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Abstract 1 

Upscaling instantaneous evapotranspiration retrieved at any specific time-of-daytime (ETi) to 2 

daily evapotranspiration (ETd) is a key challenge in regional scale vegetation water use 3 

mapping using polar orbiting sensors. Various studies have unanimously cited the short wave 4 

incoming radiation (RS) to be the most robust reference variable explaining the ratio between 5 

ETd and ETi on the terrestrial surfaces. This study aims to contribute in ETi upscaling for 6 

global studies using the ratio between daily and instantaneous incoming short wave radiation 7 

(RSd/RSi) as a factor for converting ETi to ETd. The approach relies on the availability of RSd 8 

measurements that in many cases is hindered if not by cost but due to the environmental 9 

conditions such as cloudiness.  10 

This paper proposes an artificial neural network (ANN) machine learning algorithm first to 11 

predict RSd from RSi followed by using the RSd/RSi ratio to convert ETi to ETd across different 12 

terrestrial ecosystem. Using RSi and RSd observations from multiple subnetworks of 13 

FLUXNET database spread across different climates and biomes (to represent inputs that 14 

would typically be obtainable from remote sensors during the overpass time) in conjunction 15 

with some astronomical variables (derived from simple mathematical computation), we 16 

developed ANN model for reproducing RSd and further used it to upscale ETi to ETd. The 17 

efficiency of the ANN is evaluated for different morning and afternoon time-of-daytime, 18 

under varying sky conditions, and also at different geographic locations. Based on the 19 

measurements from 126 sites, we found RS-based upscaled ETd to produce a significant linear 20 

relation (R
2
 = 0.65 to 0.69), low bias (-0.31 to -0.56 MJ m

-2
 d

-1
) (appx. 4%), and good 21 

agreement (RMSE 1.55 to 1.86 MJ m
-2

 d
-1

) (appx. 10%) with the observed ETd, although a 22 

systematic overestimation of ETd was also noted under persistent cloudy sky conditions. An 23 

intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal 24 

resolution revealed a robust performance of the ANN driven RS method and was found to 25 

produce lowest RMSE under cloudy conditions. The overall methodology appears to be 26 

promising and has substantial potential for upscaling ETi to ETd for field and regional scale 27 

evapotranspiration mapping studies using polar orbiting satellites.  28 

Key Words: Evapotranspiration, upscaling, short wave radiation, artificial neural networks, 29 

FLUXNET  30 
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1 Introduction 1 

Satellite-based mapping and monitoring of daily regional evapotranspiration (ET hereafter) (or 2 

latent heat flux, E) is considered as a key scientific concern for multitudes of applications 3 

including drought monitoring, water rights management, ecosystem water use efficiency 4 

assessment, distributed hydrological modelling, climate change studies, and numerical 5 

weather prediction (Anderson et al., 2015; Senay et al., 2015; Sepulcre-Canto et al., 2014). ET 6 

variability during the course of a day is influenced by changes in the radiative energy being 7 

received at the surface (Brutsaert & Sugita, 1992; Crago, 1996; Parlange & Katul, 1992) and 8 

also due to soil moisture variability particularly in the water deficit landscapes. Therefore, one 9 

of the fundamental challenges in regional ET modelling using polar orbiting sensors involves 10 

the upscaling of instantaneous ET retrieved at any specific time-of-daytime (ETi hereafter) to 11 

daily ET (ETd hereafter) For example, ETi retrieved from LANDSAT, ASTER and MODIS 12 

sensors typically represent ETi at single time snapshot of 1000, 1030 and 1330 local times, 13 

which needs to be upscaled to daily timescales for making this information usable to 14 

hydrologists and water managers (Cammalleri et al., 2014; Colaizzi et al.,  2006; Ryu et al., 15 

2012; Tang et al., 2013).  16 

In order to accommodate the temporal scaling challenges encountered by remote sensing 17 

based ET models, techniques have been proposed and applied by various researchers to 18 

upscale ETi to ETd. These include:  (1) the constant evaporative fraction (EF) approach which 19 

assumes a constant ratio between λE and net available energy ( = Rn – G) during daytime 20 

[EF = λE/(Rn – G)] (Gentine et al., 2007; Shuttleworth et al., 1989), (2) constant reference 21 

evaporative fractions (EFr) where the ratio of ETi between a reference crop (typically grass 22 

measuring a height of 0.12m in an environment that is not water limited) and an actual surface 23 

is assumed to be constant during daytime, allowing ETd to be estimated from the daily EFr 24 

(Allen et al.,1998; Tang et al., 2013), (3) constant global shortwave radiation method (RS) 25 

where RS is the reference variable at the land surface and it is assumed that the ratio of daily 26 

to instantaneous shortwave radiation (RSd and RSi) values (i.e., RSd/RSi) determines ETd to ETi 27 

ratio (Jackson et al., 1983; Cammalleri et al., 2014), and (4) constant extra-terrestrial radiation 28 

