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Abstract

In this paper we propose an algorithm for the formation of matrices of isoge-

ometric Galerkin methods. The algorithm is based on three ideas. The first

is that we perform the external loop over the rows of the matrix. The second

is that we calculate the row entries by weighted quadrature. The third is that

we exploit the (local) tensor product structure of the basis functions. While

all ingredients have a fundamental role for computational efficiency, the major

conceptual change of paradigm with respect to the standard implementation is

the idea of using weighted quadrature: the test function is incorporated in the

integration weight while the trial function, the geometry parametrization and

the PDEs coefficients form the integrand function. This approach is very effec-

tive in reducing the computational cost, while maintaining the optimal order of

approximation of the method. Analysis of the cost is confirmed by numerical

testing, where we show that, for p large enough, the time required by the floating

point operations is less than the time spent in unavoidable memory operations

(the sparse matrix allocation and memory write). The proposed algorithm al-

lows significant time saving when assembling isogeometric Galerkin matrices for

all the degrees of the test spline space and paves the way for a use of high-degree

k-refinement in isogeometric analysis.
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1. Introduction

Isogeometric analysis has been introduced by the seminal paper [21] as an ex-

tension of the classical finite element method. It is based on the idea of using the

functions that are adopted for the geometry parametrization in computer aided

design also to represent the numerical solution of the PDE of interest. These

functions are splines, Non-Uniform Rational B-Splines (NURBS) and exten-

sions. Many papers have demonstrated the advantage of isogeometric methods

in various applications. For the interested reader, we refer to the book [16].

One interesting feature of isogeometric methods is the possibility of using

high-degree high-regularity splines as they deliver higher accuracy per degree-

of-freedom in comparison to C0 finite elements [9, 10, 11]. However, the compu-

tational cost per degree-of-freedom is also higher for smooth splines, in currently

available isogeometric codes. In practice, quadratic or cubic splines are preferred

as they maximize computational efficiency.

The computational cost of a solver for a linear PDE problem is the sum of

the cost of the formation of the system matrix and the cost of the solution of the

linear system. The former is dominant in standard isogeometric codes already

for low degree (see e.g. [5, 31]). Recent papers in the literature have addressed

this important issue (see e.g. [27, 30]).

In this paper we adopt the following definition of optimality: an algorithm

for the formation of the matrix of a Galerkin method is optimal if its compu-

tational cost is of the order of the number of non-zero entries of the matrix to

be calculated. Optimal algorithms are known in the case of C0 finite elements

(see [2, 3]). However, this is still an open problem for smooth splines.

We consider in this paper a d-dimensional scalar Poisson model problem on

a single-patch domain, and an isogeometric tensor-product space of degree p

and total dimension NDOF, with NDOF ≫ pd. For the sake of simplicity, we

focus on the case of Cp−1 continuity, i.e., the typical setting of the so-called k-

method (see e.g. [16]). The resulting stiffness matrix has O(NDOF(2p+ 1)d) ≈
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O(NDOFp
d) non-zero entries. Therefore, we assume CNDOFp

d floating point1

operations (FLOPs) is the (quasi)-optimal computational cost for the formation

of the stiffness matrix. The algorithms currently used in isogeometric codes are

suboptimal with respect to the degree p, that is, their cost grows with respect

to the degree p faster than pd.

The majority of isogeometric codes inherit a finite element architecture,

which adopt an element-wise assembly loop with element-wise standard Gaus-

sian quadrature (SGQ). Each local stiffness matrix has dimension (p+1)2d and

each entry is calculated by quadrature on (p+1)d Gauss points. The total cost

is O(NELp
3d) ≈ O(NDOFp

3d) FLOPs, where NEL is the number of elements and,

for the k-method, NEL ≈ NDOF.

The standard way to reduce the cost is to reduce the number of quadrature

points, for example by reduced Gaussian [1, 33] (eventually corrected by varia-

tionally consistent constraints [20]) or generalised Gaussian quadrature (GGQ)

[22, 12, 14, 26]. To clarify GGQ, consider the mass matrix M = {mi,j} whose

entries, calculated on the parametric domain Ω̂ = [0, 1]d, have the form

mi,j =

∫

Ω̂

c(ζ) B̂i(ζ) B̂j(ζ) dζ , (1.1)

where B̂i and B̂j are the tensor-product B-spline, and c is a coefficient that

incorporated the determinant Jacobian of the geometry mapping and other pos-

sible non-tensor product factors. The work [22] has explored the possibility of

constructing and using GGQ quadrature of the kind

∫

Ω̂

c(ζ) B̂i(ζ)B̂j(ζ) dζ ≈ QGGQ(c(·) B̂i(·)B̂j(·)), (1.2)

where the quadrature weights wGGQ
q and points xGGQ

q of the quadrature rule

QGGQ(f(·)) =
∑

q w
GGQ
q f(xGGQ

q ) fulfil the exactness conditions

∫

Ω̂

B̂2p
k (ζ)dζ = QGGQ(B̂2p

k (·)), ∀k. (1.3)

1Throughout the paper, C is a (reasonably small) constant that does not depend on NDOF

and p, and is in general different at each occurrence.
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Here {B̂2p
k (·)} is the B-spline basis of degree 2p and continuity Cp−1. Exact

integration of product of a pair of p degree splines B̂i(·)B̂j(·) is then guaranteed

by (1.3). Since the wGGQ
q and xGGQ

q are not known analytically, they need

to be computed numerically as solution of the global non-linear problem (1.3),

see [4, 7, 8], and the recent paper [23] where the problem is effectively solved

by a Newton method with continuation. The paper [6] uses local exactness

conditions instead of (1.3). The number of conditions in (1.3) is #{B̂2p
k (·)} ≈

NDOF(p + 1)d ≈ NEL(p + 1)d, dropping the lower order terms, and therefore

GGQ is expected to use about NEL

(

p+1
2

)d
quadrature points, with a saving of

a factor 2d with respect to SGQ.

