets and is
the standard null model for empirical patterns. For a detailed discussion about random graphs and their use as null models
we refer to Newman (2003) and Zweig (2016).

The CM(d) is a probability measure on the family of multi-graphs with vertex set V and degree sequence d that reflects,
within the constraints of the degree sequence, a random assignment of edges between vertices. The generative form is
simple: one can simply cut all the edges in the network, so every node still retains its degree by the number of half-edges or
stubs emanating from it. The result will be an even number of half-edges. To create new networks with the same degree, one
simply needs to randomly pair all the half-edges, creating the new edges in the network. The ConfigurationModel generates
every possible graph with the given degree distribution with equal probability. Note that it naturally creates networks with
multiple edges between nodes and self-connections between nodes. If such networks are unacceptable, one can reject those
samples and try the algorithm again, repeating until one obtains a network without multiple or self-connections. In order to
emphasise the importance of using a null randommodel that corresponds closely to the original network, we also explored
the dk null random model provided in Orsini and others (2015). In the dk model a complete set of basic characteristics
of the network structure, namely a dk − series, is employed to generate dk-random graphs whose degree distributions,
degree correlations and clustering are as in the corresponding real network. To this end in our simulation study, we used
the implementation RandNetGen of the dk model available on github (https://github.com/polcolomer/RandNetGen), along
with the CM, as an alternative null model (option −dk 2.5). Discussion of the results is addressed in Section 4. As for the
perturbation strategy adopted, this will be described in Section 3.4. The basic steps of our method can be summarised in
Algorithm 1.

Note that the variation of p from 0 to 1 induces an intrinsic order to the data structure as in temporal data and can
be treated as time point. Moreover, as it will be described in Section 3.4, we generate many perturbed graphs (i.e. 10) for
each different level of p and these are considered as replicates per time points in our strategy. The permutation step indeed
requires the core computational time that decreases with the sparseness of the network under study. Of course for every
permutation level p, after the permutation step, the selected clustering method is applied both on the perturbed original
network and on the perturbed configuration model. Hence the choice of the community extraction method may affect the
computation time and also the scalability of the overall approach. In this paperwewill use two literature algorithms, namely

https://github.com/polcolomer/RandNetGen
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Data: a given network N , with vertex set V = {1, . . . , n} and degree sequence d = {d(1), . . . , d(n)}, a chosen methodM , a
set of perturbation levels p ∈ [pmin, . . . , pmax] ⊆ [0, 1], a null randommodel, i.e. CM(d).

Result: Build VIc and VIcrandom curves as functions of perturbation level p and statistically test for ‘‘the difference’’ between
them.

Initialisation: find a partition C of N and Crand of CM(d) by the chosen methodM;
while p ∈ [pmin, . . . , pmax] do

- perturb both N and CM(d) edges by the same percentage p, preserving the original graphs degree distributions;
- find a partition C′ and C′

rand for the perturbed networks by the same methodM;
- compute the VIc(p) = VI(C, C′);
- compute VIcrandom(p) = VI(Crand, C′

rand);
-p + +

end
Testing: statistically test ‘‘the difference’’ between the VIc and VIcrandom curves.

Algorithm 1: Overall Procedure

Fast Greedy (Clauset et al., 2004) and Louvain (Blondel et al., 2008), that will be described in section 4. The CPU time for a
2000 nodes sparse network on a Unix node with 2 Intel Xeon X5675 3.07 GHz processor and 48 GB DDR3 1333 MHz of ram,
was 48 min when using Louvain and 58 min when using Fast Greedy as clustering methods.

The testing step of the above procedure is achieved by a functional data analysis approach aiming to test if the two groups
of curves represent ‘‘the same process’’ or ‘‘different processes’’. The testing procedurewe rely on is based on a tool set up for
time course microarray, namely Gaussian Process (GP) regression (Kalaitzis and Lawrence, 2011). Aim of the GP regression
in the context of gene expression data is to identify differentially expressed genes in a one-sample time course microarray
experiment, i.e. to detect if the profile has a significant underlying signal or the observations are just random fluctuations.
In this case we reformulate the testing problem working on log2(VIc/VIcrandom), as described in Section 3.1.

In order to show that our approach is robust with respect to the testing procedure, we also display the overall results
achieved when using other two approaches as described respectively in Sections 3.2 and 3.3. Indeed, we can look at the two
measured VI curves as independent realisations of two underlying processes say X1 and X2 observed with noise on a finite
grid of points p ∈ [0, 1] and to test the null hypothesis

H0 : X1
d
= X2, (3.5)

versus the alternative hypothesis

H1 : X1
d
̸= X2,

where d
= means that the processes on either side have the same distribution.

Then, as described in Section 3.2, taking advantage of the Karhunen–Loève expansion we explore the methodology
developed in Pomann et al. (2016) based on Functional Principal Components Analysis (FPCA) to test (3.5).

On the contrary, the approach described in Section 3.3 addresses a domain-selective inferential procedure, providing an
interval-wise non parametric functional testing (Pini and Vantini, 2016), able not only to assess (3.5), but also to point out
specific differences.

Wewill briefly describe GP regression, FPCA and interval-wise functional testing in the following sections.Wewould like
to point out that our overall procedure provides a workflow to validate a community structure under different perspectives
that can be investigated in dependence of the specific real problem dealt with. The description of the three different testing
procedure is functional to the understanding of our overall procedure and in particular howwe exploit the theory underling
each single methodology to compare the curves VIc and VIcrandom. Hence we will summarise the three testing procedures to
highlight the key connection to our testing problem. We choose to provide a review of each single methodology to provide
awareness of the differences between the three procedures and their link to our testing problem. Even if addressing the
same problem the techniques are not equivalent. We refer to the original papers for any theoretical property of such testing
procedures, including type I/II error study. We want to stress that the original contribution of our proposal is summarised
in the algorithm pack depicted in the above frame.

