wﬂ;,; SCCG2000 - Spring Conference on Computer Graphics 2000 /C\ 2 19 Pagina 1 di 1

o

= T ITN =

CEBIsLIOTEC

] .

I Posiz.. RRCE Lo
V-1 9 -
2o

SPRING CONFERENCE ON CoMPUTER GRAPHICS 2000

3 - 8 May 2000

The conference will be held in Budmerice Castle - Slovak Republic (about 90 km near Vienna)
on 3 - 6 May 2000 during the COFAX Exhibition,
This event seems to be the oldest regular annual meeting of CG community in Central Europe.

The spring conference attempts to cover all interesting projects from computer graphics and image
pracessing in CG and the applications. The philosophy of SCCG is to put together top experts with

young researchers in CG and to support a good communication channel for East-West exchange of
prospective ideas. The conference chairman is

PROF. BIANCA FALCIDIENO
INSTITUTE OF APPLIED MATHEMATICS, GENOVA, ITALY

http://www.isternet. sk/sccg/ 11/09/2000

2 57 ML b
i

BucketTree: Improving Collision Detection Between

Abstract |

In recent years, thanks to the increasing computational
power available, real time computer anirmation has nata-
rally evolved to model more complex and computationally
expensive scenes. Consequently, all the problems con-
cerning physical modelling need further research to tackle
these new requirements, especially the problem of colli-
sion detection for deformable objects. Most existing so-
lutions cannot not be trivially extended, because they are
strongly based on the assumption that the shape of the
object is fixed. In this paper we propose a general ap-
proach to reduce the cost of coliision detection between
deformable objects explicitly represented, regardiess of
the specific geometrical and physical manner in which
they are modelled.

Keywords: Deformable Objects, Collision Detection,
Hierarchical Models, Real-time Animation

1 Introduction

Virtual Reality (VR) applications allow users {o enter a
computer-generated virtual world and interact with graph-
ical objects and virtual agents with a sense of reality. Such
systems may be either immersive, or desktop based. One
thing they have in common is a requirement for extremely
high and constant frame-rates. Physical interactions such
as touching, hitting and throwing are usually triggered by
collision. The more objects in the environment, and the
more complex these objects are, the higher the burden
on the engine that powers the animation, and hence the
greater the need for extremely rapid collision detection.
Increasing performance of V.R. is often driven by hard-
ware developments, as in [28], but significant opportuni-
ties exist to increase perfortnance via algorithmic improve-
ment. In this paper, we present a simple technique for im-
proving the progressive refinement level of collision detec-
tion between deformable objects. A hierarchical model,
such as an octree, is often used to localize collision test-
ing to certain regions in space, thus reducing the number

*Visnat Computing Group IEI-CNR Pisa ganovell @iei.pi.cnr.it
*mage Synthesis Group TCD Dublin John.Dingliana@cs.lcd.ie
lmage Synthesis Group TCD Dublin Carol.Osullivan @cs.ted.ie

Deformable Objects

Fabio Ganovelli *
John Dingliana T
Carol O’Sullivan ¥

of costly calculations needed to identify interfering object
parts. We associate an octree of axis aligned bounding
boxes with each object, where the primitives composing
the surface of the object reside in the leaves of the tree. We
refer to the bounding boxes associated with the leaves of
the tree as buckets. Our method provides a means of keep-
ing this hierarchy efficiently and dynamically updated for
deformable objects.

The rest of the paper proceeds as follows: an overview
of previous approaches is presented in Section 2, where
the concept of hybrid collision detection is explored. Sec-
tion 3 presents our approach,BucketTree, and in Section 4,
we briefly compare it with similar approaches. Results and
plans for future work are discussed in Section 5 and Sec-
tion 6 respectively.