(RSTOA) where exo-atmospheric shortwave radiation (RSTOA) is the reference variable and 29 

the ratio of instantaneous to daily i.e. (RSiTOA and RSdTOA) is assumed to determine the 30 

ratio of ETd to ETi (Ryu et al., 2012; Van Niel et al., 2012). These methods have been 31 
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reviewed and compared in different studies with the view of identifying the most robust 1 

approach based on different data sets, time integrals and varying sky conditions (Cammalleri 2 

et al., 2014; Ryu et al., 2012; Tang et al, 2013, 2015; Van Niel et al., 2012; Xu et al., 2015).  3 

Based on the previous studies, we find that the RSTOA approach performed consistently good 4 

at lower temporal resolution namely eight-day to monthly scales (Ryu et al., 2012; Van Niel 5 

et al., 2012) as well as under clear-sky conditions (Cammalleri et al., 2014), whereas the RS 6 

approach was identified as the most preferred method for ETi to ETd conversion at a higher 7 

temporal scale i.e. daily timescale in addition to under variable sky conditions (Cammalleri et 8 

al., 2014; Chávez et el.,  2008; Colaizzi, et al., 2006; Xu et al., 2015). Although the EFr-based 9 

method produced comparable ETd estimates as the RS-based method, however the dependence 10 

of EFr estimates on certain variables (e.g. daily  and wind speed, which are difficult to 11 

characterise at the daily scale from single acquisition of polar orbiting satellites) (Tang et al., 12 

2015) makes it a relatively less attractive method. Furthermore the EF-based method appeared 13 

to consistently underestimate ETd in all these studies.  14 

The motivation of the current work is built on the conclusions of Colaizzi et al. (2006), 15 

Chavez et al. (2008), Cammalleri et al.  (2014), and Xu et al. (2015) that the ratio of the 16 

instantaneous to daily RS incident on land surface is the most robust reference variable 17 

explaining the ratio between ETd and ETi among all the tested methods. In this work, we aim 18 

to contribute in ETi upscaling by first developing a method for estimating RSd from any 19 

specific time-of-day RS information (RSi) and further using RSd/RSi ratio as a factor for 20 

converting ETi to ETd. We develop an artificial neural network (ANN) machine learning 21 

algorithm (McCulloch & Pitts, 1943) in order to estimate RSd. ANN is an approach that has 22 

been successfully used in estimating global solar radiation in many sectors and more so in the 23 

field of renewable energy (Ahmad et al., 2015; Hasni et al., 2012; Lazzús et al., 2011). ANN 24 

is a non-linear model which works by initially understanding the behaviour of a system based 25 

on a combination of a given number of inputs and subsequently is able to simulate the system 26 

when fed with and independent set of inputs of the same system. Multi-layer perceptron 27 

(MLP) is one of the ANN architectures commonly used as opposed to other statistical 28 

methods, makes no prior assumptions concerning the data distribution, has ability to 29 

reasonably handle non-linear functions and reliably generalise independent data when 30 

presented (Gardner & Dorling, 1998; Khatib, Mohamed, & Sopian, 2012; Wang, 2003). 31 
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Therefore the objectives of the present study are: (1) using a ANN with MLP architecture to 1 

predict RSd, (2) applying a  method to upscale instantaneous ETi to ETd based on RSd/RSi ratio 2 

under all sky conditions, and (3) comparing the proposed RS-based method with RSTOA and 3 

EF-based ET upscaling methods. 4 

Even though this study is intended for remote sensing application, we tested the method using 5 

meteorological and heat fluxes measurements recorded in-situ by eddy covariance (EC) 6 

system at the FLUXNET (Baldocchi et al., 2001) sites mainly for the purpose of temporal 7 

consistency. However, we evaluate the performance in consideration with overpass time of 8 

polar orbiting satellites commonly used in ET applications namely MODIS and LANDSAT. 9 

By choosing to use data distributed over different ecosystems and climates zones, we are 10 

faced with two problems : (1) changing cloud conditions across ecosystems, (2) varying 11 

Energy balance closure (EBC) requirements for the fluxes different ecosystems (Foken et al., 12 

2006; Franssen et al., 2010; Mauder & Foken, 2006; Wilson et al., 2002). Cloudiness is a 13 

phenomenon that significantly influences the reliability of a model to predict incoming solar 14 

radiation as they are directly related to each other. Currently, information on cloudiness is 15 

obtainable from geostationary meteorological satellites, at hourly to 3-hourly time steps e.g. 16 

from the Clouds and Earth’s Radiant Energy System (CERES), the International Satellite 17 

Cloud Climatology Project–Flux Data (ISCCP-FD), and Global Energy and Water cycle 18 

Experiment Surface Radiation Budget (GEWEX-SRB). The CERES algorithm uses cloud 19 

information from MODIS onboard both Terra and Aqua platforms and combines it with 20 

information from geostationary satellites to accurately capture the diurnal cycles of clouds. In 21 

this study, cloudiness is not included in the list of variables used to estimate RSd due to 22 

inconsistency in spatial resolution of data to match with the other predictive variables used. 23 

Including cloudiness holds a great potential in improving the ANN RSd predications due to 24 

their direct relationship. However, we assess the performance of the ANN under cloudy sky 25 

conditions based on simple cloudiness index computations as adopted from previous works 26 