3.1. GP regression

In this section we briefly summarise the methodology proposed in Kalaitzis and Lawrence (2011), where the authors
present an approach to estimate the continuous trajectory of gene expression time-series from microarray through GP
regression.

Briefly we recall that a Gaussian process is the natural generalisation of amultivariate Gaussian distribution to a Gaussian
distribution over a specific family of functions. More precisely, as defined in Rasmussen and Williams (2006), a Gaussian
process is a collection of random variables, any finite number of which have a joint Gaussian distribution and is completely
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specified by its mean function and its covariance function. If we define the mean functionm(x) and the covariance function
k(x, x′) of a real process f (x) as:

m(x) = E[f (x)],
k(x, x′) = E[(f (x) − m(x))(f (x′) − m(x′))],

then we can write the GP as

f (x) ∼ GP(m(x), k(x, x′)). (3.6)

The random variables f = (f (X1) , . . . , f (Xn))
T represent the value of the function f (x) at time locations (Xi)i=1,...,n, being

f (x) the true trajectory/profile of the gene. Assuming f (x) = Φ(x)Tw, where Φ(x) are projection basis functions, with prior
w ∼ N(0, σ 2

wI), we have

E[f (x)] = Φ(x)TE[w] = 0, (3.7)

E[f (x)f (x)′] = σ 2
wΦ(x)TΦ(x), (3.8)

f (x) ∼ GP(0, σ 2
wΦ(x)TΦ(x)). (3.9)

Since observations are noisy, i.e. y = Φw + ε, with Φ = (Φ(X1)T , . . . , Φ(Xn)T ), assuming that the noise ε ∼ N(0, σ 2
n I) and

using Eqs. (3.7)–(3.8), the marginal likelihood

p(y|x) =

∫
p(y|x,w)p(w)dw,

becomes

p(y|x) =
1

(2π )n/2
⏐⏐Ky

⏐⏐1/2 exp
(

−
1
2
ytKy

−1y
)

, (3.10)

with Ky = σ 2
wΦΦT

+ σ 2
n I.

In this framework the hypothesis testing problem can be reformulated, over the perturbation interval [0, 1], as:

H0 : log2
VIc(x)

VIcrandom(x)
∼ GP(0, k(x, x′)),

against

H1 : log2
VIc(x)

VIcrandom(x)
∼ GP(m(x), k(x, x′)).

The marginal likelihood derived from Eq. (3.10), enables then to compare or rank different models by calculating the
Bayes Factor (BF). More specifically the BF is approximated with a log-ratio of marginal likelihoods of two GPs, each one
representing the hypothesis of differential (the profile has a significant underlying signal) and non differential expression
(there is no underlying signal in the profile, just random noise). The significance of the profiles is then assessed based on
the BF.

3.2. Functional principal component testing

In this sectionwe briefly summarise the approach proposed in Pomann et al. (2016) to test the hypothesis (3.5) when the
observed data are realisations of the curves at finite grids and possibly corrupted by noise. Their motivating application is a
diffusion tensor imaging study, where the objective is to compare white matter track profiles between healthy individuals
and multiple sclerosis patients. The authors introduce a novel framework based on functional principal component analysis
(FPCA) of an appropriate mixture process, referred to as marginal FPCA. The statistical framework for this problem assumes
to observe data arising from two groups, namely {(t1ij, Y1ij) : j = 1 . . .m1i}

n1
i=1 and {(t2ij, Y2ij) : j = 1 . . .m2i}

n2
i=1, where

t1ij, t2ij ∈ T , a compact interval that in our case is T = [0, 1] (time plays the role of perturbation level p). It is assumed that
the Y1ij and the Y2ij are independent realisations of two underlying processes observed with noise on a finite grid of points:

Y1ij = X1ij + ϵ1ij,

Y2ij = X2ij + ϵ2ij,

where X1ij∼
IIDX1(·) and X2ij∼

IIDX2(·) are independent and square integrable random functions over T , for some underlying
(latent) random processes X1 and X2. It is assumed that X1 and X2 are second-order stochastic processes with mean
functions assumed to be continuous and covariance functions assumed to be continuous and positive semidefinite, both
being unknown. The measurement errors {ϵ1ij} and {ϵ2ij} are independent and identically distributed (IID), with zero mean
and variances σ 2

1 and σ 2
2 , respectively. The authors exploit the truncated Karhunen–Loève expansion of the mixture process

X(·) of X1(·) and X2(·) with mixture probabilities p and 1 − p. Let Z a binary random variable taking values in {1, 2} with
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P(Z = 1) = p, then X1(·) = E [(·)/Z = 1] and X2(·) = E [(·)/Z = 2]. Let us consider the truncated Karhunen–Loève expansion
of X(·) and define XK

Z (t) = µ(t)+
∑K

k=1ξZkΦk(t), Z = 1, 2, testing hypothesis (3.5) reduce to testing if the FPC scores {ξ k
1 }

K
k=1

and {ξ k
2 }

K
k=1 have the same distribution:

HK
0 : {ξ k

1 }
K
k=1

d
= {ξ k

2 }
K
k=1. (3.11)

In practice the authors consider K null hypothesis given the finite truncation level and propose a multiple two-sample
univariate test, the Anderson-Darling (AD) statistic (Petit, 1976), combined with a multiple-comparison adjustment. The
authors propose a Bonferroni correction, a procedure which controls the probability of erroneously rejecting even one of the
true null hypotheses, the Family Wise Error Rate (FWER). In this case hypothesis (3.11) is rejected if

min
1≤k≤K

pk ≤ α/K , (3.12)

where pk is the p-value that is obtained by using the chosen univariate two-sample test for each Hk
0 .

