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A B S T R A C T   

Herein we present a comparative study of the effects of isoquinoline alkaloids belonging to benzo[c]phenan
thridine and berberine families on β-amyloid aggregation. Results obtained using a Thioflavine T (ThT) fluo
rescence assay and circular dichroism (CD) spectroscopy suggested that the benzo[c]phenanthridine nucleus, 
present in both sanguinarine and chelerythrine molecules, was directly involved in an inhibitory effect of Aβ1–42 
aggregation. Conversely, coralyne, that contains the isomeric berberine nucleus, significantly increased pro
pensity for Aβ1–42 to aggregate. Surface Plasmon Resonance (SPR) experiments provided quantitative estimation 
of these interactions: coralyne bound to Aβ1–42 with an affinity (KD = 11.6 μM) higher than benzo[c]phenan
thridines. Molecular docking studies confirmed that all three compounds are able to recognize Aβ1–42 in different 
aggregation forms suggesting their effective capacity to modulate the Aβ1–42 self-recognition mechanism. Mo
lecular dynamics simulations indicated that coralyne increased the β-content of Aβ1–42, in early stages of ag
gregation, consistent with fluorescence-based promotion of the Aβ1–42 self-recognition mechanism by this 
alkaloid. At the same time, sanguinarine induced Aβ1–42 helical conformation corroborating its ability to delay 
aggregation as experimentally proved in vitro. The investigated compounds were shown to interfere with ag
gregation of Aβ1–42 demonstrating their potential as starting leads for the development of therapeutic strategies 
in neurodegenerative diseases.   

1. Introduction 

Several neurodegenerative disorders, including Alzheimer’s (AD), 
Parkinson’s (PD) and Huntington’s (HD) diseases are associated with 
aggregation of misfolded proteins [1,2]. Among these, AD, a predomi
nant cause of dementia worldwide [3,4], is characterized by extracel
lular amyloid deposits, whose main component is the 42-amino acid 
amyloid β peptide (Aβ1-42), and by intracellular neurofibrillary tangles 
composed of tau [5,6]. 

Aβ1–42 is a peptide cleaved from the amyloid precursor protein 
(APP), comprised of a charged N-terminal segment (amino acids 1–22), 
a hydrophobic central region (KLVFFA, amino acids 16–21), which 
alone is able to aggregate into insoluble fibrils, and a hydrophobic C- 
terminal region (residues 23–42). Once released as a monomer from APP 
into the extracellular space, Aβ1-42 undergoes a structural transition 
gaining β-sheet content, and tends to aggregate into oligomeric, proto
fibrillar and fibrillar species [7]. Aβ1–42 oligomeric assemblies have been 
related to AD pathogenesis for their role in neuronal damage and 
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neurotoxicity following Aβ1–42 aggregation [8]. In this context, pre
venting Aβ1–42 aggregation with small molecules is one of the prominent 
strategies for the development of new therapies for AD [9–11]. To this 
scope, several plant extracts and natural products, such as curcumin, 
epigallocatechin-3-gallate, and resveratrol, were evaluated with prom
ising results [12–14]. 

Isoquinoline alkaloids (Fig. 1) belong to one of the most complex 
families of plant alkaloids. They are nitrogenous metabolites distributed 
in many botanical families investigated nowadays for their significant 
biomedical importance [15–17]. Among these, benzo[c]phenan
thridines and protoberberines are found in various vegetal sources 
belonging to the Rutaceae family (in particular from the Zanthoxylum 
genus [18]), with berberine (Fig. 1) being an interesting candidate for 
PD and AD thanks to multi-faceted defensive mechanisms and 
bio-molecular pathways involving this alkaloid [19,20]. However, its 
use as a neurodrug is hampered by its cytotoxic effects at relatively high 
concentration [21]. Hence, a structurally modified version of berberine 
that results in the nontoxic, free hydroxyl-bearing Ber-D was prepared, 
which was found to inhibit the aggregation and cell toxicity of Aβ1-42 in 
vitro [22]. The berberine nucleus in Ber-D comprises four rings, of which 
three aromatic, whereas the anti-leukemic berberine-like drug coralyne 
(here indicated as CO, Fig. 1) contains all four aromatic rings [23,24]. 

Other examples of plant isoquinoline alkaloids are sanguinarine (SA) 
and chelerythrine (CH, Fig. 1), two tetracyclic aromatic compounds 
isolated from Macleaya cordata belonging to the family of benzo[c] 
phenanthridines, and also classifiable as azachrysenes [25,26]. In 
particular, SA is endowed with several properties of therapeutic rele
vance, including the reduction of levels of stress hormone as shown in 
studies carried out in animal models [27], as well as of serum hapto
globin, and serum amyloid A (SAA) [27,28]. This latter is mainly pro
duced in the liver but also expressed extrahepatically in the central 
nervous system (CNS) [29], with increased levels in AD patients [29], 
and it was recently recognized as a biomarker for COVID-19 [30], that is 
a recently-emerged viral disease causing severe acute respiratory syn
drome and diverse injuries in other systems [31–34]. SA and CH are 
believed to possess potential as neurodrugs for AD due to their ability to 
inhibit several neuropathologically-relevant enzymes [35]. However, 
clues of neuroprotective properties were found experimentally only for 
CH which inhibited in vitro amyloid aggregation [36], whereas the same 

inhibitory activity, predicted in silico for SA by some of us [37], had not 
been validated before on an experimental basis. 