(Baigorria et al., 2004). The EBC problems have been established to vary over landscapes due 27 

to management practices, climate, seasons and plant functional type characteristics (Foken et 28 

al., 2006). In this study, in order to test the robustness of the proposed method, we disregard 29 

the site specific EBC problems and assume that the systematic bias of fluxes fall within the 30 

same range across entire FLUXNET database used.  31 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-344, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 15 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
6 

2 Methodology  1 

2.1 Rationale 2 

The presented method of ET upscaling from any specific time-of-daytime to daytime average 3 

evaporative fluxes is based on the assumption of self-preservation of incoming solar energy 4 

(i.e., shortwave radiation) as proposed by Jackson et al. (1983). 5 

𝐸𝑇𝑑 ≈ 𝐸𝑇𝑖
𝑅𝑆𝑑

𝑅𝑆𝑖
   (1) 6 

Where, ETd is the daytime average evapotranspiration in MJ m
-2 

d
-1

, ETi is the instantaneous 7 

evapotranspiration at any instance during daytime in W m
-2

, RSi and RSd are the values of 8 

shortwave radiation recorded at any instance and the daytime average having units W m
-2

 and 9 

MJ m
-2 

d
-1

, respectively. 10 

For any remote sensing studies using polar orbiting satellites, although the retrieval of ETi and 11 

RSi is has been carried (Tang et al., 2015; Huang et al., 2012; Laine et al., 1999; Polo et al., 12 

2008), however estimating RSd and ETd from RSi and ETi is still challenging. Presently, 13 

upscaling RSi to RSd is primarily based on the clear sky assumption, i.e., for the entire daytime 14 

integration period, the sky remains cloud-free (Bisht et al., 2005; Jackson et al., 1983). 15 

However, the clear-sky assumption is not always appropriate for upscaling remote sensing 16 

based RSi and hence ETi because the sky conditions during a specific time-of-daytime may be 17 

clear whereas the other part of the day might be cloudy. Under such conditions, the clear-sky 18 

assumption of ETi upscaling will lead to substantial overestimation of ETd in cloudy 19 

conditions. Hence reliable estimates of all-sky (i.e., both clear and cloudy) RSd would greatly 20 

improve the ETd estimates in the framework of Eq. (1). Given the unavailability of a definite 21 

method proposed to directly estimate all-sky RSd from RSi information, here we have 22 

developed a simple method to upscale RSi to RSd using ANN. This method uses the 23 

observations of both RSd and RSi from all the available FLUXNET sites in conjunction with 24 

some ancillary variables to build the ANN as described below. A schematic diagram of the 25 

ANN method is given in Fig. 1.  26 
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2.2 Development of Artificial Neural Network (ANN) 1 

We used a multi-layer perceptron (MLP). The MLP was chosen as it has been widely used in 2 

many similar studies and cited to be a better alternative as compared to the conventional 3 

statistical methods (Ahmad et al., 2015; Chen et al., 2013; Dahmani et al., 2016; Mubiru & 4 

Banda, 2008). The MLP is composed of 5 neurons in the input layer, 1 output layer and 10 5 

hidden layers (Fig. 2). The input layer neurons are made up of instantaneous incoming short 6 

wave radiation (RSi), instantaneous exo-atmospheric shortwave radiation (RSiTOA), daily 7 

exo-atmospheric shortwave radiation (RSdTOA), solar zenith angle (Z), and day length (LD) 8 

as the predictor variables whose values are initially standardized to range between -1 to 1. The 9 

choice of the inputs is intentionally limited to the variables that cannot only be acquired by 10 

measurements from meteorological stations but also derived from simple astronomical 11 

computations (Ryu et al., 2012)mainly to help minimize on the spatial distribution problem 12 

(as described earlier in the introduction) that is often linked to ground weather stations. In the 13 

MLP processing, the input layer directs the values of each input neuron xi (i = 1, 2, 3…. n) 14 

unto each neuron (j) of the hidden layers. In the hidden layer xi is multiplied by a weight (wij) 15 

and then a bias (bj) assigned for each hidden layer also is applied. The weighted sum Eq. (2) 16 

is fed into a transfer function. In this work a tangent sigmoid (TANSIG) function is used Eq. 17 

(3) in the hidden layer while in the output layer a PURELIN function is applied Eq. (4) to 18 

give a single output value which is the predicted daily shortwave radiation (RSd_pred). The 19 

training of the ANN is completed by a regression analysis being performed internally by the 20 

algorithm between the target variable i.e. the observed and predicted daily shortwave 21 

radiation (RSd_obs and RSd_pred). 22 

   


n

i jiijj bywx 1
 (2) 

  12exp1

2




ij X
y  

(3) 

 PURELINXy ij
  (4) 