The number of quadrature points is not the only issue to consider here, and

indeed the element-wise assembling loop has a relevant role as well. On one

hand, it allows the reuse of finite element available routines, which is a clear

advantage as it greatly simplifies code development. On the other hand, it is

intrinsically not optimal, as each elemental stiffness matrix has size (p+1)d and

therefore the total computational cost is bounded from below by CNELp
2d ≈

CNDOFp
2d. This ideal threshold is approached by sum-factorization, that is, by

arranging the computations in a way that exploits the tensor-product structure

of multivariate spline, with a cost of O(NDOFp
2d+1) FLOPS, see [5].

Further cost reduction is possible with a change of paradigm from element-

wise assembly. This has been explored in some recent papers. In [28] the

integrand factor due to geometry and PDE coefficients is interpolated on the

space of splines shape functions on a uniform knot vector, the same space where

the approximation is considered, while the integrals arising are pre-computed in

exact manner. The final cost of assembly in this case is O(NDOFp
2d). Another

approach has been proposed in [29] where the stiffness matrix is approximated by

a low-rank sum of R Kronecker matrices that can be efficiently formed thanks

to their structure. This is a promising approach with computational cost of

O(NDOFRpd) FLOPs.

We propose in this paper a new algorithm which does not use the element-

wise assembling loop. Instead, we loop over the matrix rows and we use a
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specifically designed weighted quadrature (WQ) rule for each row. In particular,

the quadrature rule for the i-th row of M is as follows:

∫

Ω̂

c(ζ) B̂j(ζ) (B̂i(ζ)dζ) ≈ Q
WQ
i (c(·) B̂j(·)), ∀j. (1.4)

Unlike (1.2), in the right hand side of (1.4) the integrand function is c(·) B̂j(·)

since the test function is incorporated into the integral weight (measure) (B̂i(ζ)dζ).

The price to pay is that the quadrature weights depend on i, while we select

global quadrature points as suitable interpolation points that do not depend on

i. Again, the quadrature weights are not known analytically and need to be

computed numerically as solution of the exactness conditions

∫

Ω̂

B̂j(ζ) (B̂i(ζ)dζ) = Q
WQ
i (B̂j). (1.5)

However, the exactness conditions (1.5) are linear with respect to the weights.

Furthermore, (1.5) is a local problem as the weights outside supp(B̂i) can be set

to zero a priori. The knot vectors do not need to be uniform with this approach.

The number of exactness conditions of (1.5) is #{B̂j(·)} = NDOF. This is

lower than the number of conditions of (1.3), which is #{B̂2p
k (·)} ≈ NDOF(p+1)d.

Hence, the main advantage of the WQ with respect to GGQ is that that the

former requires significantly fewer quadrature points. In the case of maximum

regularity only 2 points are needed in each direction sufficiently far away from

the boundary, while p + 1 points are taken on boundary knot-spans along di-

rections that end on the boundary. Adopting sum-factorization (see [5]), the

proposed algorithm has a total computational cost of O(NDOFp
d+1) FLOPs.

In our numerical benchmarking, performed in MATLAB, we have compared

the standard GeoPDEs 3.0 (see [19, 36]) mass matrix formation, based on

element-loop SGQ, with our row-loop WQ-based algorithm, showing the im-

pressive advantage. WQ speedup is more than a factor of four for quadratics

and rapidly grows with the degree p. For example, the mass matrix on a 203

elements grid is calculated in about 62 hours vs 27 seconds for degree p = 10.

For high p, the asymptotic growth of the computational time is slower than the

estimated cost from FLOPs counting: for all degrees of practical interest the
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growth we have measured is at most CNDOFp
d, that is, optimal. This is due to

the fact that the memory operations dominate: in particular we have verified

that the matrix formation time with our implementation is mainly used in allo-

cation (MATLAB’s sparse call) and memory write at least for sufficiently high

degree p.

The WQ we propose is designed in order to fit into the mathematical theory

that guarantees optimal order of convergence of the method. This theory is

based on the Strang lemma [15, 35]. We do not enter into this topic, which is

technical, and postpone it to a further work. In this paper we give numerical

evidence of optimal convergence on a simple 1D benchmark.

We also do not investigate parallelisation in this paper, however we think

the proposed algorithm is well suited for a parallel implementation since each

matrix row is calculated independently, which should alleviate the race condition

of typical finite element element-wise assembly (see [24] for details).

The outline of the paper is as follows. In Section 2, we present the idea

of the WQ rules for univariate B-splines. In Section 3, we briefly discuss the

use of isogeometric analysis on a model problem, and fix the notation for the

following sections. In Section 4, we extend the construction of WQ rules to the

multivariate case; a pseudo-code is presented in Section 5, where the compu-

tational cost is also discussed. In Section 6, we give details on the application

of the WQ rules for the formation of the mass matrix. In Section 7 we test

the procedure: a simple 1D test is performed in order to confirm accuracy and

tests are presented in order to compare time needed for the formation of mass

matrices in 3D. A complete benchmarking of the proposed procedure is beyond

the scope of the present paper and will be the subject of a forthcoming paper.

Finally, in Section 8 we draw conclusions.

2. Weighted quadrature

Assume we want to compute integrals of the kind:
∫ 1

0

B̂i(ζ) B̂j(ζ) dζ, (2.1)
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where {B̂i}i=1,...,nDOF
are p-degree univariate B-spline basis functions defined on

the parametric patch [0, 1]. We denote by χ the knot vector of distinct knots

that define the univariate B-splines B̂i(ζ). Moreover we define knot-spans as

the intervals [χk, χk+1], k = 1, . . . , nEL, where nEL := (#χ)−1. The knot vector

Ξ :=
{

ξ1, ξ2, . . . , ξnKNT

}

. (2.2)

that defines the univariate B-splines contains knots with repetitions depending

on the regularity: if a knot χk has multiplicity p− r then the univariate spline

is Cr continuous at χk. For simplicity, we consider r = p − 1 throughout

this paper. Though it is not difficult to consider arbitrary r, the proposed

strategy takes advantage of high regularity. In order to focus on the relevant

properties, we restrict our attention in this section to the uniform knot-spans,

i.e. χk+1 −χk = h ∀k = 1, . . . , nEL− 1. Moreover, we do not consider boundary

functions, so we assume that the knot vector is periodic. Being in the context

of Galerkin method, B̂i(ζ) is denoted as a test function and B̂j(ζ) as a trial

function.