The false discovery rate (FDR), suggested in Benjamini and Hochberg (1995) is a different point of view for how the errors
inmultiple testing could be considered. The FDR is the expected proportion of erroneous rejections among all rejections. If all
tested hypotheses are true, controlling the FDR controls the traditional FWER. But when many of the tested hypotheses are
rejected, indicating thatmany hypotheses are not true, the error from a single erroneous rejection is not always as crucial for
drawing conclusions from the family tested, and the proportion of errors is controlled instead. Using the individual testing
statistics proposed in Pomann et al. (2016) we will therefore adopt this FDR approach to adjust our tests for multiplicity.

Note that this procedure is designed for a more general framework in which the two curves VI and VIc can be observed
at different time points (i.e. p ∈ [0, 1]).

3.3. Interval-wise functional testing

In the following we will briefly review the Interval-wise Functional testing procedure (ITP) proposed by Pini and
Vantini (2016), where the authors develop a non-parametric domain-selective inferential methodology for functional data
embedded in the L2(T ) space (where T is any limited open interval of R) to test (3.5). Their technique is not only able to
assess the equality in distribution between functional populations, but also to point out specific differences. Their procedure
is based on the following three steps:

1. Basis Expansion: functional data are projected on a functional basis (i.e. Fourier or B-splines expansion);
2. Interval-Wise Testing: statistical tests are performed on each interval of basis coefficients;
3. Multiple Correction: for each component of the basis expansion, an adjusted p-value is computed from the p-values

of the tests performed in the previous step.

More in detail, let us assume to observe two independent samples of sizes n1 and n2 of independent random functions
on a separable Hilbert space yij(t), i = 1, . . . , nj, j = 1, 2.

In the first step, data are projected on a finite-dimension subspace generated by a reduced basis yij(t) =
∑p

k=1cijΦ
(k)(t),

where integer p represents the dimension. It follows that each of the n = n1 + n2 units can be represented by means
of the corresponding p coefficients {c(k)ij }, k = 1, . . . , p; moreover, for each k, c(k)i1 , i = 1, . . . , n1 and c(k)i2 , i = 1, . . . , n2

are independent, and c(k)i1 ∼ C (k)
1 and c(k)i2 ∼ C (k)

2 where C (k)
1 and C (k)

2 denote the (unknown) distributions of the kth basis
coefficient in the two populations.

In the second step, the authors build a family of multivariate tests for

H (k)
0 = ∩k∈kH

(k)
0 , H (k)

0 : C (k)
1

d
= C (k)

2 ,

k = 1, . . . , p and k is a vector of successive indexes in {1, . . . , p}. In addition the authors add the multivariate tests on
the complementary sets of each interval, i.e., do also test each hypothesis H (kc)

0 = ∩k̸∈kH
(k)
0 . The tests are performed by the

Nonparametric Combination Procedure (NPC), see Pesarin and Salmaso (2010), that constructs multivariate permutation
tests by means of combining univariate-synchronised permutation tests.

In the third step the authors obtain the adjusted p-value for the kth component λ
(k)
ITP by computing the maximum over all

p-values of interval-wise tests whose null hypothesis implies H (k)
0 :

λ
(k)
ITP = max

(
max

k s.t. k∈k
λ(k), max

kc s.t. k∈kc
λ(kc)

)
,

and prove that, if we reject the kth adjusted p-value λ
(k)
ITP ≤ α, then, for any interval k s.t. H (k)

0 is true ∀k ∈ k, the probability
of rejecting any H (k)

0 is lower or equal to α. This property reads interval-wise control of the FWER.
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3.4. Perturbation strategy

Mimicking the approach proposed by Karrer et al. (2008) and Cutillo et al. (2012), we restrict our perturbed networks
to having the same numbers of vertices and edges as the original unperturbed network, hence only the positions of the
edges change. In other words we apply a Degree Preserving Randomisation. Our perturbation strategy relies on the rewire
function belonging to the R package igraph, using the option keeping_degseq. Moreover, we expect that a network perturbed
by only a small amount has just a few edgesmoved in different communities,while amaximally perturbed network produces
completely random clusters.

In Karrer et al. (2008) the perturbation strategy is achieved by removing each edge with a certain probability α and
replacing it with another edge between a pair of vertex (i, j) chosen at randomwith a probability proportional to the degree
of i and j. This perturbation scheme generates networks that have the same number of edges as the original and in which
the expected degrees of vertices are the same as the original degrees.

Our perturbation strategy consists in randomly rewiring a percentage p of edges while preserving the original graph’s
degree distribution. The rewiring algorithm indeed chooses two arbitrary edges in each step (e.g. (a, b) and (c, d)) and
substitutes them with (a, d) and (c, b), if they do not already exists in the graph. The algorithm does not create multiple
edges.

A null percentage of permutation p = 0 corresponds to the original unperturbed graph, while p = 1 corresponds to the
maximal perturbation level. Varying the percentage p from 0 (original graph) to 1 (maximal perturbation), many perturbed
graph are generated and compared to the partition on the original graph by means of VI . Indeed we generated 10 perturbed
graph for each different level of p ∈ [0, 1]. Then, from each of the obtained graphs, we generated other 10 graphs rewiring
1% of edges each time. Hence resulting in 100 graphs for each level of p ∈ [0, 1]. In our setting we chose 20 levels of p.