Bayesian regularization algorithm was chosen for the optimization process because it is able 23 

to handle noisy datasets by continuously applying adaptive weight minimization and can 24 
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reduce or eliminate the need for lengthy cross-validation that often leads to overtraining and 1 

overfitting of models (Burden & Winkler, 2009). 2 

2.3 Datasets 3 

Daily and half-hourly data on RS (W m
-2

), RSTOA, net radiation (Rn, W m
-2

), latent heat flux 4 

(λE, W m
-2

), sensible heat flux (H, W m
-2

) and ground heat flux (G, W m
-2

) measured by the 5 

FLUXNET (Baldocchi et al., 2001) eddy covariance network were used. A total of 126 sites 6 

from the years 1999 to 2006 distributed between latitude 0-90 degrees north and south of the 7 

equator were used for the present analysis. The data sites covered a broad spectrum of 8 

vegetation functional types and climatic conditions and a list of the sites are given in Table S1 9 

in the supplementary section. 10 

Among the 126 sites, 85 sites were used for training and remaining 41 sites were used for 11 

validation. Partition of the data into training and validation was randomly selected regardless 12 

of the year. These translated into 194 and 86 yearly data for the respective sample. A global 13 

distribution of the data sites is shown in Fig. 3.  From the training dataset, three samples were 14 

internally generated by the algorithm i.e., training datasets, validation datasets, and a testing 15 

dataset in a percentage ratio of 80:15:15 respectively. Considering the equatorial crossing 16 

time of different polar orbiting sensors like LANDSAT, ASTER, and MODIS Terra-Aqua, 17 

unique networks were generated for different time of day from morning to afternoon, and thus 18 

we had a total of 8 networks to represent potential satellite overpass times between 1030 to 19 

1400 hours using 30 minutes interval as the closest reference time for each hour. The 20 

generated networks were then applied to an externally independent validation data set. 21 

2.4 Intercomparison with other ET upscaling methods 22 

The performance of the RS method is also compared with two other existing ET upscaling 23 

methods: (a) the EF method (Cammalleri et al., 2014), where the reference variable is the net 24 

available energy () (Rn - G). 25 

𝑆𝐹𝐸𝐹 =  
𝜆𝐸

𝑅𝑛 − 𝐺
 

(5) 

𝐸𝑇𝑑 = 1.1(𝑅𝑛 − 𝐺)𝑆𝐹𝐸𝐹   
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Where SF is the scaling factor, Rn is net radiation and G is ground heat flux. 1 

(b) The exo-atmospheric irradiance method (Ryu et al., 2012) where the reference variable is 2 

RSTOA. 3 

𝑅𝑆𝑑𝑇𝑂𝐴 = 𝑆𝑠𝑐 [1 + 0.033𝑐𝑜𝑠 (
2𝜋𝑡𝑑

365
)] 𝑐𝑜𝑠𝛽 

(6) 

𝑆𝐹𝑅𝑇𝑂𝐴 =
𝑅𝑆𝑑𝑇𝑂𝐴

𝑅𝑆𝑖𝑇𝑂𝐴
 

 

𝐸𝑇𝑑 = 𝐸𝑇𝑖𝑆𝐹𝑅𝑇𝑂𝐴  

Where Ssc is the solar constant (1360 W m
−2

), td is the day of year, and β is computed solar 4 

zenith angle.  We tested the performance of the three upscaling algorithms for all possible sky 5 

conditions assumed to be represented by daily atmospheric transmissivity (d) (eq. 7) namely 6 

(i) 0.250 (1, hereafter), (ii) 0.50.25 (2, hereafter) (iii) 0.750.5 (3, hereafter), and 7 

(iv) 10.75 (4, hereafter), respectively. We use daily  because it indicates the overall sky 8 

condition throughout a day. 9 

𝜏𝑑 =
𝑅𝑆𝑑

𝑅𝑆𝑑𝑇𝑂𝐴
 

(7) 

RSd and RSdTOA are daily shortwave radiation and the exo-atmospheric shortwave radiation 10 

in MJ m
-2

 d
-1

. 11 

2.5 Statistical error analysis  12 

The relative performance of the ANN and three upscaling methods is evaluated using 13 

statistical indices generated namely: mean absolute percentage error (MAPE), root mean 14 

square error (RMSE), coefficient of determination (R
2
), index of agreement (IA), and bias. 15 

ETd estimates using the respective upscaling coefficients were compared with measured ETd. 16 

                          
 
 









n

i i

n

i ii

o

op
R

1

2

2

12
1                                  (8) 17 
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1
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 
n

Bias

n

i ii op 



1

                                               (12) 4 

Where, n is the number of validation data; oi and pi are daily observed and estimated RSd or 5 

ETd, respectively. Ō was the mean value of observed RSd or ETd. 6 

3 Results and discussion 7 

3.1 Testing the performance of predicted RSd  8 

Given that the performance of ETd upscaling depends on the soundness of RSd estimation, we 9 

feel some justification to demonstrate the efficacy of the ANN method for predicting RSd. 10 

Figure 4 summarises the statistical results of predicted RSd (RSd_pred, hereafter) as obtained 11 

following the methodology described in the section 2.1, showing all the site-year average R
2
, 12 