We are interested in a fixed point quadrature rule. In the lowest degree

case, p = 1, exact integration is performed by a composite Cavalieri-Simpson

rule (note that in this case this quadrature is also the Gauss-Lobatto 3 points

rule):

∫ 1

0

B̂i(ζ) B̂j(ζ) dζ = QCS(B̂i B̂j) =
∑

q

wCS
q B̂i(x

CS
q ) B̂j(x

CS
q ), (2.3)

where xCS
q are the quadrature points and wCS

q the relative weights, see Figure

1. In the above hypotheses the points xCS
q are the knots and the midpoints of

the knot-spans and wCS
q = h

3 on knots and wCS
q = 2h

3 on midpoints.

Unbalancing the role of the test and the trial factors in (2.3), we can see it

as a weighted quadrature:

∫ 1

0

B̂i(ζ) B̂j(ζ) dζ = Q
WQ
i (B̂j) =

∑

q

wWQ
q,i B̂j(x

WQ
q,i ), (2.4)

where xCS
q = xWQ

q,i and wWQ
q,i = B̂i(x

WQ
q,i )wCS

q . Because of the local support of
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0.5

1

1.5
CS Quadrature
test function
trial function

0 1 2 3 4 5 6
0
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1
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test function
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Figure 1: Quadrature rule for B-spline with p = 1. Cavalieri-Simpson quadrature rule (on

the left) and it’s interpretation as weighted quadrature (on the right). The active points

and weights for Q
WQ
i are highlighted. In this and the next figure we set h = 2 so that

the quadrature points coincide with the integers, being the knots and the midpoints of the

knot-spans.

the function B̂i only in three points the quadrature Q
WQ
i is non-zero and the

weights are equal to h
3 see Figure 1.

If we go to higher degree, we need more quadrature points in (2.3). For

p-degree splines the integrand B̂iB̂j is a piecewise polynomial of degree 2p and

an element-wise integration requires 2p + 1 equispaced points, or p + 1 Gauss

points, or about p/2 points with generalized Gaussian integration (see [22, 6, 12,

13]). On the other hand, we can generalize (2.4) to higher degree still using as

quadrature points only the knots and midpoints of the knot spans. Indeed this

choice ensures that, for each basis function B̂i, i = 1, . . . , nDOF, there are 2p+1

“active” quadrature points where B̂i is nonzero. Therefore we can compute

the 2p+ 1 quadrature weights by imposing conditions for the 2p+ 1 B-splines

B̂j that need to be exactly integrated. Clearly, the advantage of the weighted

quadrature approach is that its computational complexity, i.e., the total number

of quadrature points, is independent of p.

For the sake of clarity, we first consider the case p = 1 in detail. The

exactness conditions are:
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∫ 1

0

B̂i(ζ) B̂i−1(ζ) dζ =
h

6
= Q

WQ
i (B̂i−1) =

1

2
wWQ

1,i , (2.5)

∫ 1

0

B̂2
i (ζ) dζ =

2h

3
= Q

WQ
i (B̂i) =

1

2
wWQ

1,i + wWQ
2,i +

1

2
wWQ

3,i , (2.6)

∫ 1

0

B̂i(ζ) B̂i+1(ζ) dζ =
h

6
= Q

WQ
i (B̂i+1) =

1

2
wWQ

3,i . (2.7)

Then it is easy to compute wWQ
q,i = h/3, ∀q = 1, 2, 3.

In the case p = 2, five points are active and we have five exactness equations:

∫ 1

0

B̂i(ζ) B̂i−2(ζ) dζ =
h

120
= Q

WQ
i (B̂i−2) =

1

8
wWQ

1,i , (2.8)

∫ 1

0

B̂i(ζ) B̂i−1(ζ) dζ =
26h

120
= Q

WQ
i (B̂i−1) =

3

4
wWQ

1,i +
1

2
wWQ

2,i +
1

8
wWQ

3,i ,

(2.9)
∫ 1

0

B̂2
i (ζ) dζ =

66h

120
= Q

WQ
i (B̂i) =

1

8
wWQ

1,i +
1

2
wWQ

2,i +
3

4
wWQ

3,i +
1

2
wWQ

4,i +
1

8
wWQ

5,i ,

(2.10)
∫ 1

0

B̂i(ζ) B̂i+1(ζ) dζ =
26h

120
= Q

WQ
i (B̂i+1) =

1

8
wWQ

3,i +
1

2
wWQ

4,i +
3

4
wWQ

5,i ,

(2.11)
∫ 1

0

B̂i(ζ) B̂i+2(ζ) dζ =
h

120
= Q

WQ
i (B̂i+2) =

1

8
wWQ

5,i . (2.12)

In the previous calculation we have used the usual properties of B-splines that

can be found, e.g., in [34, Section 4.4]. The system can be solved and leads to

the following solution wWQ
q,i = h

30 [2, 7, 12, 7, 2].

When p = 3, the same approach gives wWQ
q,i = h

[

1
105 ,

3
35 ,

5
21 ,

1
3 ,

5
21 ,

3
35 ,

1
105

]

.

These computations are reported in Figure 2.

In general case (arbitrary degree and non-uniform spacing, boundary func-

tions, lower regularity ...) the rule can be computed numerically as solution of

a linear system, see Section 5.