2 Collision Detection

Hybrid collision detection [17] refers to any collision de-
tection method which first performs approximate tests to
identify interfering objects in the entire workspace, and
then performs more accurate tests to identify the object
parts causing interference. [12} and [4] also propose hy-
brid algorithms for collision detection. The former refers
to the two levels of the algorithm as the broad phase,
where approximate intersections are detected, and the nar-
row phase, where exact collision detection is performed.
Such an approach is essential for acceptable collision de-
tection performance. The narrow phase itself may also
consist of several levels of intersection testing between
two objects at increasing levels of accuracy, the last of
which may be fully accurate. We shall refer to these as
the exact level, and the progressive refirement levels.

21 Broad Phase Collision Detection

When animating more than two objects, the most obvi-
ous problem that arises is the O{N?} problem of detecting
collisions between all N objects. The aim of the broad-
phase of a collision detection algorithm is to quickly elim-
inate objects which could not possibly be intersecting.
4-dimensional stractures called space-time bounds have
been used in [12] and [2] te provide a conservative esti-
mate of where an object may be in the future. The fourth

dimension represents time. Overlaps of these bounds trig-
ger the narrow phase. Using the space-time bounds, atten-
tion is focused on the objects that are likely to collide, and
those far away can be ignored.

In [4] multiple object pairs ate "pruned” using bound-
ing boxes. Overlapping bounding boxes then trigger the
narrow phase of the algorithm. Their "Sweep and Prune”
algorithm orthogonally projects axis-aligned bounding
boxes of all objects onto the x, y and z-axes. This results
in intervals, of which overlaps in all three dimensions in-
dicate overlaps of the corresponding bounding boxes. Be-
cause of coherence, the relative positions of objects will
not change significantly between frames, so insertion sort
is used to keep the intervat lists sorted, which runs in al-
most linear time for almost-sorted lists. The algorithm
has been built into a general collision detection package 1-
Collide, which is freely available on the World Wide Web.

2.2 Narrow Phase: The Exact Level

Any collision detection algorithm depends on the tech-
nique used to model the objects, and the data structure
used to represent that model. The nartow phase, where
exact collision detection is performed, depends greatly on
the object representation scheme used. Much of the pre-
vious work on collision detection techniques has concen-
trated on detecting collisions between convex polytopes.
Such approaches fall into two broad categories: Feature-
based methods, and Simplex-based methods. Feature-
based methods concentrate on the inter-relations between
the vertices, edges and faces of two polytopes, i.e. their
features. The main goal of such algorithms is to detect
whether two pelytopes are touching or not. The most
significant of these algorithms are the Lin-Canny algo-
rithm [20, 19], and the V-Clip (Voronoi-Clip) feature-
based algorithm [22] which it inspired.

Simplex-based algorithms treat a polytope as the convex
hull of a point set. Operations are then performed on sim-
plices defined by subsets of these points. The first of such
algorithms was presented in [16] and is commonly referred
to as GJK. The main strength of this algorithm is that, in
addition to detecting whether two objects have collided or
not, it can also return a measure of interpenetration. [27]
improved upon GJK by exploiting coherence, and [3] de-
veloped it further to produce the algorithm which is known
as Enhanced GIK.

The abhove algorithims may be extended to cater for non-
convex polytopes by using hierarchies of convex compo-
nents. Although this technique works well for slightly
non-convex objects, it becomes very inefficient as the leve]
of non-convexity increases. Therefore, these technigues
are very useful for sitnations where a small number of
convex, or slightly non-convex objects are interacting in
real-time, but in other situations techniques based on hier-
archical representations are much more suitable. The algo-
rithms also depend on the object being rigid, and are hence

unsuitable for collision detection between defermable ob-
jects.

Implicit Surfaces, where a scalar field function is used
to define the shape of an object f1, 14, 34], are commonly
used to model objects which deform, split or blend. Seeds
may be used to produce & set of polygons that fit the sur-
face at run time [5). A method of producing piecewise
contact allows collision detection and its subsequent re-
sponse [7]. However, the polygonisation methods used
are still too slow for true real-time performance, and other
problems arise when handling volume preservation upon
collision, and unwanted blending.