RMSE, IA, and MAPE values for eight different time-of-daytime upscaling slots. From the 13 

analysis it is apparent that the RMSE of RSd_pred from forenoon upscaling varied between 14 

1.81-1.85 MJ m
-2

 d
-1

, with MAPE, R
2
, IA varying between 20–21%, 0.76–0.77, and 0.79 and 15 

0.80, respectively (Fig. 4). For the afternoon, these statistics were almost similar and varied 16 

between 1.83–1.96 MJ m
-2

 d
-1

, 19-20%, 0.75–0.77, and 0.80–0.81 (Fig. 4). Given the minimal 17 

discrepancy in error statistics from both forenoon and afternoon integration and considering 18 

the MODIS Terra-Aqua average overpass time we have considered 1100 and 1330 hours of 19 

daytime for the detailed follow up analysis. 20 
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Figure 5 (a and b) shows the two dimensional scatters between RSd_pred versus RSd_obs for 1 

different levels of  with an overall RMSE of 1.81 and 1.83 MJ m
-2 

d
-1 

for the forenoon and 2 

afternoon upscaling respectively. Table 1 and Fig. 5 clearly shows overestimation tendency of 3 

the current method under persistent cloudy sky conditions (1), whereas the predictive 4 

capacity of the ANN model is reasonably strong with increasing atmospheric clearness. The 5 

RMSE of RSd_pred for different  class from forenoon upscaling varied between 0.62 to 2.45 6 

MJ m
-2

 d
-1

, with MAPE, R
2
 and IA of 9.2 to 53%, 0.67 to 0.98, and 0.67 to 0.95, respectively 7 

(Table 1). For the afternoon upscaling these statistics were 0.89 to 2.4 MJ m
-2

 d
-1

 (RMSE), 2.4 8 

to 52% (MAPE), 0.65 to 0.98 (R
2
), and 0.67 to 0.95 (IA) (Table 1). 9 

The overestimation of RSd_pred at low values of  is presumably associated with varying levels 10 

of cloudiness during the daytime. Since RSd_pred depends on the magnitude of RSi, LD, Z, 11 

RSiTOA, and RSdTOA, there will be a tendency of overestimating RSd_pred on partly cloudy days if 12 

RSi at a specific time-of-daytime is not affected by the clouds (LD, Z, RSiTOA, and RSdTOA are 13 

not influenced by the clouds).  14 

3.2 Evaluation of predicted ETd based on RSd_pred  15 

Figure 6 summarises the statistical results of predicted ETd (ETd_pred, hereafter) using 16 

RSd_pred/RSi as a scaling factor following eq. 1 for eight different time-of-daytime slots. Upon 17 

statistical evaluation, all the cases showed significantly linear relationship between ETd_pred 18 

and observed ETd(ETd_obs, hereafter). The RMSE of ETd_pred from forenoon upscaling varied 19 

from 1.67–1.84 MJ m
-2

 d
-1

, with MAPE, R
2
, IA varying between 30%–34%, 0.62–0.68, and 20 

0.77–0.80, respectively (Fig. 6). For the afternoon upscaling, these statistics varied between 21 

1.5–1.6 MJ m
-2

 d
-1

, 29%–30%, 0.67–0.71, and 0.80 (Fig. 6). These results also indicate that 22 

the error statistics were nearly uniform and the accuracy of ETd_pred varies only slightly when 23 

integration was done from different time-of-daytime hours between 1030 to 1400 h. These 24 

typical error characteristics can greatly benefit the ETd modelling using polar orbiting data 25 

with varying overpass times between 1030 to 1400 hours. This also opens up the possibility to 26 

use either forenoon satellite (e.g., MODIS Terra, LANDSAT, ASTER etc.) or afternoon 27 

satellite (i.e., MODIS Aqua) to upscale ETi to ETd. Following RSd, here also we restricted our 28 

analysis to the two different time-of-daytime (1100h and 1330h) representing Terra and Aqua 29 

overpass times. 30 
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Figure 7 (a and b) shows the two dimensional scatters between ETd_pred versus ETd_obs for 1 

different levels of daily  with an overall RMSE, MAPE, and R
2
 of 1.86 and 1.55 MJ m

-2
 d

-1
, 2 

31% and 36%, 0.65 and 0.69 for the forenoon and afternoon upscaling, respectively. As seen 3 

in Fig. 7, there is a systematic overestimation of ETd_pred relative to the tower observed values 4 

under the low range of  (i.e., cloudy sky). It is important to realise that, unlike ETd_obs, 5 

ETd_pred might be an outcome of ETi instances when the sky was not overcast, i.e., the sky 6 

conditions might be clear at specific time-of-daytime but can be substantially overcast for the 7 

remainder of the daytime. As a result, any bias in the daily shortwave radiation prediction 8 

(RSd_pred) will result in biased ETd_pred according to eq. 1, and the omission of non-clear sky 9 

conditions at any particular time of daytime would tend to lead to ETd_pred>ETd_obs for 10 

generally overcast days. Since ETd_obs are the integrations of multiple ETi measurements, such 11 

conditions could be conveniently captured in the observations which were not possible in the 12 

current framework of ETd_pred. Therefore, when upscaling was done under clear skies at 13 

nominal acquisition time for generally overcast days, higher errors in ETd_pred can be expected 14 