Given a weighted quadrature rule of the kind above, we are then interested

in using it for the approximate calculation of integrals as:
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0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Weighted Quadrature
test function
trial function
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0

0.2

0.4

0.6

0.8
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Weighted Quadrature
test function
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0

0.2

0.4

0.6

0.8

1
Weighted Quadrature
test function
trial function

Figure 2: Weighted quadrature rule for B-spline with various degrees, namely p = 2 (upper

left), p = 3 (upper right), p = 4 (lower left) and p = 5 (lower right). Interestingly, we see that

the weights displace around the values of the basis function (up to the scale factor h/2, which

in this case is simply 1). In particular, this gives numerical evidence of the positivity of the

weights, which in turn implies the stability of the rules.
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∫ 1

0

c(ζ)B̂i(ζ) B̂j(ζ) dζ ≈ Q
WQ
i

(

c(·)B̂j(·)
)

=
∑

q

wWQ
q,i c(xWQ

q,i )B̂j(x
WQ
q,i ) .(2.13)

For a non-constant function c(·), (2.13) is in general just an approximation. In

particular, the symmetry of the integral is not preserved, that isQWQ
i

(

c(·)B̂j(·)
)

is different from Q
WQ
j

(

c(·)B̂i(·)
)

. Consider, for example, the case p = 3 derived

above and apply the weighted quadrature rules to the linear function c(ζ) = ζ

in the case j = i+1. For simplicity we take h = 2 so that the quadrature points

are xWQ
q,i = [1 : 7]. Then:

Q
WQ
i

(

c(·)B̂j(·)
)

=
10

21
3
1

48
+

2

3
4
1

6
+

10

21
5
23

48
+

6

35
6
2

3
+

2

105
7
23

48
≈ 2.3647,

Q
WQ
j

(

c(·)B̂i(·)
)

=
2

105
3
23

48
+

6

35
4
2

3
+

10

21
5
23

48
+

2

3
6
1

6
+

10

21
7
1

48
≈ 2.3615.

A detailed mathematical analysis of the quadrature error of weighted quadra-

ture is of key interest, especially in the context of isogeometric Galerkin meth-

ods. This is however beyond the scope of this paper and for its importance

deserves future work.

3. Integral arising in isogeometric Galerkin methods

We consider the model reaction-diffusion problem







−∇2u+ u = f on Ω,

u = 0 on ∂Ω,
(3.1)

Its Galerkin approximation on a discrete space V requires the formation of the

stiffness matrix S and mass matrix M whose entries are

si,j =

∫

Ω

∇Ri(x)∇Rj(x)dx, (3.2)

mi,j =

∫

Ω

Ri(x)Rj(x)dx, (3.3)

Ri and Rj being two basis functions in V . The dimension of the space V is

NDOF := #V . Non-constant coefficients could be included as well.
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In the isogeometric framework, Ω is given by a spline or NURBS parametriza-

tion. Our notation follows [11, Section 4] and [5]. For the sake of simplicity, we

assume Ω is given by a d-dimensional single patch spline representation, then it

is of the form:

Ω = F (Ω̂), with F (ζ) =
∑

i

CiB̂i(ζ),

where Ci are the control points and B̂i

We denote by χl the knot vector of distinct knots that define the univariate

B-splines B̂il(ζl) along the l-th direction. For each direction we have knot-spans

as the intervals [χl,k, χl,k+1], k = 1, . . . , nEL,l, where nEL,l := (#χl) − 1. By

cartesian product, they form a mesh of NEL =
∏d

l=1 nEL,l elements on Ω̂. The

knot vector, with possibly repeated knots, that defines the univariate B-spline

space in the l−th direction is denoted as

Ξl :=
{

ξ1, ξ2, . . . , ξnKNT,l

}

., (3.4)

As in Section 2, we restrict to the case of maximum regularity and allow repeated

knots only at the endpoints of the open knot vector.

The number of knots in each knot vector nKNT,l := #Ξl is related to the

number of degrees of freedom by nDOF,l + (p+1) = nKNT,l. No assumptions are

made on the length of the elements. In our FLOPs counts, we always assume

p ≪ nDOF,l, and then nDOF,l ≈ nKNT,l ≈ nEL,l.

The multivariate B-splines are tensor-product of univariate B-splines:

B̂i(ζ) = B̂i1(ζ1) . . . B̂id(ζd). (3.5)

Above, i = (i1, . . . , id) is a multi-index that, with abuse of notation, is

occasionally as a scalar index, as in i = 1, . . . , NDOF, with the relation i ≡

1 +
∑d

l=1(nDOF,1 . . . nDOF,l−1)(il − 1). We have NDOF =
∏d

l=1 nDOF,l.

Based on the isogeometric/isoparametric paradigm, the basis functions Ri

used in (3.2)-(3.3) are defined as Ri = B̂i ◦ F−1; integrals are computed by

change of variable. Summarizing, we are interested in the computation of (3.3)
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after change of variable, M = {mi,j} ∈ RNDOF×NDOF where:

mi,j =

∫

Ω̂

B̂i B̂j detD̂F dζ .