Since the degree distribution is generally inferred directly from the observed graph, i.e. from the data, which are only a
part of some hypothetical ‘‘true’’ random graph that is never fully observed, perhaps it could be interesting to extend further
our strategy. Indeed, we could perturb the original graph choosing a broader class of networks whose degree distribution
is within the bootstrapped confidence interval of the original degree distribution (Gel et al., 2017). As highlighted by the
authors of the paper, there are a lot ofmethods to estimate the degree distribution directly fromagraph, i.e. from the data, but
what is missing is quantification of estimation uncertainty. So they develop the Fast Patchwork Bootstrap (FPB) algorithm to
estimate network degree distribution and quantify a confidence interval under the assumption that the network distribution
is involution invariant, i.e. selecting at random any vertex, the rest of the connected network is probabilistically the same.
The authors use the ‘‘blocking’’ technique developed for resampling of space and time dependent processes and adapt it
to networks: first select randomly vertices, then build local vicinities or patches and then resample vertices within local
patches.

Another solution could be to use the technique proposed in De Vico Fallani et al. (2014), where the authors propose
a method to replicate structural features of complex networks based on non parametric bootstrapping to improve the
performance of spectral community detection algorithms. They consider a non parametric resampling of the transition
matrix associated with an unbiased random walk on the graph. In particular the method builds different replicates of the
transitionmatrix of the network, estimates an average distancematrix, whose elements correspond to the expected spectral
distances between pairs of nodes of the graph, averaged over the ensemble of replicates and uses a standard hierarchical
clustering algorithm on the obtained distance matrix. The method uses the idea that the aggregation of information about
different replicates should allow to obtainmore accurate and robust partitions than the one found from the original observed
network.

We stress again that all the proposed strategies arose from the awareness that a real-world network is just a single
observation drawn from an unknown distribution of graphs having certain characteristics. As a consequence, there is no
predefined way to assess the statistical variability of any network property, including the presence and composition of
communities except to consider random network ensembles, i.e., sets of graphs obtained from the original network by
keeping fixed some structural properties.

4. Results

The overall procedure proposed in the present paper was implemented in R and validated both on simulated and real
networks as will be described in the following Sections 4.1 and 4.3. In Fig. 1 we depict a summary of the proposed overall
procedure main steps. For each of the analysed networks (either simulated or real) we performed the community extraction
step, using some tools embedded in the R package igraph. We chose igraph because it provides an implementation of graph
algorithms able to fast identifying community structures in large graphs. In particular we used two community extraction
functions, one based on a greedy optimisation of the modularity (cluster_fast_greedy) and another based on a multi-
level optimisation of the modularity (cluster_louvain). More specifically cluster_fast_greedy implements the hierarchical
agglomeration algorithm for detecting community structure described in Clauset et al. (2004) and cluster_louvain is based
on the hierarchical approach proposed in Blondel et al. (2008). Both these methods enables for an automatic definition of
the optimal number of communities, are specific for large networks and are based on the optimisation of the modularity.
The techniques are briefly summarised in the following.

As regards the testing methodologies we used the bioconductor package gprege available at https://www.bioconductor.
org/packages/release/bioc/html/gprege.html for the GP regression, the R code from the professor Staicu’s web-site http:
//www4.stat.ncsu.edu/~staicu/ for the Functional Principal Component test and the R package fdatest available at https:
//cran.r-project.org/web/packages/fdatest/index.html for the Interval-wise Functional test.

https://www.bioconductor.org/packages/release/bioc/html/gprege.html
https://www.bioconductor.org/packages/release/bioc/html/gprege.html
https://www.bioconductor.org/packages/release/bioc/html/gprege.html
http://www4.stat.ncsu.edu/%7Estaicu/
http://www4.stat.ncsu.edu/%7Estaicu/
http://www4.stat.ncsu.edu/%7Estaicu/
https://cran.r-project.org/web/packages/fdatest/index.html
https://cran.r-project.org/web/packages/fdatest/index.html
https://cran.r-project.org/web/packages/fdatest/index.html
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Fig. 1. Overall procedure map.

Fast greedy method

Fast Greedy is the modularity optimisation algorithm introduced by Clauset et al. (2004). This method is essentially a fast
implementation of a previous technique proposed by Newman (Newman and Girvan, 2004). Starting from a set of isolated
nodes, the links of the original graph are iteratively added such to produce the largest possible increase of the modularity.
Adding a first edge to the set of disconnected vertices reduces the number of groups forming a new partition of the graph.
The edge is chosen such that this partition gives the maximum increase (minimum decrease) of modularity with respect to
the previous configuration. All other edges are added based on the same principle. At each iteration step, the variation of
modularity given by the merger of any two communities of the running partition is computed and the best merger chosen.
The fast version of Clauset, Newman and Moore, which uses more efficient data structures, has a complexity of O(N log2N)
on sparse graphs.

Louvain method

Louvainmethod is the fastmodularity optimisation by Blondel et al. (2008). This technique consists of two steps, executed
alternatively. Initially, each node is in its own community. In step 1, nodes are considered one by one, and each one is
placed in the neighbouring community (including its own) that maximises the modularity gain. This is repeated until no
node is moved (the obtained decomposition provides therefore a local optimisation of Newman–Girvanmodularity). After a
partition is identified in this way, in step 2 communities are replaced by super-nodes, yielding a smaller weighted network
where two super-nodes are connected if there is at least an edge between vertices of the corresponding communities. The
two steps of the algorithm are then repeated until modularity (which is always computedwith respect to the original graph)
does not increase any further.

As pointed out in Fortunato (2010), this method offers a fair compromise between the accuracy of the estimate of the
modularity maximum, which is better than that delivered by greedy techniques like the one by Clauset et al. above, and
computational complexity, which is essentially linear in the number of links of the graph.

4.1. Application to simulated data

In order to show the ability of our method to validate a network clustering, we applied it to modular random network
graphs generated using the model implemented in Sah et al. (2014). The model generates undirected, simple, connected
graphs with prescribed degree sequences and a specified level of community structure, while maintaining a graph structure
that is otherwise as random (uncorrelated) as possible over a broad range of distributions of network degree and community
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(a) Test = GP, Null model = CM. (b) Test = GP, Null model = CM.