Deformable objects are often modelled solidly as a soup
of solid primitives, such as tetrahedra. This approach is
particularly prevalent in the field of virtual surgery. Col-
lision detection and response for such objects is usually
with a surgical instrument, such as a scalpel, which typi-
cally has a trivial topology [21]. No satisfactory real-time
techniques exist for fast collision detection between arbi-
trarily complex deformable objects modeled in this way.
In this paper, we concentrate on the problem of collision
detection between the surfaces of objects explicitly repre-
sented by solid primitives.

2.3 Narrow Phase: Progressive Refine-
ment Levels

The progressive refinement levels of the natrow phase of
a collision detection algorithim are often based on using
bounding volumes and spatial decompesition techniques
in a hierarchical manner. Hierarchical methods have the
advantage that as a result of simple tests at a given point
in the object hierarchies, branches below a particular node
can be identified as irrelevant to the current search and so
pruned from the search.

Trees of bounding volumes are used, each level approxi-
mating the object. This is a form of Level Of Detail (1.OD)
representation of the object. This differs from the polyg-
onal levels of detail used in multiresolution methods for
faster rendering of complex objects, or surfaces such as
mountainous terrain [9, 10, 11, 26]. In such techniques,
the aim is to render an approximation that is as visualty
similar to the original model as possible. 1.ODs for colli-
sion detection are always conservative approximations o
the object, and the choice of volume is usually based on the
speed of their intersection tests. More recently emphasis
has been placed on their ability to approximate the geome-
try of the bounded object. The following hierarchies have
been used:

» AABB-trees [6]. Axis Aligned Bounding Boxes
are used, the advantage of these being their ease of
computation and overlap testing.

e Octrecs [32, 17] Octrees are built by recursively
sub-dividing the volume containing an object into

eight octants, and retaining only those octants that
contain some part of the original object as nodes in
the tree. Such a data structure is simple to produce
automatically, and lends itself {o efficient and elegant
recursive algorithms. The disadvantage of this
approach is that each level of the hierarchy does not
fit the underlying object very tightly.

Sphere Trees [13, 25, 26]. The main advantages of
using spheres are that they are rotationally invariant,
making them very fast fo update, and it is very
simple to test for distances between them, and
test for overlaps. The disadvantage is that spheres
do not approximate certain types of objects very
efficiently. Hubbard attempts to improve upon this
by building first a medial axis surface, which is like a
skeleton representation of an object, and then placing
the spheres upon this to provide a tighter-fitting
approximation to the object. [24] also developed a
method of tightly fitting spheres to an object. 1n [15],
the nature of the sphere tree is exploited to gracefully
degrade collision handling in fime-critical animaticn
systens.

C-trees consist of a mixture of convex polyhedra and
spheres [35]. This has the advantage of choosing
primitives which best approximate the enclosed
object, but a major drawback is that the hierarchy
must be created by hand, and cannot be produced
automatically. A similar approach is taken in [28].

OBB-trees [B]. These hierarchies consist of tightly
fitting Oriented Bounding Boxes. It is claimed that
using an algorithm based on a separating axis, it
can accurately detect all the contacts between large
complex geometries at interactive rates. However,
it is admitted that other methods are very good at
performing fast rejection tests, and a disadvantage of
OBB-trees over Sphere trees is that they are slower
to update. A similar approach is taken in [18], who
use hierarchies of k-DOPs, or discrete orientation
polytopes, which are convex polytopes whose facets
ate determined by half spaces whose outward nor-
mals come from a small fixed set of k orentations.
Again, they implement it with a small number of
highly complex objects, for the purposes of haptic
force-feedback. 1f there are a large number of objects
between which fast rejection or acceptance is needed,
the update time needed for these approximations is
likely to add an unacceptable additional burden.