Thus, the scope of this work was to investigate the interaction be
tween tetracyclic aromatic structures endowed with benzo[c]phenan
thridine (SA, CH) and berberine (CO, Fig. 1) nuclei, respectively, with 
Aβ1–42 peptide, by means of ThT fluorescence and CD spectroscopy to 
evaluate their effects on the aggregation of Aβ1–42, and by surface 
plasmon resonance (SPR) assays to characterize these interactions. 

Experimental data were further corroborated by in silico studies, 
through molecular docking simulations, to unveil preferential binding 
modes of ligands to different aggregated forms of Aβ1–42, and by mo
lecular dynamics simulations to explore the effects of these compounds 
in early aggregation stages of Aβ1–42. 

2. Materials and methods 

2.1. Chemicals 

Aβ1-42 peptide (for CD and SPR), SA, CH, SA isoquinoline alkaloids 
and all other chemicals and solvents were purchased from Sigma- 
Aldrich (Amsterdam, The Netherlands). Aβ1-42 peptide for ThT assay 
was purchased from rPeptide (GA, USA). 

2.2. Aβ1-42 peptide solubilization 

Solutions of recombinant Aβ1-42 peptide were prepared according to 
a previously published procedure [38]. In short, Aβ1-42 was sequentially 
dissolved in hexafluoroisopropanol (HFIP) and DMSO. The DMSO was 
removed from the Aβ1-42 solution by using a HiTrap™ desalting column 
(GE Healthcare, Zwijndrecht, The Netherlands) and elution with PBS at 
pH 7.4. We measured the Aβ1-42concentration by the Coomassie (Brad
ford, UK) Protein Assay Kit (ThermoFisher, Landsmeer, The 
Netherlands) and, afterwards, the final concentration required for the 
subsequent experiments was achieved by dilution. Aβ peptide aggrega
tion, in the presence or absence of SA, CH and CO, was evaluated at 
37 ◦C under quiescent conditions. 

Fig. 1. The isoquinoline alkaloids of synthetic (CO) and plant (CH and SA) origin investigated in this work. All share an isoquinoline core (up, left) but are based on 
two different polycycle rearrangements (bottom, left). 
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2.3. Thioflavin-T assay 

Aggregation was measured by a ThT fluorescence assay. The Aβ1-42 
concentration was adjusted to 25 μM using PBS buffer (pH 7.4), while a 
final ThT concentration of 12 μM was realized in a 96-well plate (Greiner 
flat bottom transparent black, Sigma–cat. M9685). Fluorescence in
tensity was measured at 37 ◦C using an automated well-plate reader 
(Tecan Infinite 200 PRO) at an excitation wavelength of 450 nm and 
emission detection from 480 to 600 nm. The fluorescence intensity from 
ThT at its maximum value (485 nm) was reported in a graph for the 
three complexes with the ligands (C = 25 μM). Measurements were 
performed in triplicate, the values recorded were averaged and back
ground measurements that corresponded to buffer containing 12 μM 
ThT and the tested isoquinoline alkaloids subtracted. Measurements 
were performed after incubation for 2 h to allow Aβ to aggregate. 

2.4. CD experiments 

The CD experiments were conducted as previously described 
[39–53]. The spectra were obtained using a JascoJ-715 spec
tropolarimeter coupled to a PTC-348WI temperature control system, and 
a quartz cell with a path length of 1 cm, at 37 ◦C with a response of 1 s, a 
scanning speed of 100 nm/min and a 2.0 nm bandwidth. All the spectra 
were averaged over three scans. Experiments were carried out using a 
5 μM concentration of Aβ1-42 in PBS (overall volume = 2 ml, pH 7.2) and 
a twofold concentration of ligands. Spectra were collected after incu
bation at 37 ◦C for 0.5, 24 and 48 h. 

2.5. Surface plasmon resonance (SPR) experiments 

Surface plasmon resonance (SPR) binding assays were performed on 
a Biacore 3000 (GE Healthcare). Aβ1-42 peptide was immobilized on a 
CM5 chip through an amine coupling procedure at 100 μg/mL in 10 mM 
sodium acetate (pH 4) at 2 μL/min until reaching an immobilization 
level of ~400 RU. Binding assays were carried out by injecting 90 μL of 
analyte, at 20 μL/min-1. Experiments were carried out using PBS as 
running buffer. The association phase (kon) was followed for 270 s, 
whereas the dissociation phase (koff) was followed for 300 s. The refer
ence chip sensorgrams were subtracted from sample sensorgrams. After 
each cycle, the sensor chip surface was regenerated with a 10 mM NaOH 
solution for 30 s. Analyte concentrations were for cheletrine 20, 40, 80 
and 100 μM, sanguinarine 100, 300, 500, 700, 900 and 1100 μM and for 
coralyne 5, 20, 30, 40, 50, 70 μM. Experiments were carried out in du
plicates. Kinetic parameters were estimated assuming a 1:1 binding 
model and using version 4.1 Evaluation Software (GE Healthcare). 

