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ABSTRACT
The Taylor–Green vortex represents an exact solution of the Navier–Stokes equations in ℝ2. In this work, an approximation
of this solution in two spatial dimensions is proposed for weakly compressible flows. These flows are characterized by small
compressibility (or, equivalently, by a small Mach number) and are often employed in computational fluid dynamics to
approximate the behaviour of incompressible Newtonian fluids. In this framework, the proposed solution is expected to be a
useful benchmark for numerical solvers that implement the weakly compressibility approximation. To this end, some numerical
examples are reported in the final section of this work.

1 Introduction

Nowadays computational fluid dynamics (CFD) plays an impor-
tant role in the modelling of many physical problems and
phenomena in various fields of fluid mechanics. Several numeri-
cal approaches have been developed through the years, basing on
different theoretical frameworks and spreading among a variety
of numerical techniques, as, for example, finite difference meth-
ods, finite volume schemes, boundary element methods, particle
schemes like smoothed particle hydrodynamics (SPH), moving
particle semi-implicit (MPS) and many others. Aside from this,
all numerical schemes need a constant and careful benchmarking
stage to check their accuracy and robustness. In this context, the
availability of analytical solutions (approximate or exact) is of
crucial importance, since they allow inspecting some theoretical
and practical aspects of the numerical implementation thatwould
be difficult to tackle through generic applications.

This work inserts in the above line of research, aiming at
providing an analytical solution for a class of numerical solvers

thatmodelweakly compressible flows to approximate the dynam-
ics of incompressible fluids. The above technique allows some
advantages in comparison to classic methods based on the
hypothesis that the fluid is incompressible, since it leads to the
implementation of explicit schemes that are easy to parallelize
and do not need to solve large sparse linear systems (see, e.g.,
[1]). In turn, the availability of analytical solutions for weakly
compressible flows is extremely limited and this induces many
researchers to benchmark their schemes by means of solutions
that hold true for incompressible fluid. Unfortunately, the validity
of the latter approach becomes questionable when issues or
incongruities arise during the benchmarking stage (see, e.g.,
[2–4]).

This is, in fact, the principal reason that motivates this work,
where we propose a weakly compressible approximation in ℝ2

of the well-known vortex solution by [5]. The celebrity of such
a solution is due to its simplicity (the solution is defined over
the two-dimensional plane with bi-periodic conditions and is
expressed in form of elementary trigonometric functions) and to
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the possibility of inspecting the transition to turbulence for high
Reynolds number flows (see, e.g., [6–8]). Despite its simple form,
the Taylor–Green vortex hides some pitfalls when using weakly
compressible solvers. In particular, the use of the incompressible
solution as an initial condition causes the generation of spurious
acoustic components during the flow evolution. For this reason
many works in the literature do not provide time histories for
local fields (i.e., pressure or velocity) but rather global quantities
(e.g., global kinetic energy) which allow an easier benchmarking
(see, e.g., [1, 9, 10] and many others). In this perspective, the
availability of a weakly compressible correction to the Taylor–
Green solution is expected to eliminate this issue. Incidentally,
we observe that this solution is often referred to as Taylor–Green
vortex, even though in the original work Taylor is the unique
author while Taylor and Green appear in the subsequent paper
(namely, [11]) that is devoted to the analysis of the early stages of
the evolution of a viscous fluid from periodic three-dimensional
initial conditions. An extension of the Taylor’s solution to three-
dimensional flows is described in [12]. Despite the procedure
described in the paper formally applies to both two and three
spatial dimensions, the derivation of the weakly compressible
approximation of the three-dimensional solution of [12] is not
considered here. In fact, this would require a considerable effort,
because of the huge number of expressions and computations to
handle, whereas its relevance for numerical applications would
be relatively weak, since possible incongruities with respect to
the incompressible solution would likely occur for high Reynolds
numbers and, consequently, for very fine spatial resolutions,
implying large computational costs.

This work is organized as follows: In Section 2 we describe
the theoretical framework for attaining a weakly compressible
approximation of an existing solution for an incompressible fluid,
then in Section 3 we derive the approximate solution of the
Taylor–Green vortex in two dimensions and, finally, in Section 4
we provide some numerical applications.

2 Weak Compressibility Approximation

Let us consider the dimensionless Navier–Stokes equations for a
viscous, compressible barotropic fluid:

⎧⎪⎨⎪⎩
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ ( 𝜌 𝒖 ) = 0

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ ∇𝒖 = −

∇𝑝

𝜌
+ 𝜈 Δ𝒖 𝑝 = 𝑓(𝜌).