(c) Test = FAD, Null model = CM. (d) Test = FAD, Null model = CM.

Fig. 2. Summary GP and FAD results on a grid of 33 modularity values in [0, . . . , 0.8], grid step 0.025, using CM as null model. In the first row the BFs from
GP testing procedure are reported when using Fast Greedy (a) and Louvain (b) as community extraction methods. In the second row the p-values from the
FAD testing procedure are reportedwhen using Fast Greedy (c) and Louvain (d) as community extractionmethods. The red line corresponds to 0.05 p-value.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

size. The model in Sah et al. (2014) is specified by the network size, the average network degree, the number of modules,
the modularity, the degree distribution and the module size distribution. The authors propose an algorithm based on the
following four steps:

1. Assign arbitrarily the nodes to modules whose sizes are sampled from the specified module size distribution;
2. Assign degrees to each node sampling a degree sequence from the specified degree distribution. The within-degrees

are assigned to each nodes assuming that the within-degree distribution follows the class of the specified degree
distribution;

3. Connect between-edges using a modified version of the Havel–Hakimi algorithm (Hakimi, 1962; Havel, 1955). The
connections are then randomised by rewiring through double-edge swaps (Gkantsidis et al., 2003) ;

4. Connect within-edges using the standard Havel–Hakimi algorithm (Hakimi, 1962; Havel, 1955). The connections are
then randomised by rewiring through double-edge swaps (Gkantsidis et al., 2003).

The generated graph results also to be as random as possible, to contain no self loops (edges connecting a node to itself),
multi-edges (multiple edges between a pair of nodes), isolate nodes (nodes with no edges), or disconnected components
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(a) Test = GP, Null model = dk. (b) Test = GP, Null model = dk.

(c) Test = FAD, Null model = dk. (d) Test = FAD, Null model = dk.

Fig. 3. Summary GP and FAD results on a grid of 33 modularity values in [0, . . . , 0.8], grid step 0.025, using dk as null model. In the first row the BFs from
GP testing procedure are reported when using Fast Greedy (a) and Louvain (b) as community extraction methods. In the second row the p-values from the
FAD testing procedure are reportedwhen using Fast Greedy (c) and Louvain (d) as community extractionmethods. The red line corresponds to 0.05 p-value.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(see Sah et al., 2014 for details). Specifically, we generated a modular random graph on a grid of 33 modularity values
Q ∈ [0, . . . , 0.8], grid step 0.025, using a power law for degree distribution and for module size distribution, with size =

2000, number of modules= 10 and average degree= 10. For each graph, the corresponding null model was generated using
both the Configuration Model and the dk randommodel, as discussed in Section 3.

The application of the overall procedure on the simulated datasets is summarised in Figs. 2 and 3, respectively. In
particular, Fig. 2 refers to the use of CM as null model and Fig. 3 refers to the use of dk as null model. In each figure we
plot GP and Functional Anderson-Darling (FAD) test results versus the chosen grid of modularity values when extracting the
communities either with Fast Greedy or Louvain methods.

Gaussian process results
The application of the Gaussian Processes approach described in Section 3.1 to the simulated networks is summarised in

the first row ((a) and (b)) of Figs. 2 and 3. The resulting BFs plots show an overall growing trend from modularity Q = 0 to
Q = 0.8 after clustering with either clustering Fast Greedy or Louvain. This gives strong statistical evidence that networks
with a high modularity have a robust clustering structure (significantly different from the random). However, note that
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Table 1
BF for the 5 dcsbm networks corresponding to Pin = 0.3 and Pout = 0.08.

nc Q Sp BF

8 0.2202 0.0137 174.6640
10 0.1844 0.0105 124.7754
12 0.1663 0.0093 108.5694
14 0.1494 0.0087 57.8306
16 0.1359 0.0083 38.1446

Louvain method produces less oscillating results at low modularity (Q ≤ 0.2) and very high modularity (Q ≥ 0.7). On the
other hand Fast Greedy produces more stable results at high modularity (0.4 ≤ Q ≤ 0.6), when using CM as null model.
Both clustering methods induce a BF that is fast growing when 0.2 ≤ Q ≤ 0.4 either when using CM or dk as null models.

Functional principal component testing results
Similarly, the second row ((c) and (d)) of Figs. 2 and 3 summarise the application of the Functional Anderson-Darling

test described in Section 3.2 to the simulated data. As we can see, the False Discovery rate adjusted p-values decreases
drastically when the simulated network modularity grows from Q = 0.275 to Q = 0.8, for Fast Greedy and from Q = 0.225
to Q = 0.8 for Louvain, when using CM null model. Similarly, when using dk as null model, the adjusted p-values flatten
under the significance value for Q ≥ 0.3 (Fast Greedy) and for Q ≥ 0.35 (Louvain). In the complementary intervals the result
is oscillating around the significant threshold of 0.05, implying the incapability to clearly distinguish between the true and
the random VI curves. This result agrees with the previous one obtained by GP.