2.6. In silico studies 

In all computational studies, as initial Aβ1-42 conformations we uti
lized S-shape and U-shape fibril models (PDB codes: 2LMN and 2MXU) 
and three of the most representative monomeric models from previous 
extensive computational studies [54]. 

2.7. Ligand parameterization 

Fully-protonated structures of the three compounds (CO, SA, CH) 
were optimized by gaussian 09 software [55], utilizing Hartree-Fock 
method and 6-31G* basis set. AM1-BCC method [56] implemented in 
the AmberTools 19 package was used to derive charges of all atoms. 
Parameters for bonds, valence and dihedral angles were adapted from 
General Amber Force Field [57] based on structural similarity. 

2.8. Docking 

Global molecular docking of compounds to the monomeric, tetra
meric, and fibrillar structures of Aβ1-42 was performed using AutoDock 

4.2.6 software [58] allowing flexibility of the ligand with rigid confor
mation of the receptor due to computational limitations. The algorithm 
was set to generate 100 initial docking positions and subsequently 
perform clustering using 10, 15, and 15 Å criteria for monomeric, 
tetrameric, and fibril structures, respectively, to obtain most probable 
docking positions (modes) of the compounds. Two different cutoff 
values were used due to large size differences between monomeric and 
other systems. AutoDock 4.2 was selected for docking, because it was 
found to provide more reliable binding energies than AutoDock Vina in 
recent studies [59]. In general, AutoDock 4.2.6 should provide reliable 
docking poses and estimated binding energies [60]. It should be 
mentioned that in all computational methods using approximate system 
representation, such as molecular docking or MD simulations, relative 
energies, rather than absolute should be analyzed, treating the latter 
with large possible error [61], however, usually binding energy stronger 
than − 9 kcal/mol is treated as strong binding [62]. 

2.9. Molecular dynamics simulations 

Two series of molecular dynamics (MD) simulations were performed: 
(i) fibrillar structures with the compounds bound to them, obtained 
through docking procedure, and (ii) 16 non-bound semi-extended Aβ1-42 
chains in the presence and absence of compounds. MD simulations of 
fibrillar Aβ1-42 with compounds were performed using Amber ff14sb 
[63] force field with TIP3P water model [64], which should provide 
reliable results for these systems. Due to computational restrictions, MD 
simulations were performed for top 2 binding modes of each system, 
each of 10 separate trajectories, reaching in total 1 μs for each of the 
binding modes. 

For MD simulations of 16 chains, we used an in-house algorithm to 
put pre-generated semi-extended Aβ1-42 chains of random conforma
tions as close to each other as possible, with the restriction to keep 
minimum distance of 8 Å between any heavy atoms of different chains to 
avoid possible bias coming from initial orientation of the chains. Such 
system was hydrated by adding approximately 47500 water molecules 
and charge was neutralized by inserting counterions, resulting in trun
cated octahedron boxes of total volume of approximately 1800 nm3 

resulting in total Aβ1-42 concentration of approximately 1 cM, which is 
order of magnitude higher than in other studies [65,66], yet still not in 
glass phase [67]. In simulations with compounds, small molecules were 
placed between Aβ1-42 chains using the same criterion. In all simula
tions, initial orientations of Aβ1-42 chains and compounds were identical. 

Obtained systems were energy minimized, using steepest descent 
and conjugate gradient algorithm and equilibrated for 1ns. For each type 
of system, two trajectories were run, each of 800ns and then recorded 
20,000 snapshots from the last 200 ns (600–800ns) were analyzed. To 
better capture aggregation effects in simulations of systems containing 
16 chains, we utilized state-of-the-art Amber ff19sb force field [68] 
coupled with OPC water model [69], which should provide reliable re
sults, especially for binding-dissociation process. Analysis of these sim
ulations included root-mean-square deviation (RMDd) using initial 
structure as a reference, radius of gyration (Rg), solvent-accessible 
surface area (SASA) using LCPO method [70] and secondary structure 
determinations with DSSP [71] algorithm implemented into Amber19 
package and various distance calculations. Distance criterion of 6.5 Å 
between centers of mass of two side-chains was used to determine a 
contact between chains, and a criterion of 5 contacts was used to 
determine the size of the oligomer (e.g. two chains have to form at least 
5 contacts to be named as dimer), as in our previous work [66] to discard 
structures forming weak interaction due to accidental proximity of the 
chains. 