(1)

Here, 𝜌 is the fluid density, 𝑝 is the pressure, 𝒖 is the velocity
field and 𝜈 is the dimensionless viscosity (namely, the inverse
of the Reynolds number 𝑅𝑒). Finally, 𝑓 is a bijective function
linking the pressure and density fields (called equation of state)
and the symbols ∇ and Δ indicate the nabla and Laplacian
operators, respectively. Hereinafter, we assume that the fluid is
weakly compressible. This latter assumption corresponds to the
condition |𝑑𝑝∕𝑑𝜌|≫ 1 which, in fact, guarantees small density
variations. As long as the above condition is satisfied, it is possible
to linearize the equation of state as follows:

𝑝 =
𝜌 − 1

𝜖
, (2)

and consider the perturbation expansions below:

𝜌 = 1 + 𝜖 𝜌1 + 𝜖2 𝜌2 + (𝜖3) , 𝒖 = 𝒖0 + 𝜖 𝒖1 + (𝜖2) , (3)
where 𝜖 = Ma2 ≪ 1 andMa is the Mach number (that is the ratio
between the reference fluid velocity and the sound speed). The
above relations immediately imply:

𝑝 = 𝜌1 + 𝜖 𝜌2 + (𝜖2) = 𝑝0 + 𝜖 𝑝1 + (𝜖2), (4)

that is, 𝑝𝑛 = 𝜌𝑛+1 for 𝑛 ≥ 0. At the leading order, the system (1)
gives:

⎧⎪⎨⎪⎩
∇ ⋅ 𝒖0 = 0

𝜕𝒖0
𝜕𝑡

+ 𝒖0 ⋅ ∇𝒖0 = −∇𝑝0 + 𝜈 Δ𝒖0 ,
(5)

which are the incompressible Navier-Stokes equations. Con-
versely, the first order is

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑝0
𝜕𝑡

+ 𝒖0 ⋅ ∇𝑝0 + ∇ ⋅ 𝒖1 = 0,

𝜕𝒖1
𝜕𝑡

+ 𝒖0 ⋅ ∇𝒖1 + 𝒖1 ⋅ ∇𝒖0 = −∇𝑝1 +∇

(
𝑝20
2

)
+ 𝜈 Δ𝒖1 .

(6)

Introducing the vorticity field as below

𝝎 = 𝝎0 + 𝜖 𝝎1 + (𝜖2) where 𝝎𝑛 = ∇ × 𝒖𝑛 , (7)

it is possible to derive an alternate form of the system (6), which
will be useful in the analysis that follows. This reads:

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑝0
𝜕𝑡

+ 𝒖0 ⋅ ∇𝑝0 + ∇ ⋅ 𝒖1 = 0,

𝜕𝒖1
𝜕𝑡

+ ∇(𝒖0 ⋅ 𝒖1 ) + 𝝎0 × 𝒖1 + 𝝎1 × 𝒖0 = −∇𝑝1

+∇
(
𝑝2
0

2

)
+ 𝜈 Δ𝒖1 .

(8)

Applying the curl operator to themomentum equation, we obtain
the first-order vorticity equation:

𝜕𝝎1

𝜕𝑡
+ ∇ ⋅ [𝝎0 ⊗ 𝒖1 − 𝒖1 ⊗ 𝝎0 ]

+∇ ⋅ [𝝎1 ⊗ 𝒖0 − 𝒖0 ⊗ 𝝎1 ] = 𝜈 Δ𝝎1 , (9)

where the symbol ⊗ denotes the diadic product. In two dimen-
sions, the vorticity field reduces to one component in the
direction normal to the (𝑥, 𝑦)-plane. Accordingly, we introduce
the notation 𝝎𝑛 = 𝜔𝑛 𝒆3 where 𝒆3 is the unit vector normal to the
(𝑥, 𝑦)-plane. Hence, Equation (9) simplifies as follows:

𝜕𝜔1
𝜕𝑡

+ 𝒖0 ⋅ ∇𝜔1 + 𝒖1 ⋅ ∇𝜔0 + 𝜔0 ∇ ⋅ 𝒖1 = 𝜈 Δ𝜔1 . (10)

The system (8), as well as Equation (10), have to be solved
along with proper boundary conditions depending on the specific
problem under consideration. In the next section, we apply
the above perturbation expansion to the Taylor–Green vortex
solution and provide the correct boundary conditions for its
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weakly compressible correction. Part of the computations have
been attained through the use of the software Mathematica [13].