(Cammalleri et al., 2014). We examined this cloudy sky overestimation pattern in greater 15 

detail by evaluating the error statistics in ETd_pred for four different levels of daily  categories 16 

(Fig. 8). 17 

The statistical evaluation of ETd_pred for different classes of daily  indicates the tendency of 18 

higher RMSE and low R
2
 in ETd_pred under the persistent cloudy-sky conditions (1), while the 19 

performance of ETd_pred is reasonably good with increasing atmospheric clearness (2, 3, and 20 

4) (Fig. 8). The RMSE of ETd_pred for different  class from forenoon upscaling varied 21 

between 1.09 to 2.96 MJ m
-2

 d
-1

, with MAPE, R
2
 and IA of 25 to 75%, 0.38 to 0.79, and 0.71 22 

to 0.82, respectively. For the afternoon upscaling, these statistics were 0.98 to 2.02 MJ m
-2

 d
-1

 23 

(RMSE), 24 to 87% (MAPE), 0.40 to 0.68 (R
2
), and 0.71 to 0.77 (IA). Biome specific 24 

evaluation of ETd_pred (Fig. 9) revealed lowest RMSE and highest R
2
 both in the grassland 25 

(GRA) (0.68 to 1.14 MJ m
-2

 d
-1

; 0.53 to 0.79) and shrubland (SH) (0.66 to 1.76 MJ m
-2

 d
-1

; 26 

0.60 to 0.82) whereas the RMSE was comparatively high over the tropical evergreen 27 

broadleaf forests (EBF) (1.41 to 2.02 MJ m
-2

 d
-1

) and deciduous broadleaf forests (DBF) (1.94 28 

to 2.55 MJ m
-2

 d
-1

).  29 
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Figure 10 shows the time series comparisons between observed ETd and ETd_pred for four 1 

different stations representing different latitude bands of both the Northern (Sweden) and 2 

Southern (Brazil, Australia, and South Africa) hemispheres. These reveal that the temporal 3 

dynamics of ETd is in general consistently captured by the proposed method throughout year. 4 

In Br_SP1, relatively less seasonality was found in both observed and predicted ETd. This is 5 

because SP1 is a tropical site having an annual rainfall of 850–1100 mm most of which is 6 

evenly distributed between March to end of September. The peaks in ETd values during the 7 

beginning of year and October onwards coincided with the periods of increased RS, and 8 

ETd_pred could reasonably capture the observed trends during both rainy and non-rainy 9 

periods. Similarly the low ETd pattern (10 to 50 W m
-2

) (equivalent to 0.1 to 1 mm d
-1

) in the 10 

hot arid climate of South Africa (Za-Kru) could also be reasonable captured in ETd_pred 11 

(Fig. 10). ETd_pred over two other Southern hemisphere (AU-Tum) and the Northern 12 

hemisphere (SE-Fla) sites have shown distinct seasonality (high summer and low winter ETd) 13 

coinciding with the observed ETd patterns. 14 

3.3 Comparison with existing ET upscaling methods 15 

ETd_pred from the proposed method was intercompared with two other upscaling schemes 16 

(RSTOA and EF) over the 41 FLUXNET validation sites for two different time-of-daytime, 17 

1100h and 1330h, the statistics of which are given in Table 2. This comparison was also 18 

carried out according to different  classes as defined in section 2.2.3.  19 

From Table 2 it is apparent that the RS-based method has generally produced relatively low 20 

RMSE (1.21 to 1.99 MJ m
-2

 d
-1

) and MAPE (23 to 50%) as well as relatively high IA (0.72 to 21 

0.84) as compared to the RSTOA and EF-based upscaling methods. The EF upscaling method 22 

appears to systematically underestimate ETd for both forenoon and afternoon as evident from 23 

high negative bias compared to the other two methods (Table 2). On comparing RS and 24 

RSTOA methods, the RS-based method performed relatively better than the RSTOA scheme 25 

for the lower magnitude of  classes. However, the results suggest comparable performance of 26 

RSTOA approach under clear sky conditions which are reflected in lowest RMSE (1.09 and 27 

1.13 MJ m
-2

 d
-1

) in ETd_pred as compared to the other  classes. In general, all the schemes 28 

performed relatively better from the afternoon upscaling as compared to the morning 29 
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upscaling (as evidenced in higher R
2
 and lower bias) (Table 2 and Fig. 8) which is in 1 

agreement with the findings from Ryu et al. (2012).  2 

The tendency of positive bias in ETd_pred from both RS and RSTOA in clear skies from 3 

afternoon upscaling is partly explained by the fact that, during the afternoon the values of 4 

both RS and RSTOA reached maximum limit and dominates their daily values (Jackson et al., 5 

1983). The post afternoon rate of reduction in ET does not coincide with the shortwave 6 

radiation due to stomatal controls on ET, and the total water flux from morning to afternoon 7 