Interval-wise functional testing results
The application of the Interval-wise Testing procedure described in Section 3.3 to the simulated datasets after clustering

via Fast Greedy or Louvain are depicted respectively in Figs. 4 and 5. In this case we just show the outcomes on 5 simulated
datasetswith differentmodularity Q∈ [0, 0.2, 0.4, 0.6, 0.8], choosing CMas nullmodel. In each figure, panels (a), (c), (e), (g),
(i) show the VI curves for the null model (VIcrandom) and for the actual model (VIc). The two curves appear to be very close for
lowmodularity values and depart from each other as themodularity increases till amaximumofQ = 1. In panels (b), (d), (f),
(h), (j) this is quantified locally by a specific adjusted p-value in each sub-interval. Significant p-values are falling under the
horizontal red line corresponding to the critical value of 0.05. As we can see, either using Louvain or Fast Greedy as clustering
methods yields to the similar ITP results conclusion. Of course when there is no perturbation (i.e. at level p = 0) the two
curves are coincident and hence not significantly different. When Q ≥ 0.4 the two VI curves are significantly different at
any perturbation level, apart from some cases at p ≥ 0.5 and Q = 0.8 where the VIc is close to the VIcrandom, indeed note
that if we strongly perturb a network (p ≥ 0.5, i.e. we rewire more than 50% of edges) it approaches a random network. Also
in this case Louvain is able to recover a non random clustering at lower modularity (Q ≥ 0.2) than Fast Greedy, confirming
the results obtained by the other two approaches. Moreover note that at Q = 0, when applying Louvain, the method detects
some interval where there is a significant difference between the two curves but for strong perturbation level (p ≥ 0.5).

4.2. Alternative data simulation strategy

In order to further explore the sensitivity of our approach with respect to the specific network structure, number of
clusters and sparseness, we also applied it to random network graphs generated using the degree corrected stochastic
block model (dcsbm). We implemented the approach proposed in Karrer and Newman (2011), where a dcsbm with closed-
form parameter solutions is developed. This enabled us to generate networks with a specific number of communities,
group assignment and edge probability distribution. In particular, for sake of simplicity, we simulated three different
scenarios where we fixed the edge probability within each community Pin and the edge probability between each couple
of communities Pout . In each scenario we used Pin = 0.3 and a number of vertex nv = 2000. In order to mimic broadly
different modular structures, we generated the three scenario using Pout = 0.08, for a low modularity, Pout = 0.03, for a
medium modularity, and Pout = 0.008, for a high modularity. For each scenario we then simulated five different networks
corresponding to five different number of clusters nc , namely nc = 8, 10, 12, 14, 16, with a total of 15 networks. Each of
the 15 networks was then analysed with our pipeline setting the GP as testing procedure, CM as null model and Fast Greedy
as clustering method. For every generated network we also computed the true modularity values Q and the sparseness Sp
defined in terms of percentage of edges Sp = ne/(nv∗(nv−1)/2), where ne is the total number of edges of the given network.
The results for the three different scenarios are summarised in Tables 1–3 respectively. As you can see from Tables 1 and 2
the BF decreases with the number of clusters and increases with the modularity Q and the sparseness Sp, both at low
modularity values (Pout = 0.08) and at medium modularity values (Pout = 0.03). More precisely Table 4 shows that the
BF is highly negatively correlated with the nc and highly positively correlated with the modularity and sparsity values, both
at low and medium modularity values. At the same time when the modularity is high (Pout = 0.008), the BF oscillates but
is always very high (BF ≥ 268) and hence the methodology is clearly able to detect the difference from the randomness at
high modularity.
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(a) Q = 0. (b) Q = 0.

(c) Q = 0.2. (d) Q = 0.2.

Fig. 4. VI plots on the clustering obtained via Fast Greedy on 5 simulated datasets with different modularity Q ∈ [0, 0.2, 0.4, 0.6, 0.8] (Q = 0 (a), Q = 0.2
(c), Q = 0.4 (e), Q = 0.6 (g) and Q = 0.8 (i)) and corresponding adjusted p-values of the Interval Testing procedure (Q = 0 (b), Q = 0.2 (d), Q = 0.4
(f), Q = 0.6 (h) and Q = 0.8 (j)). Horizontal red line corresponds to the critical value 0.05. Light grey areas correspond to p-values below 0.05, dark grey
areas correspond to p-values below 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 2
BF for the 5 dcsbm networks corresponding to Pin = 0.3 and Pout = 0.03.

nc Q Sp BF

8 0.4603 0.0108 249.7482
10 0.4177 0.0067 217.5520
12 0.3903 0.0053 232.6276
14 0.3648 0.0046 197.5130
16 0.3273 0.0041 128.9253

4.3. Application to real data

In order to provide an example of our analysis work-flow, we selected four different publicly available datasets namely
two biological (protein–protein interaction networks,Nexus 5 and Barabasi), one representing the western states power grid
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(e) Q = 0.4. (f) Q = 0.4.

(g) Q = 0.6. (h) Q = 0.6.

Fig. 4. (continued)

Table 3
BF for the 5 dcsbm networks corresponding to Pin = 0.3 and Pout = 0.008.

nc Q Sp BF

8 0.7122 0.0095 332.0044
10 0.7089 0.0050 270.6336
12 0.6871 0.0036 358.0979
14 0.6657 0.0028 340.2443
16 0.6294 0.0023 268.1435

Table 4
Correlation coefficient between the BF and the nc , Q and Sp values for the
three different scenarios simulated with the dcsbm model.

Pout Corr(BF , nc) Corr(BF ,Q ) Corr(BF , Sp)

0.08 −0.987 0.984 0.931
0.03 −0.883 0.891 0.709
0.008 −0.220 0.277 0.175
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(i) Q = 0.8. (j) Q = 0.8.

Fig. 4. (continued)

Table 5
Number of vertex (nv) and number of edges (ne) for each of the 4 real analysed datasets and for the two less modular (Q = 0.29) and the most modular
(Q = 0.68) ego networks in Facebook (FB).

Real networks summary

FB FB (Q = 0.29) FB (Q = 0.68) Nexus 5 Nexus 15 Barabasi

nv 4039 224 534 2617 4941 1870
ne 88234 3192 4813 11855 6594 2240

of United States (Nexus 15) and a social dataset (Facebook). Note that Nexus is an online repository of networks, with an API
that allow programmatic queries against it, and programmatic data download as well. These functions can be used to query
it and download data from it, directly as an igraph graph. The total number of nodes and edges of these four real networks
are summarised in Table 5 and displayed in Fig. 6.