3 Weakly Compressible Taylor–Green Vortex

In the framework of the 2D incompressible Navier–Stokes
equations, the Taylor–Green vortex solution reads:

𝑢0 = 𝐹 sin(2𝑥) cos(2𝑦), 𝑣0 = −𝐹 cos(2𝑥) sin(2𝑦), (11)

𝑝0 =
𝐹2

4
[ cos(4𝑥) + cos(4𝑦) ], 𝜔0 = 4𝐹 sin(2𝑥) sin(2𝑦), (12)

where 𝐹 = exp(−8𝜈𝑡). This corresponds to a tessellation of the
ℝ2-plane in bi-periodic squared patches with side length equal to
unity. We consider the domain Ω = [0, 𝜋] × [0, 𝜋] as a reference
patch for the tessellation and observe that, as a consequence
of this choice, the velocity flux is null between a patch and its
neighbours. Similarly, we note that the vorticity field is null along
𝜕Ω.

For the analysis that follows, it is also useful to recall the
expression of the stream function associated to this solution,
namely:

𝜓0 =
𝐹

2
sin(2𝑥) sin(2𝑦) (13)

recalling that in two dimensions 𝒖0 = ∇⟂𝜓0 where ∇⟂ =
(𝜕∕𝜕𝑦,−𝜕∕𝜕𝑥) and𝜔0 = −Δ𝜓0.We observe that the Taylor–Green
solution belongs to the class of generalized Beltrami flows. This
implies that the solution for the vorticity field solves the heat
equation, while a constitutive relation holds true between the
velocity and the vorticity field, namely:

𝜕𝜔0
𝜕𝑡

= 𝜈 Δ𝜔0 and 𝒖0 ⋅ ∇𝜔0 = 0 . (14)

These results will be used later on to inspect some characteristics
of the first-order correction.

To solve the system (8), we consider the classic Helmholtz decom-
position of the velocity field into a gradient and a divergence-free
component. In two spatial dimensions, this corresponds to
introducing the potential 𝜙1 and the stream function 𝜓1 as below:

𝒖1 = ∇𝜙1 + ∇⟂𝜓1 . (15)

The continuity equation immediately gives:

Δ𝜙1 = −
(
𝜕𝑝0
𝜕𝑡

+ 𝒖0 ⋅ ∇𝑝0

)
. (16)

This equation is solved by imposing null Neumann conditions
along 𝜕Ω. The latter condition is chosen in order to maintain the
same structure of the leading-order solution. Hence, we obtain
the following solution for the potential 𝜙1:

𝜙1 = − 𝜈 𝐹2

4
[ cos(4𝑥) + cos(4𝑦) ]

+𝐹
3

80
[ cos(6𝑥) cos(2𝑦) − cos(2𝑥) cos(6𝑦) ] . (17)

In the following part, we distinguish the derivation of the viscous
solution from the inviscid one. As shown in Section 3.2, this is
motivated by the fact that the inviscid limit is non-trivial.

3.1 Viscous Solution

Using the results of the previous section, the divergent-free
component of the velocity field is achieved through the solution of
the vorticity equation. Recalling that 𝜔1 = −Δ𝜓1 and substituting
this expression in Equation (10), we find:

−
𝜕(Δ𝜓1)

𝜕𝑡
− 𝒖0 ⋅ ∇(Δ𝜓1)

+ ∇⟂𝜓1 ⋅ ∇𝜔0 + ∇𝜙1 ⋅ ∇𝜔0 + 𝜔0 Δ𝜙1 = − 𝜈 Δ2𝜓1 . (18)

Accordingly to the leading-order solution, this equation is solved
by requiring 𝜔1 = 0 along 𝜕Ω. For the sake of simplicity, it is
convenient to rearrange the above equation as follows:

𝜓0 [𝜓1] = 𝑓 , (19)

where the operator 𝜓0
is given below:

𝜓0 [𝜓1] = −
𝜕(Δ𝜓1)

𝜕𝑡
− ∇⟂𝜓0 ⋅ ∇(Δ𝜓1) − ∇⟂𝜓1 ⋅ ∇(Δ𝜓0)

+ 𝜈 Δ2𝜓1 (20)

while the forcing term 𝑓 is:

𝑓 = −[ ∇𝜙1 ⋅ ∇𝜔0 + 𝜔0 Δ𝜙1 ] = 8𝜈𝐹3 sin(2𝑥) sin(2𝑦)

− 12𝜈𝐹3[ sin(6𝑥) sin(2𝑦) + sin(2𝑥) sin(6𝑦) ]

+ 7

10
𝐹4[ sin(8𝑥) sin(4𝑦) − sin(4𝑥) sin(8𝑦) ] . (21)