For notational convenience we write:

mi,j =

∫

Ω̂

B̂i(ζ) B̂j(ζ) c(ζ) dζ . (3.6)

In more general cases, the factor c incorporates the coefficient of the equation

and, for NURBS functions, the polynomial denominator. Similarly for the stiff-

ness matrix S = {si,j} ∈ RNDOF×NDOF we have:

si,j =

∫

Ω̂

(

D̂F−T ∇̂B̂i

)T (

D̂F−T ∇̂B̂j

)

detD̂F dζ

=

∫

Ω̂

∇̂B̂T
i

(

[

D̂F−1D̂F−T
]

detD̂F
)

∇̂B̂j dζ

which we write in compact form:

si,j =

d
∑

l,m=1

∫

Ω̂

(

∇̂B̂i(ζ)
)

l
cl,m(ζ)

(

∇̂B̂j(ζ)
)

m
dζ. (3.7)

Here we have denoted by
{

cl,m(ζ)
}

l,m=1,...,d
the following matrix:

cl,m(ζ) =
{[

D̂F−1(ζ)D̂F−T (ζ)
]

detD̂F (ζ)
}

l,m
. (3.8)

The number of non-zero elements NNZ of M and S (the same for simplicity)

depends on the polynomial degree p and the required regularity r. We introduce

the following sets, where the support is considered an open set:

Kl,il =
{

k ∈ {1, . . . , nEL,l} s.t. ]χk−1, χk[⊂ supp
(

B̂il

)}

, (3.9)

Il,il =
{

jl ∈ {1, . . . , nDOF,l} s.t. B̂il · B̂jl 6= 0
}

; (3.10)

and the related multi-indexes as:

Ki =

d
∏

l=1

Kl,il Ii =

d
∏

l=1

Il,il . (3.11)

We have #Il,i ≤ (2p+ 1) and NNZ = O(NDOF p
d). In particular, with maximal

regularity in the case d = 1 one has NNZ = (2p+ 1)NDOF − p(p+ 1).
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4. Computation of the WQ rules

Consider the calculation of the mass matrix (3.3). The first step is to write

the integral in a nested way, as done in [5]:

mi,j =

∫

Ω̂

B̂i(ζ)B̂j(ζ)c(ζ) dζ =

∫ 1

0

B̂i1(ζ1)B̂j1(ζ1)

[∫ 1

0

B̂i2(ζ2)B̂j2(ζ2) · · ·

[∫ 1

0

B̂id(ζd)B̂jd(ζd)c(ζ) dζd

]

· · · dζ2

]

dζ1

Our idea is to isolate the test function B̂il univariate factors in each univari-

ate integral and to consider it as a weight for the construction of the weighted

quadrature (WQ) rule. This leads to a quadrature rule for each il that is:

mi,j ≈ m̃i,j = Q
WQ
i

(

B̂j(ζ)c(ζ)
)

= Qi

(

B̂j(ζ)c(ζ)
)

= Qi1

(

B̂j1(ζ1)Qi2

(

· · ·Qid

(

B̂jd(ζd)c(ζ)
)))

.
(4.1)

Notice that we drop from now on the label WQ used in the introduction in

order to simplify notation. The key ingredients for the construction of the

quadrature rules that preserve the optimal approximation properties are the

exactness requirements. Roughly speaking, exactness means that in (4.1) we

have mi,j = m̃i,j whenever c is a constant coefficient. When the stiffness term

is considered, also terms with derivatives have to be considered.

We introduce the notation:

I
(0,0)
l,il,jl

:=

∫ 1

0

B̂il(ζl)B̂jl(ζl) dζl

I
(1,0)
l,il,jl

:=

∫ 1

0

B̂′
il
(ζl)B̂jl(ζl) dζl

I
(0,1)
l,il,jl

:=

∫ 1

0

B̂il(ζl)B̂
′
jl
(ζl) dζl

I
(1,1)
l,il,jl

:=

∫ 1

0

B̂′
il
(ζl)B̂

′
jl
(ζl) dζl

(4.2)

For each integral in (4.2) we define a quadrature rule: we look for

• points x̃q = (x̃1,q1 , x̃2,q2 , . . . , x̃d,qd) with ql = 1, . . . nQP,l, with NQP is

# {x̃} =
∏d

l=1 nQP,l;
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• for each index il = 1, . . . , nDOF,l; l = 1, . . . , d, four quadrature rules such

that:

Q
(0,0)
il

(f) :=

nQP,l
∑

ql=1

w
(0,0)
l,il,ql

f(x̃l,ql) ≈

∫ 1

0

f(ζl)B̂il(ζl)dζl ;

Q
(1,0)
il

(f) :=

nQP,l
∑

ql=1

w
(1,0)
l,il,ql

f(x̃l,ql) ≈

∫ 1

0

f(ζl)B̂il(ζl)dζl ;

Q
(0,1)
il

(f) :=

nQP,l
∑

ql=1

w
(0,1)
l,il,ql

f(x̃l,ql) ≈

∫ 1

0

f(ζl)B̂
′
il
(ζl)dζl ;

Q
(1,1)
il

(f) :=

nQP,l
∑

ql=1

w
(1,1)
l,il,ql

f(x̃l,ql) ≈

∫ 1

0

f(ζl)B̂
′
il
(ζl)dζl .

(4.3)

fulfilling the exactness requirement:

Q
(0,0)
il

(B̂jl) = I
(0,0)
l,il,jl

Q
(1,0)
il

(B̂′
jl
) = I

(1,0)
l,il,jl

Q
(0,1)
il

(B̂jl) = I
(0,1)
l,il,jl

Q
(1,1)
il

(B̂′
jl
) = I

(1,1)
l,il,jl

, ∀jl ∈ Il,il . (4.4)

For stability we also require that the quadrature rules Q
(·,·)
il

have support in-

cluded in the support of B̂il , that is

ql /∈ Ql,il ⇒ w
(·,·)
l,il,ql

= 0 . (4.5)

where Ql,il :=
{

ql ∈ 1, . . . , nQP,l s.t. x̃l,ql ∈ supp
(

B̂il

)}

; recall that here the

support of a function is considered an open set. Correspondingly, we introduce

the set of multi-indexes Qi :=
∏d

l=1 Ql,il .