2.10. Molecular mechanics - Poisson Boltzmann Surface Area (MM/ 
PBSA) method 

MM-PBSA is a post-processing method which was used to calculate 
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the free energy difference, ΔGbind, between the free and bound states of a 
molecule complex: receptor and ligand. ΔGbind is calculated for a set of 
selective snapshots from simulation trajectory and is defined as follows:  

ΔGbind = ΔEelec + ΔEvdW + ΔESUR + ΔEPB – TΔS,                            (1) 

where ΔEelec and ΔEvdW are differences in electrostatic and van der 
Waals energy components, respectively, ΔESUR and ΔEPB describe dif
ferences in non-polar and polar solvation free energies, respectively, and 
TΔS represents the entropic contribution. 

In this study, MM/PBSA methods implemented into the AmberTools 
19 package was used to estimate ΔGbind of compounds to fibrillar models 
using second halves of performed MD simulations. As a standard pro
cedure, for energy calculation in MM/PBSA procedure we used the same 
force field adopted to perform the simulations, however, without cutoff 
for electrostatic and van der Waals interactions. The entropic term, TΔS, 
was estimated by normal mode approximation method, where ΔEPB was 
obtained by solving numerically linearized Poisson-Boltzmann equation 
and ΔESUR was calculated from the following equation:  

ΔESUR = α x SASA + β,                                                                  (2) 

where SASA was calculated using LCPO method [66], regression coef
ficient α was set to 0.005 and the regression offset β was set to 0. 

3. Results and discussion 

3.1. Modulation of Aβ1–42 aggregation 

Toxicity of Aβ and related Alzheimer’s disease-associated neuronal 
loss have been clinically associated with the accumulation of oligomeric 
forms of the peptide which generally are known to precede amyloid 
fibril formation [72,73]. In vitro assays have shown that short incuba
tion times, of 1.5–6 h, result in the formation of ThT positive oligomeric 
Aβ1-42 assemblies that significantly associate with apoptotic neurons and 
cognitive dysfunction in a mouse model [74]. To obtain preliminary 
insights into the ability of isoquinoline alkaloids to modulate the accu
mulation of Aβ1-42 oligomers we evaluated herein thioflavin (ThT) 
fluorescence intensity after 2 h incubation [75]. First of all, the Aβ1-42 
monomer (25 μM) was incubated with SA, CH or CO (25 μM). The extent 
of ThT-positive aggregation of Aβ1-42 within this incubation time was 
then assessed by recording the fluorescence emission of ThT (12 μM, 
λex = 450 nm, λem = 485 nm) (Fig. 2). 

Data show that SA and CH reduce the ThT fluorescence signal by 
~40% compared with Aβ1-42 in the absence of these compounds. On the 
other hand, the berberine-like CO increased the aggregation level of Aβ1- 

42 as indicated by a strong two-fold increase in ThT fluorescence in
tensity compared to untreated Aβ1-42. These results show that berberine- 
like and benzo[c]phenanthridine alkaloids differently modulate Aβ1-42 
aggregation. 

3.2. Aβ1-42 conformational response to isoquinoline alkaloids 

To investigate if the observed effects of isoquinoline alkaloids on Aβ1- 

42 aggregation were accompanied by conformational variations, we 
performed circular dichroism (CD) time-dependent studies. The aggre
gation of Aβ1-42, which reportedly coincides with increasing β-sheet 
content [76], was monitored using CD at different time points of incu
bation (0.5, 24 and 48 h, in PBS at 37 ◦C; Fig. 3). The obtained 
time-dependent CD profiles of Aβ1-42 showed spectral changes in 
agreement with those reported in literature [11,77] with a progressive 
transition towards a β-sheet conformation at 24 h indicated by a broad 
band centered at ~225 nm, that is a spectral element previously 
assigned to this secondary structure in many amyloid systems [78–83]. 

At longer incubation times CD intensity at 225 nm showed a ten
dency to decrease (Fig. 3) suggestive of amyloid aggregation/precipi
tation as previously observed under similar conditions [77]. In parallel, 

Aβ1-42 was incubated, under the same experimental conditions, with the 
isoquinoline alkaloids (which did not contribute to the observed CD 
signal). 

Remarkably, the presence of CO, already at t = 0.5 h of analysis, 
(Fig. 3) favors a β-like structure as indicated by a minimum at ~225 nm 
that, in the following 24 h, slightly shifts toward higher wavelengths 
(Fig. 3). The observed increase of Cotton effect for Aβ1-42 in the presence 
of CO at 24 h (Fig. 3) can be ascribed to a stabilization of these secondary 
structures [84–89]. When comparing the CD spectra of Aβ1-42 in the 
presence of all three compounds after 24 h, it became apparent that the 
presence of the three isoquinoline alkaloids induced differences in the 
structural organization of Aβ1-42 (Fig. 3). The observed changes, 
impacting on both intensity and shape of spectra, were already 
described by Guo et al. [80], suggesting that benzo[c]phenanthridines 
partly limited β-sheet content of Aβ1-42 leading to new structural ele
ments. The effect is more appreciable for CH while the main significant 
variations are evident in the 210–220 nm range for SA. 