Since the incompressible solution depends on the composite
variable 𝜏 = 𝜈𝑡, it is useful to decompose the linear operator in
(20) as follows:

𝜓0 [𝜓1] = 𝜈[𝜓1] + 𝜓0 [𝜓1], (22)

where

 [𝜓1] = −
𝜕(Δ𝜓1)

𝜕𝜏
+ Δ2𝜓1

𝜓0 [𝜓1] = −∇⟂𝜓0 ⋅ ∇(Δ𝜓1) − ∇⟂𝜓1 ⋅ ∇(Δ𝜓0). (23)

Since 𝜓0 represents a generalized Beltrami flow, it belongs to the
kernel of both the operators and 𝜓0

and, therefore, it belongs
to the kernel of 𝜓0

. This implies that the solution 𝜓1 of Equation
(19) is defined up to a component proportional to 𝜓0. This issue
will be addressed in the next section. Going back to the solution of
Equation (19), the first and third components of the forcing term
in Equation (21) can be eliminated by substituting:

𝜓1 = 𝜓1 −
𝐹3

16
sin(2𝑥) sin(2𝑦)

+ 7𝐹3

320
[sin (6𝑥) sin (2𝑦) + sin (2𝑥) sin (6𝑦)] . (24)
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This leads to:

𝜓0

[
𝜓̂1

]
= 𝑓 , (25)

where

𝑓 = 26 𝜈 𝐹3[ sin(6𝑥) sin(2𝑦) + sin(2𝑥) sin(6𝑦) ]. (26)

We observe that 𝑓 is an eigenfunction of the operator whereas
it does not belong to the kernel of the operator 𝜓0

. This implies
that it can be only balanced by contributions of order (𝜈) in the
solution of 𝜓1. For high Reynolds number (namely for 𝜈 ≪ 1),
these can be neglected so that the approximate solution satisfying
𝜔1 = 0 along 𝜕Ω becomes:

𝜓1 = − 𝐹3

16
sin(2𝑥) sin(2𝑦) + 7𝐹3

320
[ sin(6𝑥) sin(2𝑦)

+ sin(2𝑥) sin(6𝑦) ] + 𝛼
𝐹

2
sin(2𝑥) sin(2𝑦) + (𝜈), (27)

where the last term represents a component proportional to 𝜓0
belonging to the kernel of the operator 𝜓0

and 𝛼 is a coefficient
to be defined. Incidentally, we observe that 𝜈 = (𝜖) is enough
to guarantee that the above approximation is consistent with the
perturbation expansion.

Before proceeding to the solution for the pressure field,
we observe a further intriguing point. Let us focus on the
first component of forcing term in Equation (21), namely
2𝜈𝐹3 sin(2𝑥) sin(2𝑦). This belongs to the kernel of𝜓0

and it is an
eigenfunction of the operator. Since this term and the operator
 are bothmultiplied by 𝜈, the corresponding contribution in the
solution for 𝜓1, namely 𝐹3 sin(2𝑥) sin(2𝑦)∕16, is of order (1).
The fact that a forcing term of order (𝜈) gives back a term of
order (1) in the solution has interesting consequences in the
evaluation of the inviscid limit, as addressed in Section 3.2.

From the knowledge of 𝜙1 and 𝜓1 we obtain the solution for 𝒖1
according to the decomposition in (15). This reads:

𝑢1 = 𝜈 𝐹2 sin(4𝑥) − 𝐹3

16
sin(2𝑥) cos(2𝑦)[cos(4𝑥) − 5 cos(4𝑦) + 5]

+𝛼 𝐹 sin(2𝑥) cos(2𝑦) + (𝜈), (28)

𝑣1 = 𝜈 𝐹2 sin(4𝑦) + 𝐹3

16
cos(2𝑥) sin(2𝑦) [−5 cos(4𝑥)

+ cos(4𝑦) + 5 ] − 𝛼 𝐹 cos(2𝑥) sin(2𝑦) + (𝜈). (29)

The last step is, therefore, the solution for 𝑝1. Incidentally, we
observe that mass conservation implies that the average of the
pressure field over Ω is zero, that is:

∫
𝜋

0

dx∫
𝜋

0

𝜌dy = 𝜋2 ⇒ ∫
𝜋

0

dx∫
𝜋

0

𝜌2 dy =
𝜋

∫
0

dx

𝜋

∫
0

𝑝1dy = 0.