Once the points x̃q are fixed, the quadrature rules have to be determined by

the exactness requirements, that are a system of linear equations of the unknown

weights (each of the (4.4)). For that we require

#Ql,il ≥ #Il,il . (4.6)

See Remark 4.2 for a discussion on the well-posedness of the linear systems for

the weights.
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Figure 3: Comparison between quadrature rules. On the first line, the quadrature points

needed for the case p = 4, nEL = 10, d = 2, in the second line the case p = 6. On the left

panel the proposed WQ rule, on the right the SGQ rule.
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Remark 4.1 (The choice of quadrature points). The construction of a global

grid of quadrature points is done in order to save computations. For the case of

maximum Cp−1 regularity considered here, our choice for quadrature points is

endpoints (knots) and midpoints of all internal knot-spans, while for the bound-

ary knot-spans (i.e. those that are adjacent to the boundary of the parameter do-

main Ω̂) we take p+1 equally spaced points. Globally NQP ≈ 2dNEL = O(NDOF)

considering only the dominant term (remember that nEL,l ≫ p). In Figure 3

we plot the quadrature points grid, and a comparison is made with respect to

element-by-element standard Gaussian quadrature (SGQ) points.

Remark 4.2 (Computation of quadrature weights). Given the quadrature points,

the quadrature weights are selected in order to fulfil (4.4)–(4.5). When #Ql,il >

#Il,il the quadrature weights are not uniquely given from (4.4)–(4.5) and are se-

lected by a minimum norm condition. In all cases with our choice of quadrature

points and thanks to the Schoenberg-Whitney interpolation theorem [18, Theo-

rem 2 ¶XIII] we can guarantee that the quadrature weights fulfilling the above

conditions exist.

Remark 4.3 (Alternative choices of the quadrature points). If there is no

need for a global grid of quadrature points (e.g., the cost of calculation of the

coefficients is negligible), it is possible to have quadrature points that depend on

the index il, as for the weights. Then, one can construct weighted Gaussian

quadrature rules (see e.g. [13]) in order to minimize the number of quadrature

points associated to each row of the stiffness matrix.

5. Pseudo-codes and computational cost

In order to simplify the FLOPs count, we assume nEL := nEL,1 = nEL,2 =

· · · = nEL,d and nDOF := nDOF,1 = nDOF,2 = · · · = nDOF,d. We then have

NEL = nd
EL, NDOF = nd

DOF, etc. We consider the case of maximum regularity

r = p− 1 and nEL ≫ p that implies nEL ≈ nDOF. We recall that:

#Kl,il ≤ p+ 1

#Il,il ≤ 2p+ 1
(5.1)
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With our choice for the quadrature points, the previous two imply #Ql,il ≤

2p+ 1.

We first collect all the initialisations needed in Algorithm 1. It is not neces-

sary to precompute these quantities -and in most architectures access to stored

data is costly- but this used here for FLOPs evaluation.

Input: Quadrature points x̃q as in Remark 4.1

1 for l = 1, . . . , d do

2 for il = 1, . . . , nDOF,l do

3 Evaluate B
(0)
l,il,q

:= Bil(x̃l,q)∀q ∈ Ql,il , store B
(0)
l,il

∈ RnQP,l ;

4 Evaluate B
(1)
l,il,q

:= B′
il
(x̃l,q)∀q ∈ Ql,il , store B

(1)
l,il

∈ RnQP,l ;

5 end

6 for il = 1, . . . , nDOF,l do

7 for jl ∈ Il,il do

8 Calculate I
(0,0)
l,il,jl

, I
(1,0)
l,il,jl

, I
(0,1)
l,il,jl

, I
(1,1)
l,il,jl

as defined in (4.2) ;

9 end

10 end

11 for m = 1, . . . , d do

12 Evaluate cl,m(ζ) of equation (3.8) on points x̃q ;

13 end

14 end

15 Evaluate c(ζ) on points x̃q;

Algorithm 1: Initializations

Then we can count operations in Algorithm 1:

(i) Evaluations of B-splines reported on lines 3–4 can be done in 1
2p

2 FLOPs

each. They are repeated dnDOF#Ql,il times so that this part costsO
(

p3 nDOF

)

FLOPs.

(ii) The calculation of integrals (4.2) on line 8 needs to be done in an exact

manner. The calculation of the exact integral of products of B-splines

has a vast literature [37], however, closed forms are available only in some
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particular cases. For this reason we consider here the usual element-wise

Gaussian quadrature. The evaluation of B-splines and their derivatives

cost, as reported before, 1
2p

2 FLOPs for each point. Counting all Gaussian

point, the cost is ≈ d p2 evaluations of each of the dnDOF univariate basis

functions, thus costs O(p4 nDOF) FLOPs.

The computation of each of the integrals has the cost of a summation on

≈ p2 terms; and the four calculations are done dnDOF #Il,il times so that

this costs O
(

p3 nDOF

)

FLOPs.

(iii) The evaluations of the (d2 + 1) functions cl,m and c on lines 12 and 15

have to be performed at the NQP = (nQP)
d quadrature points. The actual

cost depends on the evaluation cost of cl,m and c. If these coefficients are

obtained by O(pd) linear combinations of B-spline values (or derivatives),

and each multivariate B-spline value is computed from multiplications of

univariate B-spline values, the total cost is C(d)pd per quadrature point

and in total O
(

pd NQP

)

FLOPs.

The leading cost of Algorithm 1 for d ≥ 2 is O
(

pdNQP

)

.

In Algorithm 2 we summarize the operations needed for the construction of

the univariate WQ rules. Each calculation in lines 3–6 consists in the resolution

of a linear system of dimension ≈ (2p)2 that is possibly under-determined. The

cost of these computations in any case negligible since it is proportional to nDOF.

6. Formation of the mass matrix

When all the quadrature rules are available we can write the computation of

the approximate mass matrix following (4.1). Similar formulae and algorithms

can be written for the stiffness matrix starting from equation (3.2).

The mass matrix formation algorithm is mainly a loop over all rows i, for

each i we consider the calculation of

m̃i,j = Q
(0,0)
i

(

B̂j(ζ)c(ζ)
)

, ∀j ∈ Ii. (6.1)

The computational cost of (6.1) is minimised by a sum factorization approach,

which is explained below.