(0700h to 1300h) is generally greater than the total water flux from post afternoon (1500h 8 

onwards) till sunset. Therefore multiplying 1330h ETi with high magnitude of RSd/RSi or 9 

RSdTOA/RSiTOA would likely lead to an overestimation of ETd_pred in the clear sky days.  10 

Since extraterrestrial shortwave radiation is not affected by the clouds, ETd_pred from RSTOA 11 

performed comparably with the RS-based ETd_pred with increasing atmospheric clearness (i.e., 12 

for the higher levels of daily ). However, increased differences in the RMSE of ETd_pred 13 

between RS and RSTOA upscaling in the predominantly cloudy days indicates that more 14 

deviations can be expected in ETd_pred from these two different method of upscaling under 15 

principally overcast conditions (Tang et al., 2013). This happens because the ratio of RSdTOA 16 

/RSiTOA is not impacted by the clouds and the magnitude of this ratio becomes markedly 17 

different from RSd/RSi ratio in the presence of clouds, which leads to the differences in 18 

ETd_pred between them. The RS-based method is relatively efficient to discriminate the impacts 19 

on ET by RSd/RSi due to the clouds. The generally good performance of RS-based method and 20 

comparable error statistics with RSTOA-based ETd estimates are consistent with the findings 21 

of Cammalleri et al. (2014) and Van Niel et al. (2012).  22 

The systematic ETd underestimation by EF method and nearly similar pattern of bias from 23 

two different time-of-daytime upscaling (Table 2) further points to the fact that the concave-24 

up shape of the EF during daytime (Hoedjes et al., 2008; Tang et al., 2013) will tend to 25 

underestimate ETd if EF is assumed to be conservative during the daytime. EF remains 26 

conservative during the daytime under extremely dry conditions when ETd is solely driven by 27 

deep layer soil moisture. The systematic underestimation of ETd from EF upscaling method 28 

corroborates with the results reported by other researchers (Cammalleri et al., 2014; Delogu et 29 

al., 2012; Gentine et al., 2007; Hoedjes et al., 2008) which suggests that the self-preservation 30 
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of EF is not generally achieved, and this systematic underestimation of ETd can be partially 1 

compensated if EF based ET upscaling is done from morning 0900h or afternoon 1600h time-2 

of-daytime.  3 

We further resampled ETd (both predicted and observed) from daily to 8-day, monthly, and 4 

annual scale, and statistical metrics from the three different upscaling methods at three 5 

different temporal scales are shown in Fig. 11 and Table 3. Averaging ETd over 8-day, 6 

monthly and annual scale substantially reduced the RMSE to the order of 60 to 70% for all 7 

the three upscaling methods. The RS-based upscaled ET from morning and afternoon showed 8 

reduction in RMSE from 1.79 MJ to 0.57 MJ and 1.74 MJ to 0.51 MJ from daily to annual 9 

ET, respectively. For the other two upscaling method these statistics varied from 1.85 and 10 

1.89 MJ to 0.62 and 0.53 MJ (RSTOA method), and 2.16 and 1.33 MJ to 2.20 and 1.31 MJ 11 

(EF method) (Fig. 11 and Table 3). The impact of daily cloud variability might have 12 

smoothed out in 8-day, monthly and annual scale which led to reduced RMSE and higher 13 

correlation between observed and predicted ETd. Nearly the same error statistics in ETd_pred 14 

from both the morning and afternoon upscaling also substantiates the findings of Ryu et al. 15 

(2012) and greatly stimulate the use of either morning satellite (i.e., Terra) or after satellite 16 

(i.e., Aqua) to upscale ETi to ETd or 8-day mean ETd.  17 

4 Summary and Conclusions 18 

Given the significance of ETd in remote sensing based water resource management from polar 19 

orbiting satellites, this study developed and evaluated a temporal upscaling method for 20 

estimating ETd from different time-of-daytime instantaneous ET (ETi) measurements with the 21 

assumption that the ratio between daytime to instantaneous RS (RSd/RSi) is the predominant 22 

factor governing ETd/ETi ratio. However, since RSd is not measurable from the polar orbiting 23 

satellites, we first developed a robust ANN based method to upscale RSi to RSd followed by 24 

using the ratio of RSd/RSi to further upscale ETi to ETd. The overarching goal of this study is 25 

to provide an operational and robust ETi upscaling protocol for estimating ETd from any polar 26 

orbiting satellite.  27 

Based on the measurements from 126 flux tower sites, we found RS-based upscaled ETd to 28 

produce a significant linear relation (R
2
 = 0.65 to 0.69), little bias (-0.31 to -0.56 MJ m

-2
 d

-1
) 29 

(appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ m
-2

 d
-1

) (appx. 10%) with the 30 
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observed ETd. While the RSTOA-based method appeared to produce slightly lower RMSE 1 

(10% lower) under cloud-free conditions (Table 2), RS method demonstrates more robust 2 

performance and was found to be better under cloudy conditions. Despite the RS method 3 

yielded relatively better overall accuracy in ETd_pred statistics when compared with the 4 