ShellTrees [30]. These trees consist of oriented
bounding boxes and spherical shells, which enclose
curved surfaces such as Bezier patches and NURBS.

For rigid bodies, these data-structures may be pre-
computed, as their shape will not change throughout the
animation, The same transformations that are applied to
the object can simply be applied to the hierarchy when-
ever a broad-phase collision is detected. With deformable
objects, the hierarchical approximation must be updated at
each frame, due to the constantly changing shape and/or
topology of the objects. This is 2 computationally expen-
sive process.

3 Ociree and bucket strategy

As previously stated, most hierarchical approaches for col-
lision detection between rigid bodies use structures, for
example hierarchies of bounding volumes, that have to be
computed in a preprocessing phase and that are sirictly
connected with the shape of the objects, which is a con-
stant of the system.

Generally speaking, the quality of a strategy that uses
bounding volumes is influenced by two factors:

e how well the bounding volume approximates the ob-
jeet

¢ how much computation is required to detect the over-
lapping between two bounding volumes

Note that in the context of highly deformable objects, the
first item is almost meaningless, since the kind of bound-
ing volume which best approximates an object could be
the worst after a few iterations. Consequently, we decide
to use bounding volumes that are the easiest ones to check
for overlapping: Axis Aligned Bounding Boxes.

For the sake of generality, we do not make any assump-
tion as to how the objects are physically and geometrically
modeled. We simply think of an object as a soup of prim-
itives freely moving in the scene. Primitives could be, for
example, vertices of polygons or the polygons themselves;
the only requirement is that a total order among primitives
can be defined in the x, y and z directions.

Basically, we use an octree where the root is associ-
ated with the axis aligned bounding box of the object, and
where each leaf contains the set of primitives which are
inside the cortesponding box (we use the term buckerto re-
fer to the box associated with a leaf). At each time step
the coordinates of the bounding box are updated and each
primitive is placed in the right bucket. The collision test
between two objects is done recursively testing pairs of
nodes. When two non-leaf nodes overlap, the children of
the one with smaller volume is tested with the node with
bigger volume; if only one is a leaf, it is tested against
the children of the non-leaf node; if two leaf nodes over-
lap, the two sets of primitives to test for exact collision
are in the respective buckets. In the Iatter case, the rest
of the collision process depends on how the objects are
modeled. Remember, out intent is to reduce the number
of tests between surface elements of the object regardless

1k

(LIRS

of their representation, i.e. to improve the broad phase of
the collision detection process, If the object’s surface is
a triangular mesh, for example, this algorithm returns the
triangles of both surfaces that have to be tested,

3.1 Keeping each primitive in the cor-
rect bucket

An octree with I levels contains 8' leaves each one corre-
sponding to a bucket. If the dimensions of the bounding

box are Sy, Sy and §;, then the dimensions of a bucket are
Sy = ‘-;f, sy = %} and §; = -g*, and the buckets are indexed
with a triple {n,Ry,n;) 1 0 < 1y, my, 0, < 2!, Consequently,
if p, is the x position of a primitive in space and B, is the
minimum x position of the bounding box, the index of the

correct bucket for this primitive is:

nx(p) = (px — Bx)/5x 1

Clearly the same holds for n,(p) and n,(p). We propose -

two different ways of assigning each primitive to the cor-
rect bucket, which we term Algorithm 1 and Algorithm

2 respectively:

Algorithm 1 : This is the brute force solution: at each
step during the simulation, we process each primitive
and assign it to the appropriate bucket. The cost for
each assignment is given by the operations required by
equation 1: if m is the number of primitives, each step
requires 3m subtractions, 3m divisions and 3m floor
operations.

Please note that no information on the positions of
primitives at any previous step is used by this algorithm.

Algorithm 2: if we assumme frame to frame coherencyi, we
can take advantage of the fact that most of the primitives
stay in the same bucket between two consecutive steps,
thus avoiding the use of equation 1 to compute the bucket
position.