(30)
The solution for 𝑝1 is obtained by decomposing the momentum
equation (8) in its gradient and null-divergence components, that

is:

∇

[
𝜕𝜙1
𝜕𝑡

+ 𝒖0 ⋅ 𝒖1 + 𝑝1 −
𝑝20
2

− 𝜈 Δ𝜙1

]

+𝝎0 × 𝒖1 + 𝝎1 × 𝒖0 = ∇⟂

[
−
𝜕𝜓1
𝜕𝑡

+ 𝜈 Δ𝜓1

]
. (31)

Applying the divergence operator, we find:

Δ𝜒 = −∇ ⋅ [ 𝝎0 × 𝒖1 + 𝝎1 × 𝒖0 ] , (32)

where

𝜒 =
𝜕𝜙1
𝜕𝑡

+ 𝒖0 ⋅ 𝒖1 + 𝑝1 −
𝑝20
2

− 𝜈 Δ𝜙1 + 𝐻1 , (33)

and 𝐻1 = 𝐻1(𝑡) is a function of time which is used to impose the
mass conservation according to Equation (30). Since the solution
for 𝜓1 is accurate up to(𝜈), the same truncation is applied to the
forcing term of the Poisson equation, leading to:

−∇ ⋅ [ 𝝎0 × 𝒖1 + 𝝎1 × 𝒖0 ]

= 3

4
𝐹4[ cos(4𝑥) + cos(4𝑦) − 4 cos(8𝑥) − 4 cos(8𝑦)

−4 cos(4𝑥) cos(4𝑦) + 5 cos(8𝑥) cos(4𝑦) + 5 cos(4𝑥) cos(8𝑦) ]

+ 8 𝛼 𝐹2[− cos(4𝑥) − cos(4𝑦) + 2 cos(4𝑥) cos(4𝑦) ] + (𝜈).
(34)

The corresponding solution of the Poisson equation for 𝜒 is:

𝜒 = 3

64
𝐹4 [− cos(4𝑥) − cos(4𝑦) + cos(8𝑥) + cos(8𝑦)

+ 2 cos(4𝑥) cos(4𝑦) − cos(8𝑥) cos(4𝑦) − cos(4𝑥) cos(8𝑦) ]

+ 𝛼
𝐹2

2
[ cos(4𝑥) + cos(4𝑦) − cos(4𝑥) cos(4𝑦) ] + (𝜈) . (35)

Finally, extracting the component 𝑝1 from 𝜒, substituting the
leading orders of the remaining solutions and imposing the mass
conservation according to (30), we find:

𝑝1 =
𝐹4

64
[−5 cos(4𝑥) − 5 cos(4𝑦) + cos(8𝑥) + cos(8𝑦)

+ 12 cos(4𝑥) cos(4𝑦) − cos(8𝑥) cos(4𝑦) − cos(4𝑥) cos(8𝑦) ]

+𝛼 𝐹
2

2
[ cos(4𝑥) + cos(4𝑦) − cos(4𝑥) cos(4𝑦) ] + (𝜈) .

(36)

Note that the above solution satisfies the condition 𝜕𝑝∕𝜕𝑛 =
0 along 𝜕Ω, accordingly to the leading-order solution 𝑝0. A
discussion on the choice of the parameter 𝛼 is postponed to the
following section.

Finally, we observe that the solution obtained in the present
section satisfies the continuity equation exactly, while it approx-
imates the momentum equation up to the order (𝜈). As a
consequence of this approach, the gradient component of the
velocity field is solved exactly, whereas the rotational part and the
solution of the pressure field are solved up to the order (𝜈).

4 of 10 Studies in Applied Mathematics, 2024
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3.2 Inviscid Solution and Consistency of the
Inviscid Limit

This case is of interest because the inviscid solution (namely,
the solution obtained by assuming 𝜈 = 0) cannot be obtained
straightforwardly as the limit for 𝜈 → 0 of the solution 𝜓1
described in the previous section. As shown later, to make the
inviscid limit consistent with the inviscid solution, we need to
consider a proper contribution proportional to 𝜓0.

For the incompressible case, the inviscid solution coincides with
the inviscid limit and gives a steady solution with 𝐹(𝜈 = 0) =
𝐹0 = 1. On the contrary, for the inviscid weakly compressible
solution, we have to discriminate between the gradient field and
the rotational part of the velocity field. The inviscid solution for
the gradient field, hereinafter 𝜙∗1 , is obtained immediately by
applying the inviscid limit 𝜈 → 0 to Equation (17). We obtain:

lim
𝜈→0

𝜙1 = 𝜙∗1 =
𝐹30
80
[cos(6𝑥) cos(2𝑦) − cos(2𝑥) cos(6𝑦)]. (37)