3.3. Isoquinoline alkaloids interact with Aβ1-42 

To further evaluate the ability of isoquinoline alkaloids to interact 
with Aβ1-42 we carried out SPR assays [90]. Binding profiles for all three 
molecules (Fig. 4) suggested the formation of complexes, in a 
concentration-dependent manner. Freshly dissolved Aβ1-42, after HFIP 
treatment, was covalently immobilized on Sensor chip [91]. Kinetic 
parameters, reported in Table 1, allowed the estimation of thermody
namic dissociation constant values that appear in the low, for CO, high, 
for SA, and very high, for CH, micromolar range. The higher affinity 
exhibited by CO compared to CH and SA can be due to the faster asso
ciation phase. Our data are in agreement with a previous study [91] that 
showed the ability of berberine-like inhibitors of Aβ1-42 to interact with 
the polypeptide at low micromolar KD values [91]. 

Fig. 2. SA and CH inhibit ThT-positive oligomer formation of Aβ1-42, 
whereas CO induces ThT-positive assemblies. Solutions containing Aβ1-42 at 
a concentration of 25 μM were incubated in the presence and absence of SA, CH 
and CO (at 1:1 ratio) at 37 ◦C for 2 h. ThT-positive aggregate formation was 
detected using ThT fluorescence intensity measurements at a fluorescence 
emission wavelength of 485 nm upon excitation at 450 nm. The reported values 
represent the results obtained from three independent experiments. The sta
tistical significance of the replicates was assessed by p-values using paired two- 
tailed t-tests (GraphPad Prism). 
*p < 0.05, **p < 0.01, and ***p < 0.001 compared with the control (‘Aβ1-42’). 
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3.4. Computational study of the interaction of SA, CH and CO with 
monomeric and fibrillar Aβ1-42 

To further explore the molecular-level interactions responsible for 
the observed modulating effects of Aβ1-42 aggregation displayed by small 
molecules we performed in silico studies as described below. 

3.5. Binding energies 

3.5.1. Docking of ligands to monomers 
The binding energies of the three ligands were estimated by means of 

Molecular Docking. Since Aβ peptides are intrinsically disordered, their 
native structures are transient and cannot be resolved experimentally. 

Therefore, for our simulations we adopted three most representative 
Aβ1-42 monomeric models obtained by clustering ensembles of mono
meric Aβ1-42 conformations at 300K from extensive all-atom Replica- 
Exchange and conventional MD simulations with explicit water model 
performed with various Amber and CHARMM force fields [54], as tar
gets (Fig. 5). Because of the disordered character of monomeric Aβ1-42 
there is no possibility to treat properly flexibility of the receptor during 
docking procedure, therefore, we utilized three various Aβ1-42 confor
mations to better sample the possible binding modes and which should 
minimize the impact of conformational selection. It should be noted that 
the use of multiple targets can significantly enhance the quality of 
docking results as shown by the McCammon group [92] and this 
approach is known as ensemble-based virtual screening. 

As expected for similar small compounds, their modes of interactions 
appeared quite similar, but significant differences were observed in the 
number of possible binding modes (Table 2), which is higher for CO for 
all three monomeric structures. Conversely, the lowest number of 
binding modes was found for SA suggesting a more selective binding 
mechanism toward Aβ1-42 with respect to the other compounds. The 
drug-amyloid interactions are stabilized by both hydrophobic and 
hydrogen bonds (three for SA and CH and one for CO, Fig. 6). Inter
estingly, CH and SA, contrary to CO, form hydrogen bonds with two 
histidine residue (His13 and His14), that are reported as responsible of 
the binding of ions, e.g. Cu2+, which impacts Aβ1-42 aggregation [93]. 

Averaging over all target structures in the best docking mode (mode 
1) of the monomer, from Table 2 we obtain the binding energy 

ΔEbind = − 9.21, − 9.48 and − 9.16 kcal/mol for CO, SA and CH, 
respectively 

The highest interaction energy was observed for the least structured 
model 2, due to the disordered and extended character of this confor
mation allowing compounds to maximize the number of hydrogen bonds 
between molecules maintaining a high number of hydrophobic contacts 
(Table 3). 

3.5.2. Docking of ligands to Aβ1-42 tetramers 
As oligomeric states are a bridging step between monomers and fi

brils, we decided to study the impact of the three ligands on tetramers, 
that are considered crucial in Aβ1-42 aggregation [94], by using models 
obtained in previous multi-scale MD simulations [66]. Similar to the 
monomeric Aβ1-42, SA exhibited minor binding modes for all three 
tetrameric models (Table 4 and Fig. S1) confirming major selectivity of 
interaction. Averaging over three models of the tetramer and using data 
shown in Table 4, in the best docking mode we obtained ΔEbind = − 8.88, 
− 9.98, and − 9.60 kcal/mol for CO, SA and CH, respectively. Which 
these values of the binding energy, IC50 of the three compounds is of 
order of μM. Moreover, the small differences in binding affinity of 
compounds to monomeric and tetrameric forms are probably due to 
compact forms of Aβ1-42 tetramers, which did not allow many in
teractions with drugs even when more chains and possible binding sites 
are available. Overall, the high binding affinity of the studied com
pounds to oligomers indicates they can alter the fibril formation kinetics 
and pathways. 