We use three arrays X, ¥ and Z, cach one storing all the
primitives, and keep these atrays ordered on the respective
coordinates using the insertion sort algorithm [31], which
runs in average O(n) time when frame to frame coherency
is guaranteed. 1t is obvious that:

if m(X[]) = X[= b, i< @
then n(X[u])=>b Vi<u<j

if nX[)=bandn(X[i+1])#b

then nX[i+1)=b+1 3)

equation (2) shows that each list can be subdivided into a
series of intervals so that all the primitives in the same in-
terval have equal n,; equation (3) shows that we can record

'Frame to frame coherency means that the order of the primitives
along the x, y and ¢ axes at fime ¢ is almost valid also at time ¢ -+ A

Figure 1: A representation of the data structure for a two
levels octree regarding to x direction

the position of such intervals with an integer index of their
first clement. Hence we can use an array of integers By
with size 2!, where B;[k] contains the position of the first
primitive p in X for which ny(p) = k (see Figure 1). At
each step, we only update the array B in average constant
time with the following procedure:

UpdateBucketPointers(x)

for i =0..2"
pos = Byi];
threshold := i = bucket size.x;
if{ X [pos].x > threshold)
then
do
pos = pos — 1;

while((pos >= 0) and (X [pos].x > threshold))
else
do
pos = pos+1
while((pos < 2! — 1) and (X[pos]).x < threshold)
B.li] == pos;

This procedure simply checks if the position B.[i] still
points to the first primitive (the one with minimum x) in
the bucket . If this is not true, it moves By[{] backwards or
forwards depending on whether the value of the primitive
in X[B.[i]] is greater or smaller than the current threshold,
i.e. the minimum x value of the bucket.

Clearly, ¥ and Z are similarly handled.

3.2 Propagating cell occupancy infor-
mation

Since each node of the octree is statically asseciated
with a portion of the space occupied by the bounding

box of the object, it may happen that some subtrees are
empty. To avoid visiting empty subtrees during the col-
lision detection process, we propagate the information
about cell occupancy, starting from the leaves up to the
root of the octree. A temporal mark fay; is associated
with each node i of the octree as follows: at the end
of each step, with the buckets properly updated, we sct
tm; = simulationstepnumber only for the ones containing
at least one primitive. Starting from these uckets, we
propagate the temporal mark from the bottom up. Obvi-
ously, the matk of the nodes corresponding to empty sub-
trees will not be updated. Therefore, when we visit node i,
if tmn; is equal to the current simulation step number, then
the subtree with its root in i is not empty.

4 Comparison with other ap-
proaches

We have seen that there are few approaches suitable for
collision detection between deformable objects in real
time. Up to now, the most effective has probably been the
one based on AABB trees (cited in section 2.2). This ap-
proach, like our one, uses a hierarchy of bounding boxes:
it proceeds recursively, starting from the bounding box of
the whole object and partitioning the primitives into two
sets, separated by a plane orthogonal to the longest side of
the bounding box: for each of the two sets the correspond-
ing bounding box is computed.

All the bounding boxes in the hierarchy are axis aligned
with respect to the local object coordinate system, which
coincides with the global coordinate system at the begin-
ning of the simulation. This means that when the object
is undergoing a rotation, the boxes are no longer aligned
with the global axis. Hence, the overlapping tests are re-
lated to boxes freely criented in space. When an object is
undergoing a deformation, the boxes are resized to fit the
primitives contained.

This approach is very efficient under two conditions:

firstly, the number of primitives has te be known a priori
as well as the topology of the object. This means that no
cut or fusion operations can be done without rebuilding
the whole tree. Secondly, the behaviour of the object has
to be expressed in terms of a rigid body and 2 deformation
component, as proposed in [33], because the refitting
procedure is based on deformation expressed in the local
coordinate system.
In our approach, no information about topology is
required, which makes it suitable for cut and fusion
operations; the overlapping between boxes requires only
6 comparisons, because they are always aligned with the
axes of the global coordinate syster.