Nexus 5
This dataset consists of an undirected protein–protein interaction network in yeast. This dataset was compiled by von

Mering et al. (see von Mering et al., 2002) combining various sources. Only the interactions that have high and medium
confidence are included here.

Protein–protein interaction (Barabasi)
This dataset consists of the protein–protein interaction network in Saccharomyces cerevisiae described and analysed

in Jeong et al. (2001). It is derived fromcombined, non-overlapping data, obtainedmostly by systematic two-hybrid analyses.
Data are available at http://www3.nd.edu/~networks/resources.htm.

Nexus 15
This dataset is an undirected, unweighted network representing the topology of the Western States Power Grid of the

United States and was compiled by Duncan Watts and Steven Strogatz. Data are available at http://cdg.columbia.edu/cdg/
datasets, Watts and Strogatz (1998).

Facebook
This dataset consists of ‘circles’ (or ‘friends lists’) from Facebook (McAuley and Leskovec, 2012). The authors obtained

profile and network data from 10 ego-networks, consisting of 193 circles and 4039 users. To do so they developed their
own Facebook application and conducted a survey of ten users, who were asked to manually identify all the circles to
which their friends belonged. On average, users identified 19 circles in their ego-networks, with an average circle size of

http://www3.nd.edu/%7Enetworks/resources.htm
http://cdg.columbia.edu/cdg/datasets
http://cdg.columbia.edu/cdg/datasets
http://cdg.columbia.edu/cdg/datasets


16 A. Carissimo et al. / Computational Statistics and Data Analysis 120 (2018) 1–24

(a) Q = 0. (b) Q = 0.

(c) Q = 0.2. (d) Q = 0.2.

Fig. 5. VI plots on the clustering obtained via Louvain on 5 simulated datasets with different modularity Q ∈ [0, 0.2, 0.4, 0.6, 0.8] (Q = 0 (a), Q = 0.2
(c), Q = 0.4 (e), Q = 0.6 (g) and Q = 0.8 (i)) and corresponding adjusted p-values of the Interval Testing procedure (Q = 0 (b), Q = 0.2 (d), Q = 0.4
(f), Q = 0.6 (h) and Q = 0.8 (j)). Horizontal red line corresponds to the critical value 0.05. Light grey areas correspond to p-values below 0.05, dark grey
areas correspond to p-values below 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

22 friends. Examples of such circles include students of common universities, sports teams, relatives, etc. Data are available
at http://snap.stanford.edu/data/egonets-Facebook.html. In particular we analysed: the overall 10 ego-networks as a single
network, the less modular (Q = 0.29) and themost modular (Q = 0.68) ego network separately. In this case themodularity
was computed according to the Fast Greedy partition. This case study shows us how our results could be used to compare
and understand different network structures.

The application of the overall procedure on the just described real datasets is summarised in Tables 6 and 7 and in Figs. 8
and 9, respectively. The two single ego-networks corresponding to the less modular (Q = 0.29) and the most modular
(Q = 0.68), are plotted in Fig. 7.

Gaussian process results
The application of the Gaussian Processes approach described in Section 3.1 to the four real networks is summarised in

Table 6. The resulting BF are very high for either Fast Greedy or Louvain clustering. This gives strong statistical evidence that

http://snap.stanford.edu/data/egonets-Facebook.html
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(e) Q = 0.4. (f) Q = 0.4.

(g) Q = 0.6. (h) Q = 0.6.

Fig. 5. (continued)

the four analysed networks have a robust clustering structure hence the recovered community structures are not likely to
be random.

Functional principal component testing results
Similarly, Table 7 summarises the application of the Functional Anderson-Darling test described in Section 3.2 to the four

real networks. As we can see the False Discovery rate adjusted p-values are well lower then the standard significance value
0.05, after clustering with either clustering Fast Greedy or Louvain. This result agree with the previous one leading to the
same conclusion that analysed real networks have a robust clustering structure.

Interval-wise functional testing results
The application of the Interval-wise Testing procedure described in Section 3.3 to the real datasets after clustering via

Fast Greedy or Louvain are depicted respectively in Figs. 8 and 9.
In each figure, panels (a), (c), (e), (g) show the VI curves for the null model (VIcrandom) and for the actual model (VIc). In

all the cases the two curves appear to be very close for high perturbation values and depart from each other as perturbation
level approaches zero. In panels (b), (d), (f), (h) this is quantified locally by a specific adjusted p-value in each sub-interval.
Also in this case significant p-values are falling under the horizontal red line corresponding to the critical value of 0.05. As
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(i) Q = 0.8. (j) Q = 0.8.

Fig. 5. (continued)

Fig. 6. For each real network (Facebook (a), Barabasi (b), Nexus 5 (c) and Nexus 15 (d)) we show the extracted community found by the proposed method
Fast Greedy. Only the community with more than the 5% of nodes is displayed.

expected, either using Louvain or Fast Greedy as clustering methods yields to similar results conclusion. As already observed
for the synthetic datasets, if we strongly perturb a network (p ≥ 0.5, i.e. we rewire more than 50% of edges) it approaches a
random network, indeed the two VI curves become very close, and the p-value could survive the threshold.



A. Carissimo et al. / Computational Statistics and Data Analysis 120 (2018) 1–24 19

Fig. 7. For both the less modular (a) and themostmodular (b) ego networks, we show the extracted community found by the proposedmethod Fast Greedy.
Only the community with more than the 5% of nodes is displayed.

Table 6
GP Bayes Factor on the 4 datasets and for the two less modular (Q = 0.29)
and the most modular (Q = 0.68) ego networks in Facebook (FB), after
clustering via Fast Greedy or Louvain.