3.5.3. Docking of ligands to Aβ1-42 protofibrils 
The structure of Aβ1-42 fibrils is still under debate. Old solid state 

NMR experiments showed that the monomer structure has the U-shape 
in the fibril state (here we call protofibril because we deal with a small 
number of chains) [95], but the S- and LS-shapes have been recently 
reported [96,97]. Assuming that protofibrils and fibrils have similar 
structures [98], we used the fibrillar structures deposited in PDB data
bank, for further docking simulation. Namely, we have chosen two 
experimental structures with U-shape (PDB ID 2LMN) [99] and LS-shape 
(PDB ID 2MXU) [96]. 

In both 2LMN and 2MXU models, the three ligands can bind in 
different regions depending on the docking mode (Figs. S2 and S3 in 

Fig. 3. Conformational response of Aβ1-42 peptide to SA, CH and CO. Circular dichroism spectra of Aβ1-42 (5 μM concentration in PBS, black line) and Aβ1-42 in 
the presence of isoquinoline alkaloids (1:2 M ratio, peptide: small molecule) after 0.5 (orange), 24 (blue), and 48 (green) h of incubation at 37 ◦C. 
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Supporting Information). In the docking mode with the lowest energy, 
they are all preferentially located in the loop region of 2LMN, while for 
2MXU CO and CH seem to prefer the terminal part, while SA is mainly 
located in the middle of the structure. In analogy to the monomeric case, 
SA is endowed with the poorest variety in docking positions compared to 
the other two ligands (Figs. S2 and S3, and Table 5). 

With the binding energy of about − 12 kcal/mol (Table 5), IC50 of CO 
and SA with 2LMN and SA with 2MXU is in the range of nM. Overall, all 
ligands are more strongly associated with protofibrils than with mono
mers and tetramers. The identified potential for the ligands to interact 
with both monomeric, oligomeric and protofibrillar Aβ1-42 suggests 
ample means for the ligands to modulate the subsequent aggregation 
process. Molecular Mechanics - Poisson Boltzmann Surface Area (MM- 
PBSA) docking assays on two compounds provided similar results 

(Figs. S4 and S5 and Table S1). 

3.5.4. Binding affinity of ligands to Aβ1-42 protofibrils: MM-PBSA results 
Because in general docking results are not sufficiently reliable we 

performed molecular mechanics - Poisson Boltzmann surface area (MM- 
PBSA) assays on two compounds CO and SA. For each protofibril-ligand 
complex, the binding free energy was calculated for two binding sites 
obtained in modes 1 and 2 of the docking simulations. The details of 
simulations and the results are described in SI (Figs. S4 and S5 and 
Table S1), which show that, in agreement with the docking results, the 
ligands strongly bind to protofibrils with IC50 ~ nM. 

3.5.5. Molecular dynamics simulations 
In silico prediction of binding of the alkaloids to Aβ1-42 indicated that 

the presence of a ligand can alter the rate of Aβ1-42 aggregation, but it is 
unclear if it accelerates or slows down aggregation. On the other hand, 
our in vitro experiment demonstrated that CO speeds up fibril formation, 
while SA retards it. Thus, to clarify this issue, we performed MD simu
lations with 16 Aβ1-42 chains in the absence or presence of CO and SA to 
mimic the first stages of Aβ1-42 aggregation from semi-extended non- 
interacting chains. Studies of early aggregations stages of Aβ are 
believed to be key to understand the whole process and are commonly 
performed [100], even though the computational studies of it on 
all-atom level cannot reach equilibration, which would require probably 
minutes of real time [101].The simulation started from the initial 

Fig. 4. Overlay of sensorgrams for the binding to immobilized Aβ1-42 of (A) SA, (B) CH and (C) CO.  

Table 1 
SPR based equilibrium dissociation constants (KD) and kinetic parameters for the 
interaction of Aβ1-42 with SA, CH and CO using the BIA evaluation v.4.1 soft
ware. Data reported were obtained through SPR analyses using small molecules 
as analyte on immobilized Aβ1-42.   

kon (M− 1s− 1 × 104) koff (s− 1 × 10− 3) KD (μM) 

Sanguinarine (SA) 13.1 6.07 463 
Cheletrine (CH) 5.14 19.7 3.83*10 3 

Coralyne (CO) 983 11.4 11.6  
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configuration of the 16 non-interacting randomly generated Aβ1-42 
chains in the presence of ligands in a 1:1 ratio (Fig. 7). For each set, we 
carried out two trajectories of 800 ns: this short interval even if it does 
not allow reaching equilibrium provides insights the initial steps of the 

aggregation. 
Simulations showed that the flexibility of the chains was unaffected 

by the presence of the ligands (Table 6), as RMSD, gyration radius Rg, 
solvent accessible surface area (SASA), and end-to-end (N–C) distance 

Fig. 5. Representations of docking positions of CO (left column: A, D, G), SA (middle column: B, E, H), and CH (right column: C, F, I) to three models of monomeric 
Aβ1-42 (presented as rainbow-colored cartoons). 