On the contrary, the above limit does not hold true for the
expression for 𝜓1 in (27), unless we consider a component
proportional to 𝜓0 in the inviscid solution. This is caused by the
disappearance of the first component in the forcing term in (21)
(i.e., the term of order (𝜈) giving a contribution of order (1) in
the solution). The correct inviscid solution for the rotational field,
denoted by 𝜓∗1 , is obtained by solving the problem:

𝜓0

[
𝜓∗1

]
= 7

10
𝐹40[ sin(8𝑥) sin(4𝑦) − sin(4𝑥) sin(8𝑦) ] , (38)

which has the following exact solution:

𝜓∗1 =
7𝐹30
320

[ sin(6𝑥) sin(2𝑦) + sin(2𝑥) sin(6𝑦) ]

+ 𝛽
𝐹0
2
sin(2𝑥) sin(2𝑦) , (39)

where the last component belongs to the kernel of 𝜓0
and 𝛽 is a

coefficient to be defined. Now, imposing the consistency with the
inviscid limit, namely:

lim
𝜈→0

𝜓1 = 𝜓∗1 , (40)

we find the following relation between 𝛼 and 𝛽:

𝛽 = 𝛼 −
𝐹20
8
. (41)

For a viscous fluid,we assume that the component proportional to
the incompressible solution is normalized to unity. This implies
that 𝛼 = 0 is used hereinafter. Incidentally, we observe that the
solution of the inviscid problem is exact. For this case, the fields
𝑝0, 𝑝1 and 𝜔0, 𝜔1 are displayed in Figure 1.

3.3 Summary of the Analytical Results

For the reader’s convenience, in this section, we summarize the
results obtained so far for the weakly compressible correction.
The potential and stream functions are:

𝜙1 = − 𝜈 𝐹2

4
[ cos(4𝑥) + cos(4𝑦) ] + 𝐹3

80
[ cos(6𝑥) cos(2𝑦)

− cos(2𝑥) cos(6𝑦) ] , (42)

𝜓1 = − 𝐹3

16
sin(2𝑥) sin(2𝑦)

+ 7𝐹3

320
[ sin(6𝑥) sin(2𝑦) + sin(2𝑥) sin(6𝑦)] + (𝜈),

(43)

where 𝐹 = exp(−8𝜈𝑡). Accordingly, the components of the veloc-
ity field are:

𝑢1 = 𝜈 𝐹2 sin(4𝑥) − 𝐹3

16
sin(2𝑥) cos(2𝑦)

[ cos(4𝑥) − 5 cos(4𝑦) + 5 ] + (𝜈), (44)

𝑣1 = 𝜈 𝐹2 sin(4𝑦) + 𝐹3

16
cos(2𝑥) sin(2𝑦)

[−5 cos(4𝑥) + cos(4𝑦) + 5 ] + (𝜈), (45)

while the vorticity field reads:

𝜔1 = 𝐹3

4
sin(2𝑥) sin(2𝑦) [5 + 7 cos(4𝑥) + 7 cos(4𝑦) ] + (𝜈) .

(46)

Finally, the pressure field is:

𝑝1 = 𝐹4

64
[−5 cos(4𝑥) − 5 cos(4𝑦) + cos(8𝑥) + cos(8𝑦)

+ 12 cos(4𝑥) cos(4𝑦) − cos(8𝑥) cos(4𝑦)

− cos(4𝑥) cos(8𝑦) ] + (𝜈). (47)

According to the discussion of Section 3.2, the inviscid solution
is attained straightforwardly by taking the limit 𝜈 → 0 of the
expressions above. For the sake of the numerical implementation,
we also include the expressions of the analytical solution in the
domain Ω = [0, 1] × [0, 1]. These read:

𝜙1 = − 𝜈 𝐹2

4
[ cos(4𝜋𝑥) + cos(4𝜋𝑦) ]

+ 𝐹3

80𝜋
[ cos(6𝜋𝑥) cos(2𝜋𝑦) − cos(2𝜋𝑥) cos(6𝜋𝑦) ] ,

(48)

𝜓1 = − 𝐹3

16𝜋
sin(2𝜋𝑥) sin(2𝜋𝑦) + 7𝐹3

320𝜋

[ sin(6𝜋𝑥) sin(2𝜋𝑦) + sin(2𝜋𝑥) sin(6𝜋𝑦) ] + (𝜈) ,
(49)

𝑢1 = 𝜈 𝜋 𝐹2 sin(4𝜋𝑥) − 𝐹3

16
sin(2𝜋𝑥) cos(2𝜋𝑦)
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FIGURE 1 Inviscid solution. Top panels: the Taylor–Green solution for the pressure (left) and vorticity (right) fields. Bottom panels: the first-order
weakly compressible correction for the pressure (left) and vorticity (right) fields.