Datasets Fast Greedy Louvain

Barabasi 284.411 243.816
FB (10 ego) 297.251 361.060
FB (Q = 0.29) 153.760 258.920
FB (Q = 0.68) 290.503 338.269
Nexus 5 340.795 431.477
Nexus 15 503.183 495.810

Table 7
FDR adjusted p-values by the FAD test procedure on the 4 datasets and for
the two less modular (Q = 0.29) and the most modular (Q = 0.68) ego
networks in Facebook (FB), after clustering via Fast Greedy or Louvain.

Datsets Fast Greedy Louvain

Barabasi 0.00016 0.00302
FB (10 ego) 0.00024 8e−05
FB (Q = 0.29) 0.00016 0.0155
FB (Q = 0.68) 8e−05 8e−05
Nexus 5 0.000765 0.00024
Nexus 15 8e−05 8e−05

5. Metrics comparison

The crucial step of our proposal relies on the choice of the best testing procedure, given the best clustering. Following the
simulation study results described in Section 4.1, we can conclude that there is not an absolute best solution, but the outcome
is intrinsically linked to the structural properties of the network under study. The most relevant observed dependence is
from the modularity. However the value of modularity is mainly unknown in real networks and it has to be estimated via a
community extractionmethod. This is already a potential first bias as the clusteringmethod chosenmight be not the optimal
one for the network under study. For an insightful discussion about the choice of the community extraction method, we
defer to a recent work Yang et al. (2016) that carefully address this problem. However the most reliable outcome, in terms
of stability and interpretability, is obtained by the GP testing on the VI curves, using CM as null random model. This is
pointed out in Section 4.1 where the simulation study is performed. Indeed there is a high positive correlation between
the BF and the modularity values Q . In Fig. 2 shows an overall BF growing trend from modularity Q = 0 to Q = 0.8 after
clustering with either Fast Greedy or Louvain methods. This supports the assumption that networks with a high modularity
have a community structure that is significantly different from the random. Both clustering methods induce a BF that is fast
growing when 0.2 ≤ Q ≤ 0.4 , very high and more stable at high modularity and very low and stable at low modularity.
Furthermore in Section 4.2 and in Table 4we show that the BF is highly negatively correlatedwith the number of clusters and
highly positively correlatedwith themodularity and sparsity values at low andmediummodularity values, hence confirming
that the GP testing can help to discriminate not only between networks but also between the specific network structures.
As for the Functional Principal Component testing results, as shown in 4.1, the p-values are oscillating at low modularities
while very low otherwise. This is result is less interpretable and does not allow to discriminate between networks according
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(a) Barabasi. (b) Barabasi.

(c) Facebook. (d) Facebook.

Fig. 8. VI plots on the clustering obtained via Fast Greedy on real datasets (Barabasi (a), Facebook (c), Nexus 5 (e) and Nexus 15 (g)) and the corresponding
adjusted p-values of the Interval Testing procedure (Barabasi (b), Facebook (d), Nexus 5 (f) and Nexus 15 (h)). Horizontal red line corresponds to the critical
value 0.05. Light grey areas correspond to p-values below 0.05, dark grey areas correspond to p-values below 0.01. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

to their properties. Finally the Interval-wise Functional Testing produces interesting results at specific modularity intervals,
hence this could be a valid method when a specific modularity interval is of interest.

6. Conclusions and discussions

In this paper we propose an effective procedure to evaluate the robustness of a clustering. Given a community detection
method and a network of interest, our methodology enables to clearly detect if the community structure found by some
algorithms is statistically significant or is a result of chance, permitting to examine the stability of the partition recovered.
As suggested in Karrer et al. (2008), we specify a perturbation strategy and a null model to build a set of procedures based
on VI as stability measure. This enables to build the VI curve as a function of the perturbation percentage and to compare it
with the corresponding null model curve in the functional data analysis framework.
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(e) Nexus 5. (f) Nexus 5.

(g) Nexus 15. (h) Nexus 15.

Fig. 8. (continued)

We point out that our methodology could also be used to compare different clustering methodologies, indeed given
two clusterings on the same network, we could test the agreement between the two recovered partitions via the direct
comparison of the corresponding VI curves as defined by our procedure in Section 3. For example, note that Louvainmethod
is able to recover a non random clustering also at low modularity (Q ≥ 0.2), while Fast Greedy is able to recover a non
random clustering a for modularities Q ≥ 0.3. This indicates that perhaps Louvain is more suited for networks having a
weak community structure.

However, it is out of the scope of the present paper the comparative evaluation of different community extraction
methods. The two methodologies Louvain and Fast Greedy were indeed only instrumental to the exemplification of our
procedure. Both of them were selected at this stage as they both enables for an automatic definition of the optimal number
of communities and are based on the optimisation of the modularity, that plays a key role in describing community
structures.

As a general conclusion, as highlighted in Section 5, the most reliable outcome, in terms of stability and interpretability,
is obtained by the GP testing on the VI curves, using CM as null randommodel.
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(a) Barabasi. (b) Barabasi.

(c) Facebook. (d) Facebook.

Fig. 9. VI plots on the clustering obtained via Louvain on real datasets (Barabasi (a), Facebook (c), Nexus 5 (e) and Nexus 15 (g)) and the corresponding
adjusted p-values of the Interval Testing procedure (Barabasi (b), Facebook (d), Nexus 5 (f) and Nexus 15 (h)). Horizontal red line corresponds to the critical
value 0.05. Light grey areas correspond to p-values below 0.05, dark grey areas correspond to p-values below 0.01. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

An interesting and straightforward extension of the current paperwould be using a different clustering stabilitymeasure,
for example the Normalized Mutual Information measure proposed in Danon et al. (2005). This would also lead to a
comparison of the performance of different measures for community structure comparison.
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(e) Nexus 5. (f) Nexus 5.

(g) Nexus 15. (h) Nexus 15.

Fig. 9. (continued)
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