Table 2 
AutoDock-predicted binding energies (kcal/mol) for the binding of the compounds CO, SA, and CH to three representative amyloid monomeric models obtained in the 
previous simulation study [50].   

Binding Mode 
Aβ1-42 Model 1 Aβ1-42 Model 2 Aβ1-42 Model 3 

CO SA CH CO SA CH CO SA CH 

1 − 8.03 − 9.10 − 8.59 − 10.17 − 10.26 − 10.07 − 9.44 − 9.07 − 8.82 
2 − 6.68 − 7.24 − 7.39 − 7.53 − 8.58 − 8.36 − 8.11 − 8.99 − 8.31 
3 − 6.36  − 6.05 − 7.52   − 6.68 − 8.69 − 7.05 
4 − 6.24  − 6.03 − 7.07   − 6.58 − 6.87 − 6.86 
5 − 5.57   − 7.00   − 5.84   
6 − 5.42      − 5.30   
7 − 5.34         
8 − 5.28          
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did not vary significantly in absence or presence of the ligand. This was 
expected due to the semi-extended nature of the initial Aβ1-42 chains, 
which in the early aggregation steps firstly try to hide hydrophobic 
residues from the solvent and only then form stable interactions with 
other chains forming oligomeric structures [102,103]. Decrease of the 
number of interchain contacts indicates that both compounds are 

interacting with Aβ1-42 replacing some of the interaction which normally 
would form between chains. In general, calculated properties are quite 
dispersed, which is visible as high standard deviation values in Table 6, a 
feature caused by averaging over 16 chains, 2 trajectories and snapshots 
from the second halves of the simulations which are not fully equili
brated, and by the fact that Aβ1-42 chains are subjected to large 
conformational changes. However, even relatively small changes at 
early aggregation steps caused e.g. by the presence of external com
pounds, can significantly impact aggregation pathways and fibrilization 
process [104,105]. It was also previously reported that the beta content 
of Aβ1-42 monomers exponentially affects the aggregation rate [106], 
therefore we believe that these small changes may have significant 
impact on the behavior of the Aβ1-42 taking into account its disordered 
nature in low-mass forms, which increase its susceptibility to external 
factors. 

Both ligands reduced the population of monomers: a remarkable 
variation in the population of tetramers, heptamers, 14- and 15-mers 

Fig. 6. Schematic representation of the strongest binding mode of monomeric Aβ1-42 to compounds (monomeric model 2, binding mode 1; see Table 2 for more 
details) showed in 2D form for: A) CH, B) CO, C) SA. Aβ1-42 residues involved in hydrophobic interactions with compounds are showed by red lines and black three- 
letter residue codes, hydrogen bonds are represented by cyan dashed lines and green three-letter residue codes. For clarity, hydrogens are not presented on the plot. 

Table 3 
Number of hydrogen bonds (HB) and hydrophobic interactions (HI) between 
monomeric Aβ1-42 models and the ligands CO, SA, and CH in the strongest 
binding mode (mode 1).   

Aβ1-42 Model 1 Aβ1-42 Model 2 Aβ1-42 Model 3 

HI HB HI HB HI HB 

CO 10 1 11 1 9 1 
SA 10 1 9 3 7 1 
CH 9 1 8 3 7 1  
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(Fig. S7) was observed, which means that aggregation pathways to the 
fibril state are extensively modified by the ligands. In addition to size of 
the oligomers, our data confirm the secondary content is the prevalent 
factor governing aggregation rate of Aβ1-42 [107], suggesting that it 
could be in relation with the opposite effects by the SA and CO on the 
aggregation. 

4. Conclusion 

Herein we studied early Aβ1-42 aggregation stages in the presence of 
three alkaloids and our preliminary findings suggested that aromatic 
tetracycles with benzo[c]phenanthridine and berberine nuclei and 
similar functionalization of the aromatic core may oppositely affect the 
aggregation of Aβ1-42 peptide. 

While benzo[c]phenanthridines SA and CH seemed to inhibit 
aggregation, the berberine-like CO increased propensity for Aβ1-42 to 
aggregate, showing also the highest affinity for monomeric Aβ1-42, as 
revealed by SPR experiments, and it displayed the highest variety of 
binding modes (as found in silico). These observations suggest that, 
different from benzo[c]phenanthridines, the bent berberine-like 
structure of CO can be accommodated in a higher number of diverse 
Aβ1-42 conformations. The presence of CO also led to increased Aβ1-42 
β-content as revealed by CD experiments and MD calculations: this effect 
appears in perfect agreement with the promotion of Aβ1-42 aggregation 
observed in the ThT assay. Both docking and MM-PBSA simulations 
showed that all three studied alkaloids interact with monomeric, 
oligomeric and protofibrillar Aβ1-42. Our in silico study revealed that SA 
inhibits the assembly of Aβ1-42 into aggregates as a result of helix 
stabilization in the Aβ1-42 amyloid structure. On the contrary, the 
aggregation promoting effect caused by CO possibly occurs through 
enhancement of the β structures, which are predominantly reported in 
the fibril state. Interestingly, both benzo[c]phenanthridine and 
berberine derivatives are able to modulate the amyloid aggregation 
pathways by showing differences in the population of different 
oligomeric states, and in particular the Aβ1-42 oligomer assembly state 
undergoes significant changes upon ligand binding. 