On the other hand, the drawback of our approach is
that the primitives are not uniformly distributed among the
leaves of the tree, or the nodes at the same level. For ex-

ample, if an object is composed of m primitives, where
m— 1 are very close to each other and 1 is far away,
we could have m —~ 1 primitives concentrated in a single
bucket, which makes the whole approach useless.

5 Resulis

Our intention was to make as few assumptions as possible
about the geometry and fopology of the objects, or about
the way in which their physical behavior is modeled, We
therefore test the algorithm by simply modeling an object
as a soup of primitives. At each iteration, a main direction
and velocity for the object is randornly chosen and stored
in a vector v (the velocity is [v]). Bach primitive p of the
object moves in a direction, v, close to v, i.e. such that the
angle formed by v and v, is less than a given value ¢, (see
Figure 2). The choice of & controls the degree of frame to
frame coherency: setting o = 0, all the primitives move in
the same direction (rigid body motien), hence their order
does not change along any axis between two consecutive
steps; increasing & we give them more freedom to move.

Table 3 shows a comparison between the time required
to keep the octree updated for Algorithm 1 (compute the
right bucket for each primitive) and Algorithm 2 (use in-
sertion sort) with or without frame to frame coherency.
Note that Algorithm 1 is not affected by frame to frame
coherency, simply because it does not use any order rela-
tion between primitives, while Algorithm 2 works better
when frame to frame coherency is introduced. Further
more, though less intuitive, it exhibits almost the same per-
formance than Algorithm 1 also without up until to 15000
primiteves. This is due to the fact that, as previously stated,
it keeps updated the structure without perform any multi-
plication or division to place the primitives in the correct
bucket.

Figure 4 shows the influences of the number of octree
levels on the performance of the algorithm. Observe that
up until 4 levels (4096 buckets), the time for updating the
structure grows linearly, because the time for processing
the buckets is almost negligible w.r.t. the time for pro-
cessing primitives. From the fifth level upwards, the ex-
ponential factor due to the octree significantly degrades
performance. Note that the rumber of operations depends
linearly on the number of primitives and exponentially on
the number of levels.

Table 1 shows the times for collision detection, ie. the
time needed to visit the octrees and to determine pairs of
overlapping leaves. We do not differentiate between algo-
rithms 1 and 2 since the detection process is identical for
both. All the tests are performed on a Pentium 11 300Mhz
- 64Mb.

n
[

ARE

13

direction of
primitive |

main
direction

Figure 2: The angle B, formed by the direction of primitive
p and the main direction of the object, is limited by «, to
ensure frame to frame coherency

TEEEEEE
n Primifives

Figure 3: Comparison between algorithms 1 and 2 with or
without frame to frame coherency. The number of levels
of the octree is set to 4

—o—Alg. 1
{|m—Ag. 2 Mo T
—a—Alg. 2-Fr

n Levels

Figure 4: Degradation of performance on increasing of the
mumber of levels. The number of particles per object is set
to 15000

nlL| ¢
3 95
4 325
5 684

Table 1: n L: number of levels; ¢ time in milliseconds for
detecting 1000 collision between buckets

Figure 5: A snapshot of the algorithm test bed while run-
ning. The primitives in the two buckeis colliding are ren-
dered in black. The bounding boxes of the two objects are
showed. Please note that the boxes are axis aligned, while
the camera is moved for the sake of visibility

& Conclusions and Fulure Work

This paper presents a simple and effective technique for
the progressive refinement phase of collision detection be-
tween deformable objects explicitly represented. Since we
did not make any assuwmptions about the model, the ap-
proach is very general and can therefore be adopted in a
variety of situations. To witness its adaptability, we are
current developing a C++ template library where the tem-
plate is just the object class class.primitive, implementing
both Algorithm 1 and 2. Further research is needed to ex-
tend this approach to the problem of self intersection of
the sutface, that always arises for highly deformable ob-
jects or for objects that can be cut. The latter case needs
special attention, since a cut in an object gives rise to two
adjacent and opposite surfaces. We plan to extend Buck-
etTree to cope with such situations, using the information
about vicinity that we have when two primitives reside in
the same bucket, and to introduce it into our model for de-
formable objects [23].