[ cos(4𝜋𝑥) − 5 cos(4𝜋𝑦) + 5 ] + (𝜈), (50)

𝑣1 = 𝜈 𝜋 𝐹2 sin(4𝜋𝑦) + 𝐹3

16
cos(2𝜋𝑥) sin(2𝜋𝑦)

[−5 cos(4𝜋𝑥) + cos(4𝜋𝑦) + 5 ] + (𝜈), (51)

where 𝐹 = exp(−8𝜋2𝜈𝑡). Finally, the vorticity and pressure fields
are:

𝜔1 = 𝜋𝐹3

4
sin(2𝜋𝑥) sin(2𝜋𝑦) [5 + 7 cos(4𝜋𝑥) + 7 cos(4𝜋𝑦) ]

+(𝜈) . (52)

𝑝1 = 𝐹4

64
[−5 cos(4𝜋𝑥) − 5 cos(4𝜋𝑦) + cos(8𝜋𝑥) + cos(8𝜋𝑦)

+ 12 cos(4𝜋𝑥) cos(4𝜋𝑦) − cos(8𝜋𝑥) cos(4𝜋𝑦)

− cos(4𝜋𝑥) cos(8𝜋𝑦) ] + (𝜈) . (53)

4 Applications

In this section, we consider some numerical applications that
show the benefits of using the proposed weakly compressible
correction to the Taylor–Green solution.

The numerical domain is Ω = [0, 𝐿] × [0, 𝐿] where 𝐿 = 1, and
periodic boundary conditions are imposed along 𝜕Ω. The refer-
ence velocity for the numerical simulations is 𝑈 = maxΩ(𝑢0) =

maxΩ(𝑣0) at 𝑡 = 0. We consider the Arbitray–Lagragian–Eulerian
solver described in [14]which allows simulations in bothEulerian
and Lagrangian frameworks. Such a solver belongs to the class
of weakly compressible smoothed particle hydrodynamics (WC-
SPH) schemes, that is, those SPH solvers that implement the
weak-compressibility assumption to approximate incompressible
flows. These kind of solvers rely on the mollification of the differ-
ential operators through proper kernel functions. In particular,
we used a C2 Wendland kernel [15] with radius 𝑅 = 6Δ𝑥 where
Δ𝑥 is the characteristic size of the spatial discretization (for more
details, the reader is referred to [14]). All the simulations reported
hereinafter are achieved by using a spatial resolution that ensures
that the numerical outputs are close to convergence (namely,
that negligible changes occur by increasing the resolution any
further).

We first consider the case of an inviscid weakly compressible flow
in an Eulerian framework. The adopted spatial discretization is
𝐿∕Δ𝑥 = 200. Figure 2 displays the evolution of the relative error
of the pressure field measured at 𝒙= (0.5𝐿, 0.5𝐿) with respect to
its initial value, namely:

𝜀𝑝 =
𝑝𝑛𝑢𝑚 − 𝑝

𝑝
, (54)

where 𝑝𝑛𝑢𝑚 is the numerical solution and 𝑝 is the analytical
solution with or without the weakly compressible correction,
according to the case under consideration. The numerical outputs
are characterized byMa = 0.1 (top panel), Ma = 0.2 (middle) and
Ma = 0.3 (bottom) corresponding to 𝜖 = 0.01, 0.04, 0.09. In all the
cases, the blue lines indicate the evolution obtained by using the
Taylor–Green solution as initial condition, whereas the red lines

6 of 10 Studies in Applied Mathematics, 2024
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FIGURE 2 Inviscid Taylor–Green flow simulated by means of an Eulerian meshless solver. Temporal evolution of the relative error of the pressure
measured at 𝒙= (0.5𝐿, 0.5𝐿) using either weakly compressible initial conditions (red line) or incompressible ones (blue line) for Ma = 0.1 (top), Ma = 0.2
(middle), Ma = 0.3 (bottom). The adopted spatial resolution is 𝐿∕Δ𝑥 = 200.

display the same cases using the proposed weakly compressible
correction. The presence of sound waves generated by the use of
the incompressible solution is clear in all the numerical outputs.
As expected these increase in magnitude as the 𝜖 increases.
In particular, for Ma = 0.1, we observe a beating phenomenon
similar to that reported in [4] using a finite volume scheme.
Conversely, the use of the proposed correction leads to an error
which is at least one order of magnitude smaller.