19



Input: Quadrature points x̃q, B-spline evaluations B
(·)
l,il,q

, Integrals I
(·,·)
l,il,jl

1 for l = 1, . . . , d do

2 for il = 1, . . . , nl,DOF do

3 Calculate w
(0,0)
l,il,Ql,il

as (minimum Euclidean norm) solution of

B
(0)
l,Il,il

,Ql,il

w
(0,0)
l,il,Ql,il

= I
(0,0)
l,il,Il,il

;

4 Calculate w
(1,0)
l,il,Ql,il

as (minimum Euclidean norm) solution of

B
(1)
l,Il,il

,Ql,il

w
(1,0)
l,il,Ql,il

= I
(1,0)
l,il,Il,il

;

5 Calculate w
(0,1)
l,il,Ql,il

as (minimum Euclidean norm) solution of

B
(0)
l,Il,il

,Ql,il

w
(0,1)
l,il,Ql,il

= I
(0,1)
l,il,Il,il

;

6 Calculate w
(1,1)
l,il,Ql,il

as (minimum Euclidean norm) solution of

B
(1)
l,Il,il

,Ql,il

w
(1,1)
l,il,Ql,il

= I
(1,1)
l,il,Il,il

;

7 end

8 end

Algorithm 2: Construction of univariate WQ rules

If we substitute (4.3) into (4.1) we obtain the following sequence of nested

summations:

m̃i,j =
∑

q1∈Q1,i1

w
(0,0)
1,i1,q1

B̂j1(x̃1,q1)





∑

q2∈Q2,i2

. . .
∑

qd∈Qd,id

w
(0,0)
d,id,qd

B̂jd(x̃d,qd)c (x1,q1 , . . . , xd,qd)





(6.2)

To write (6.2) in a more compact form, we introduce the notion of matrix-

tensor product [25]. Let X = {xk1,...,kd
} ∈ Rn1×...×nd be a d−dimensional

tensor, and let m ∈ {1, . . . , d}. The m−mode product of X with a matrix

A = {ai,j} ∈ Rt×nm , denoted with X ×m A, is a tensor of dimension n1 × . . .×

nm−1 × t× nm+1 × . . .× nd, with components

(X ×m A)k1,...,kd
=

nm
∑

j=1

akm,j xk1,...km−1,j,km+1,...kd
.

We emphasize that such computation requires 2t
∏d

l=1 nl FLOPs.
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For l = 1, . . . , d and il = 1, . . . , nDOF,l we define the matrices

B(l,il) =
(

B̂jl(xl,ql )
)

jl∈Il,il
,ql∈Ql,il

, W(l,il) = diag

(

(

w
(0,0)
l,il,ql

)

ql∈Ql,il

)

,

where diag(v) denotes the diagonal matrix obtained by the vector v. We also

define, for each index i, the d−dimensional tensor

Ci = c(x̃Qi
) = (c(x̃1,q1 , . . . , x̃d,qd))q1∈Q1,i1

,...,qd∈Qd,id

Using the above notations, we have

m̃i,Ii
= Ci ×d

(

B(d,id)W(d,id)
)

×d−1 . . .×1

(

B(1,i1)W(1,i1)
)

. (6.3)

Since with our choice of the quadrature points #Ql,il and #Il,il are both

O(p), the computational cost associated with (6.3) is O(pd+1) FLOPs. Note

that m̃i,Ii
includes all the nonzeros entries of the i−th row of M̃. Hence if we

compute it for each i = 1, . . . , NDOF the total cost amounts to O(NDOF p
d+1)

FLOPs. This approach is summarized in Algorithm 3.

We remark that writing the sums in (6.2) in terms of matrix-tensor products

as in (6.3) is very useful from an implementation viewpoint. Indeed, in inter-

preted languages like MATLAB (which is the one used in the experiments of the

next section), it is crucial to avoid loops and vectorize (in our case, tensorize)

the operations, in order to obtain an efficient implementation of an algorithm;

see also the discussion in [17]. In particular, each matrix-tensor product in

(6.3) is computed via a simple matrix-matrix product, which is a BLAS level 3

operation and typically yields high efficiency on modern computers.

7. Numerical tests

In this section, in order to evaluate numerically the behavior of the proposed

procedure we present some numerical tests. First, in Section 7.1 we consider

the solution of a 1D problem where we see that the application of our row-loop

WQ-based algorithm leads to optimal order of convergence. Then, in Section 7.2

we measure the performance of the algorithm. We consider there the formation
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Input: Quadrature rules, evaluations of coefficients

1 for i = 1, . . . , NDOF do

2 Set C
(0)
i := c(x̃Qi

);

3 for l = d, d− 1, . . . , 1 do

4 Load the quadrature rule Q
(0,0)
il

and form the matrices B(l,il) and

W(l,il);

5 Compute C
(d+1−l)
i = C

(d−l)
i ×l

(

B(l,il)W(l,il)
)

;

6 end

7 Store m̃i,Ii
= C

(d)
i ;

8 end

Algorithm 3: Construction of mass matrix by sum-factorization

of mass matrices in 3D. The results for all cases refers to a Linux workstation

equipped with Intel i7-5820K processors running at 3.30GHz, and with 64 GB

of RAM. The row-loop WQ-based algorithm is potentially better suited for a

parallel implementation than the standart element-wise SGQ-based algorithm,

however we benchmark here sequential execution and use only one core for the

simulations.