References

[1] 3. Blinn. A generalization of algebraic surface draw-
ing. 1(3):235-256, 1982.

07 1o S AO7 020 M7 Q35 A9T 02 ADTY Q=1

[2] §. Cameromn. Collision detection by four—
dimensional intersection testing. [EEE Transaction
on Robotics and Automation, 6(3):291-302, June
1990.

[3] $.A. Cameron. Enhancing GJK: Computing mini-
mum penetration distances between convex polyhe-
dra. pages 3112-3117, 1997,

[4] 1. D. Cohen, M. C.Lin, D. Manocha, and M. K. Pon-
amgi. 1-COLLIDE: An interactive and exact colli-
sion detection system for large-scale environments,
1n Pat Hanrahan and Jim Winget, editors, 1993 Sym-
posium on Interactive 3D Graphics, pages 189--196.
ACM SIGGRAPH, April 1995. 18BN 0-89791-736-
7.

[5] Mathieu Desbrun, Nicolas Tsingos, and Marie-Paule
Gascuel. Adaptive sampling of implicit surfaces for
interactive modeling and antmation. 1n Implicit Sur-
faces 95, April 1993.

[6] Van Den Bergen G. Efficient collision detection of
complex deformable models using aabb trees. Jour-
nal of Graphics Tools, 2(4):1-13, 1998.

[7] M.-P. Gascuel. An implicit formulation for precise
contact modeling hetween flexible solids. Computer
Graphics (SIGGRAPH '93 Proceedings), 27:313-
320, 1993.

[8] Stefan Gottschalk, Ming Lin, and Dinesh Manocha.
OBB-Tree: A hierarchical structure for rapid inter-
ference detection. In Holly Rushmeier, editor, SIG-
GRAPH 96 Conference Proceedings, Annual Con-
ference Series, pages 171--180. ACM S1IGGRAPH,
Addison Wesley, August 1996. held in New Oftleans,
Louisiana, 04-09 August 1996,

[91 H. Hoppe. Progressive meshes. In ACM Computer
Graphics Proc., Annual Conference Series, (Sig-
graph '96), pages 99-108, 1996.

[10] Hugues Hoppe. View-dependent refinement of pro-
gressive meshes. In ACM Computer Graphics Proc.,
Annual Conference Series, (Siggraph '97), 1997,
189-198.

[11] Hugues Hoppe. Efficient implementation of progres-
sive meshes. Computer & Graphics, 22(1):27-36,

1998.

[12] B M. Hubbard. Collision detection for interactive

graphics applications. IEEE Transactions on Vi-

" sualization and Computer Graphics, 1(3):218-230,
September 1995. 188N 1077-2626.

[13] Philip M. Hubbard. Approximating polyhedra
with spheres for time-critical collision detection.
ACM Transactions on Graphics, 15(3):179-210,
July 1996,

(D M9T Q={:ip

(14}

[15]

[16]

[17]

[18]

rMo|m
L+-1

[20]

[21]

(22}

[23

[24]

[25]

[26]

A9T Q=1

Nishimura H Hirai M Kawai T Kawata T Shirakawal
and Omura K. Object modeling by distribution func-
tion and a method of image generation. volume 68,
pages 718-725, 1995,

Dingliana), and O’ Sullivan C. Graceful degradation
of collision handling in physically based animation.
Computer Graphics Forum{Eurographics 2000 Pro-
ceedings) (to appear).

E.G.Gilbert D, W.Johnson 3.8, Keerthy. A fast pro-
cedure for computing the distance between complex
objects in three-dimensional space. 4(2):193-203,
1988.