Table 4 
AutoDock-predicted binding energies (kcal/mol) for the binding of the CO, SA, and CH to three representative amyloid tetrameric models obtained in the previous 
simulation study [62] (models 1, 2, and 3 correspond to tetramers 1, 3, and 5 from the mentioned work, respectively).   

Binding Mode 
Aβ1-42 tetramer 1 Aβ1-42 tetramer 2 Aβ1-42 tetramer 3 

CO SA CH CO SA CH CO SA CH 

1 − 9.06 − 9.97 − 9.72 − 9.36 − 9.52 − 9.26 − 8.21 − 10.45 − 9.81 
2 − 8.48 − 9.89 − 8.93 − 8.84 − 9.46 − 9.05 − 7.94 − 8.44 − 8.43 
3 − 7.56 − 9.14 − 8.78 − 8.80 − 9.13 − 7.91 − 7.24 − 8.26 − 8.32 
4 − 7.51  − 7.19 − 7.28 − 8.34 − 7.42 − 7.02 − 7.96 − 7.57 
5 − 6.43  − 7.13 − 7.25 − 7.52 − 7.33 − 7.00 − 7.68 − 7.50 
6 − 5.77  − 6.55 − 7.04  − 6.96 − 6.80  − 6.88 
7       − 6.55  − 6.50 
8       − 6.01  − 6.48  

Table 5 
AutoDock-predicted binding energies (kcal/mol) of the clustered orientations with 2LMN and 2MXU fibril models.   

Mode 
2LMN 2MXU  

CO SA CH CO SA CH Color 

1 − 12.12 − 12.16 − 10.93 − 10.41 − 11.76 − 10.89 Purple 
2 − 11.90 − 10.71 − 10.83 − 9.70 − 10.92 − 10.36 Magenta 
3 − 10.07 − 10.50 − 9.83 − 8.71 − 10.09 − 9.73 Red 
4 − 10.00 − 10.37 − 9.71 − 7.14 − 9.98 − 7.96 Yellow 
5 − 9.97 − 9.94 − 9.60 − 6.34  − 7.87 Cyan 
6 − 8.84  − 9.56   − 7.80 Teal 
7 − 8.78  − 9.42    Blue 
8 − 8.37  − 8.15    Green 
9 − 6.72  − 6.95    Darkgrey 
10 − 6.21      Lightgrey  

Fig. 7. Initial structure of the 16 Aβ1-42 chains with SA in 1:1 ratio. Aβ1-42 is 
represented by ball-and-sticks, SA by magenta spheres, counter ions by light- 
grey sphere, water by black dots. 

Table 6 
Calculated average properties of the Aβ1-42chains from simulations of 16 chains 
with standard deviations. Other details are given in Fig. S6.   

Aβ1-42 Aβ1-42+ CO Aβ1-42+ SA 

RMSD [Å] 10.97 ± 0.49 11.30 ± 0.36 11.52 ± 0.40 
Rg [Å] 14.04 ± 0.28 14.45 ± 0.63 14.21 ± 0.41 
SASA [nm2] 553.4 ± 21.1 576.6 ± 24.2 569.0 ± 20.3 
N–C distance [Å] 33.64 ± 1.98 32.40 ± 2.29 34.24 ± 1.29 
Number of contacts between 

chains 
3.76 ± 0.25 3.06 ± 0.33 3.02 ± 0.19 

Alpha content [%] 3.12 ± 1.11 2.92 ± 1.83 3.72 ± 0.50 
Beta content [%] 4.04 ± 0.72 5.01 ± 0.81 2.33 ± 0.66  
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Finally, since berberine and Ber-D (Fig. S8), compounds differing 
from CO by carrying one non-aromatic ring (berberine) or free hydroxyl- 
groups besides the non-aromatic ring (Ber-D), both inhibit Aβ1-42 
aggregation [22], future synthetic efforts and, biological studies should 
be carried out on chelerythrine-derived compounds CH-D1 and CH-D2 
(Fig. S8) as promising candidates as neurodrugs in the family of the 
benzo[c]phenanthridine alkaloids [22]. 
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[16] I. Orhan, B. Özçelik, T. Karaoğlu, B. Şener, Antiviral and antimicrobial profiles of 

selected isoquinoline alkaloids from fumaria and corydalis species, Z. 
Naturforsch. C Biosci. 62 (2007) 19–26. 

[17] S. Mehrzadi, I. Fatemi, M. Esmaeilizadeh, H. Ghaznavi, H. Kalantar, M. Goudarzi, 
Hepatoprotective effect of berberine against methotrexate induced liver toxicity 
in rats, Biomed. Pharmacother. 97 (2018) 233–239. 
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