The numerical outputs for the viscous case are reported in
Figure 3 for 𝜈 = 0.001. Differently from the previous case, the time
has been made dimensionless by using the reference velocity 𝑈
instead of the sound velocity 𝑐0 in order to compare in the same
figure the results obtained with different Mach numbers. In the

top panel of Figure 3, we display the evolution of the pressure at
the origin for Ma = 0.1, 0.2, 0.3 as obtained by using the proposed
correction as initial condition. In all the cases, the behaviour
of the pressure signal is regular and little affected by acoustic
noise. The same analysis is repeated in the bottom panel with
the initial condition obtained from the Taylor–Green solution.
Again, the latter case displays large fluctuations induced by the
inconsistency of the initial conditions. As the flow evolves, these
reduce in magnitude because of viscous dissipation but, despite
this, persist over long times.

The last example consists in a simulation made in a Lagrangian
frameworkwhich is typical ofmeshless particlemethods like SPH
solvers. Specifically, in this study the SPH model described in
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FIGURE 3 Viscous Taylor–Green flow with 𝜈 = 0.001 simulated by means of an Eulerian meshless solver. Temporal evolution of the pressure
measured at 𝒙= (0.5𝐿, 0.5𝐿) using either weakly compressible initial conditions (top plot) or incompressible ones (bottom plot) for different Mach
numbers. A zoom of the initial evolution is reported in the inset. The adopted spatial resolution is 𝐿∕Δ𝑥 = 200.

FIGURE 4 Inviscid Taylor–Green flow simulated bymeans of a Lagrangianmeshless solver. Temporal evolution of the relative error of the pressure
measured at 𝒙= (0.5𝐿, 0.5𝐿) using either weakly compressible initial conditions (red line) or incompressible ones (blue line) at Ma = 0.1. The adopted
spatial resolution is 𝐿∕Δ𝑥 = 800.

[10] is adopted. Figure 4 displays the evolution of the pressure
at the origin for Ma = 0.1 with initial conditions obtained from
the incompressible Taylor–Green solution (blue line) and the
proposed correction (red line). Differently from the Eulerian case,
for Lagrangian simulations, we needed a finer spatial resolution
to be close to convergence: In this case, the adopted discretization
is 𝐿∕Δ𝑥 = 800. In any case, the comparison with the top panel
of Figure 2 displays that a similar behaviour occurs, apart from a
general higher noisewhich is likely caused by the particlemotion.

Finally, in Figure 5, a convergence study with the same test
conditions as in Figure 4 is reported for initial conditions
obtained from both the incompressible Taylor–Green solution
(blue triangles) and the proposed correction (red squares). The
comparison is performed bymeans of the 𝐿1-normof 𝜀𝑝measured
at the centre of the domain during the whole time span of the
simulation, namely 𝑡𝑐0∕𝐿 = 10. The simulations were performed
starting with particle resolution 𝐿∕Δ𝑥 = 50 and, then, doubling
the discretization up to 𝐿∕Δ𝑥 = 800. The observed order of

8 of 10 Studies in Applied Mathematics, 2024

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12792 by C
N

R
 G

R
O

U
P II Istituto di Scienza dell', W

iley O
nline L

ibrary on [15/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 5 Inviscid Taylor–Green flow atMa = 0.1 simulated bymeans of a Lagrangianmeshless solver. Convergence of the 𝐿1-normof the relative
error of the pressure field measured at 𝒙= (0.5𝐿, 0.5𝐿) for a time duration 𝑡𝑐0∕𝐿=10. Weakly compressible initial conditions are represented through red
squares whereas incompressible ones with blue triangles. Left: numerical results compared to first-order (dash-dotted line) and second-order (solid line)
convergence rates. Right: values of the 𝐿1-norm obtained for both initial conditions, namely the proposed weakly compressible and the incompressible
ones.

convergence for the case initialized with the proposed correction
is close to 2, which is in agreement with the observations reported
in [10]. Conversely, when using the incompressible Taylor–Green
solution, the error reaches a plateau after 𝐿∕Δ𝑥 = 100 as the
noise due to the initial conditions becomes predominant and does
not decrease for further increases in resolution. For the reader’s
convenience, the values represented in Figure 5 are also reported
in the table next to it.

5 Conclusions

Assuming the fluid to be weakly compressible, we derived an
approximate solution of the famous Taylor–Green solution inℝ2.
This consists in a correction to the incompressible vortex solution
and is valid for both viscous and inviscid fluids in two spatial
dimensions. The proposed solution is expected to be a useful
benchmark for those numerical solvers that rely on the weakly
compressibility approximation. To this purpose, some numerical
applications have been considered, proving that the proposed
correction to the Taylor–Green vortex drastically reduces the
acoustic noise that generates when the incompressible solution
is used as an initial condition.
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