Kitamura Y. Takermura H. Ahuja N. Kishino. Effi-
cient collision detection among objects in arbitrary
motion using multiple shape representations. vol-
ume 1, pages 390-396, 1994.

James T. Klosowski, Joseph 8. B. Mitchell, Henry
Sowizral, and Karel Zikan. Efficient Collision De-
tection Using Bounding Volume Hierarchies of k-
DOPs. IEEE Transactions on Visualization and
Computer Graphics, 4(1):21-36, January 1998.

Aaldis

tion and Robotics. PhD thesis, University of Califor-
nia, Berkeley, March 1994,

M. C. Lin. Efficient Collision Detection for Anima-

M.C. Canny J.F. Lin. Efficient algorithms for incre-
mental distance computation. pages 1008-1014.

1.C. Lombardo, M.P.Gascuel, and ENeyret. Real-
time collision detection for virtual surgery. In Pro-
ceedings of Computer Animation '99, pages 33-39,
May 1999.

Brian Mirtich. VClip: Fast and robust polyhedral
collision detection. ACM Transactions on Graphics,
17(3):177-208, July 1998.

F. Ganovelli P. Cignoni C. Montani and R. Scopigne.
A multiresolution model for soft objects supporting
interactive cuts and lacerations. Computer Graphics
Forum(Eurographics 2000 Proceedings) (to appear).

J. &@’Rourke and N. Badler. Decomposition of three-
dimensional objects into spheres. IEEE Trans. On
Pattern Analysis and Machine Intelligence, PAM-
1:295-303, 417, July 1979.

R.1.. Palmer, L), Grimsdate. Collision detection for
animation using sphere-trees. volume 14, pages 105~
116, 1993.

S. Quinlan. Efficient distance computation be-
tween non-convex objects. In Edna Straub and
Regina Spencer Sipple, editors, Proceedings of the
International Conference on Robotics and Automa-
tion. Volume 4, pages 3324-3330, L.os Alamitos, CA,
USA, May 1994, IEEE Computer Society Press.

2H 2 M Vo 30 K0T 1o 20
eD ASTASSFWIVONESLZPTAQOZTERTIHOBTO!

[27] Rich Rabbitz. Fast collision detection of moving
convex polyhedra. In Paul Heckbert, editor, Graph-
ics Gems IV, pages 83-109. Academic Press, Boston,

1994,

[28] J. Rohlf and I Helman. IR1S performer: A high
performance multiprocessing toolkit for real-time 3D
graphics. Proceedings of SIGGRAPH 94, page 381,
1994, .

[29] J. Rossignac and P. Borrel. Mulfi-resolution 3D ap-
proximation for rendering complex scenes. In B. Fal-
cidieno and T.L. Kunii, editors, Geometric Model-
ing in Computer Graphics, pages 455-465, Springer
Verlag, 1993,

[30] M. Lin 8. Krishnan, A. Pattekar and D. Manocha.
Spherical shell: A higher order bounding volume
for fast proximity queries. 1n David C. Evans and
Rusell 1. Athay, editors, WAFR Proceedings, pages
287-296, March 1998.

[31] H. Samet. The design and Analysis of Spatial Data
Structures. Addison Wesley, Reading, MA, 1990.

[32] tl. Sammet and R. chber. Hierarchical data struc-
tures and algorithrns for compuier graphics. 8(3):48-
68, 1988.

[33] Demetri Terzopoulos and Kurt Fleischer. De-
formable models. The Visual Computer, 4(6):306—
331, December 1988.

[34] Geoff Wyvill, Cralg McPheeters, and Bran Wyvill.
Data structure for soft objects. The Visual Computer,
2(4):227-234, 1986.

{35] K. Youn, J.H. Wohn. Realtime collision detection for
virtual reality applications. pages 18-22, 1993,

b, mgh