7.1. Convergence of approximate solution in 1D

As a test with known solution we consider the following:











u′′ + u(x) =
5exp(2x)− 1

4
on [0, π/6]

u(0) = 0, u(π/6) = exp(π/3)/2

(7.1)

We compare the numerical solution in the parametric domain, using the geo-

metric transformation t = 2sin(x), with the exact one u(x) =
exp(2x)−1

4 . Then

we calculate point-wise absolute error, integral error and energy error - namely

L∞, L2 and H1 norms - with varying spline degree p. Figure 4 illustrates that

the construction of the matrices with the proposed procedure does not effect

the overall convergence properties of the Galerkin method, as it can be seen by
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Figure 4: Convergence history plot. We report errors in L∞, L2 and H1 norm for the solution

of problem (7.1) by Galerkin based isogeometric analysis with WQ (Algorithm 1–3) for various

degrees p in dotted lines. As reference, the solid lines refer to the same calculation made with

element-wise SGQ. Optimal convergence rate is achieved in all cases. SGQ is sligtly more

accurate for even degrees > 2 in L2 and L∞ norms.

comparing the convergence curves with those obtained using Gaussian quadra-

ture.

Remark 7.1 (Convergence rates). As already noted in Section 2, WQ does not

preserve symmetry, that is in general m̃i,j 6= m̃j,i even if mi,j = mj,i. The

lack of symmetry did not cause any deterioration of the order of convergence

in energy and lower-order norms in our numerical benchmarking, see Figure

4. This is an important and interesting behaviour that deserves further study.

We remark that the lack of symmetry occurs also for collocation isogeometric

schemes [32], where however convergence rates are suboptimal.
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Figure 5: Time for mass matrix assembly in the framework of isogeometric-Galerkin method

with maximal regularity on a single patch domain of 203 elements. The comparison is between

the WQ approach proposed (Algorithm 1–3) and SGQ as implemented in GeoPDEs 3.0.

7.2. Time for the formation of matrices

In this section we report CPU time results for the formation on a single patch

domain of mass matrices. Comparison is made with GeoPDEs, the optimized

but SGQ-basedMATLAB isogeometric library developed by Rafael Vázquez, see

[19, 36]. In Figure 5 we plot the time needed for the mass matrix formation up

to degree p = 10 with NDOF = 203. The tests confirm the superior performance

of the proposed row-loop WQ-based algorithm vs SGQ. In the case p = 10

GeoPDEs takes more than 62 hours to form the mass matrix while the proposed

algorithm needs only 27 sec, so that the use high degrees is possible with WQ.

Remark 7.2 (Sparse implementation of WQ). Clearly we exploit sparsity in our

MATLAB implementation: we compute all the nonzero entries of M̃, the corre-

sponding row and column indices and then call the MATLAB sparse function,

that uses a compressed sparse column format.

In the last test, we experimentally study the growth order of the computa-

tional effort needed to form M̃, and we highlight which parts of the code mainly

contributes to this effort.
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In Figure 6, we plot in a log-log scale the total computation time spent by

Algorithm 1–3 for 403 elements and spline degree up to 10. We also plot the

time spent in the computations of the matrix-tensor products (i.e., line 5 of

Algorithm 3, which is the dominant step with respect to the number of FLOPs

of the whole procedure), and the time used by the MATLAB function sparse,

which is responsible of allocating the memory for M̃ and copying the entries

in the sparse matrix data structure. These timings were obtained using the

profiler of MATLAB2. If we consider the products time, we can see that the

its growth relative to p is significantly milder than what is indicated by the

theoretical FLOP counting, i.e., O(NDOF p
4). This is probably related to the

small dimension of the matrices and tensors involved. On the other hand, the

times spent by the sparse function is clearly proportional to p3, as highlighted

in the plot by a reference triangle with slope 3. This is expected, as the number

of nonzero entries of M̃ is O(NDOF p
3). What is surprising is that, for p > 5 the

time of the sparse call dominates the total time of the algorithm. This indicates

that the our approach is in practice giving the best possible performance at least

for degree high enough, since the sparse call is unavoidable and well optimised

in MATLAB.

Furthermore, the computing time depends linearly on NDOF, as expected,

but for brevity we do not show the results.

8. Conclusions

The proposed algorithm for the formation of isogeometric Galerkin matrices

is based on three concepts. First, we use a row loop instead of an element loop.

Second, we use WQ that gives significant savings in quadrature points. Third,

we exploit the tensor-product structure of the B-spline basis functions, adopt-

ing an optimized sum-factorization implementation as in [5]. Our approach also

2 The same timings were also computed using the commands tic and toc, yielding similar

results
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Figure 6: Time for mass matrix formation with the WQ approach proposed in this paper.

In this case d = 3, nel = 403. Reference slope is p3. Along with the total time, we show the

time spent by the product (6.3) and by the function sparse, which represent the single most

relevant computational efforts of our code. Other timings, which become negligible for large

p, are not shown.

incorporates an idea of a previous work: the numerical computation of uni-

variate quadrature rules as in [22] and following papers. In the present work,

however, we fix a priori the quadrature points so that the weights are given

by solving a linear problem, and we use sum-factorization cycling on rows and

not on elements. The result is a significant gain in performance compared to

standard approaches, for all polynomial degrees but especially for high degree.

For example, in the numerical tests that we present, for p = 6 the time of for-

mation of a mass matrix is seconds vs hours (comparison made with GeoPDEs

3.0, which has a well optimised but standard design, see [19, 36]), where in

our algorithm the computational time is dominated by the unavoidable MAT-

LAB sparse function call. These results pave the way to the practical use of

high-degree k-refinement. Moreover they relight the interest for a comparison

between Galerkin and collocation formulation, that is nowadays preferred for

high-degree isogeometric simulations, see [32]. Curiously, a Galerkin formula-

tion with WQ is closer to collocation, from the viewpoint of the computational

cost and since both do not preserve symmetry, i.e. the matrices formed from
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symmetric differential operators are not symmetric. However WQ should pre-

serve the other main properties of Galerkin formulations.

Our work will continue in three different directions. We need to develop

a full mathematical analysis of this approach. We will work on a full imple-

mentation within GeoPDEs. Finally, we will develop the proposed approach

in the direction of non-tensor product spaces (T-splines, hierarchical splines,

etc.), where we expect that some significant advantages of our approach will be

maintained.
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