RSTOA and EF-based method, statistical analysis of the ETd_pred accuracy of the different 5 

temporal upscaling methods (as discussed in section 3.3) suggests that RS and RSTOA to 6 

produce commensurate results under coarse temporal resolutions  (Table 3). Therefore, at the 7 

coarse temporal scale (8-day and above), there was no preferred ETi scaling method between 8 

RS and RSTOA.  9 

Among all the upscaling method tested, RS–based method carries maximum information on 10 

the cloudiness and produced generally lowest RMSE, low bias (Table 3), and, therefore, 11 

overall the preferably robust scaling mechanism (at the daily scale) among all the other 12 

methods tested. However, upscaling large-area satellite-based ETi by using retrieved RSi 13 

would require accurate RSi retrieval techniques, which are currently commonplace (Ahmad et 14 

al., 2015; Boulifa et al., 2015; Dahmani et al., 2016; Hasni et al., 2012; Li, Tang, Wu, & Liu, 15 

2013) to support regional scale hydrological applications. Of the two other upscaling 16 

methods, RSTOA could be easily applied over large areas, had lower errors than EF, had 17 

second best RMSD, and overall lowest bias among the two. We conclude that using modelled 18 

RS to upscale ETi at daily scale appears to be viable for large-area hydrological remote 19 

sensing applications from polar orbiting satellites irrespective of any sky conditions.  20 

The principal limitation of the approach is the dependence of ETd and RSd on single snapshot 21 

of ETi and RSi. Although hourly RS data from geostationary satellite are becoming available; 22 

but these are available as sectorial products (i.e. for particular continents) instead of full 23 

global coverage. Ongoing efforts to develop geostationary based data by merging multiple 24 

geostationary satellites tend to overcome this limitation.  25 
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Table 1: Statistical analysis of the performance of ANN in predicting RSd under varying sky 1 

conditions represented by four different classes of daily atmospheric transmissivity (). Here the 2 

statistical metrics of RSd_pred for two different upscaling hours (1100 and 1330 h) are presented. 3 

Time-of-

daytime (h) 
 R

2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

1100 

1 0.67 1.84 0.67 53.56 1.12 

2 0.79 2.45 0.80 16.69 0.59 

3 0.88 2.30 0.82 9.17 -0.74 

4 0.98 0.63 0.95 1.69 0.08 

1330 

1 0.65 1.77 0.67 51.50 1.06 

2 0.81 2.44 0.81 16.83 0.69 

3 0.89 2.23 0.83 8.94 -0.85 

4 0.98 0.89 0.95 2.40 -0.46 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-344, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 15 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
23 

Table 2: A summary of ETd error statistics by comparing the performance of RS, RSTOA and EF upscaling methods with regard 1 

to different sky conditions. Here  represents low atmospheric transmissivity due to high cloudiness while 4 represents high 2 

transmissivity under clear sky conditions.  3 

Time-

of-

daytime 

(h) 

 

R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF 

1100 

 0.49 0.32 0.32 1.34 1.65 2.07 0.72 0.67 0.71 50.14 66.70 64.19 -0.13 -0.04 0.05 

 0.72 0.70 0.69 1.73 1.81 1.93 0.81 0.78 0.69 26.47 32.41 36.42 -0.21 -0.19 -0.95 

 0.72 0.73 0.79 1.99 1.94 2.38 0.81 0.79 0.59 24.69 25.66 40.37 -0.24 -0.37 -1.78 

 0.77 0.81 0.68 1.32 1.13 2.00 0.84 0.81 0.49 32.17 30.02 55.43 0.05 -0.19 -1.34 

1330 

 0.52 0.34 0.29 1.21 1.68 2.34 0.73 0.69 0.71 48.29 66.09 68.14 -0.11 0.08 0.12 

 0.73 0.72 0.71 1.71 1.93 1.86 0.82 0.79 0.71 26.12 33.71 35.33 -0.01 0.24 -0.88 

 0.75 0.75 0.76 1.89 1.96 2.43 0.82 0.82 0.61 23.17 25.82 41.65 0.09 0.14 -1.75 

 0.79 0.86 0.80 1.32 1.09 1.86 0.84 0.86 0.49 29.54 26.59 53.91 0.10 0.11 -1.38 
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 6 

 7 

 8 

 9 
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Table 3: Error statistics of ETd_pred at four different temporal scales from three ETi upscaling methods. 1 

Time-

of-

daytime 

(h) 

Temporal 

scale 

R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF 

1100 Daily 0.71 0.72 0.71 1.79 1.85 2.16 0.82 0.80 0.67 28.80 32.98 57.00 0.19 0.22 1.21 

8-days 0.86 0.84 0.85 1.17 1.22 1.65 0.87 0.86 0.67 18.50 20.63 46.96 0.19 0.22 1.16 

Monthly 0.89 0.88 0.88 0.99 1.04 1.61 0.89 0.67 0.67 15.52 17.22 49.72 0.19 0.22 1.16 

Annually 0.92 0.91 0.93 0.57 0.62 1.33 0.87 0.84 0.54 11.12 12.54 45.88 0.19 0.22 1.21 

1330 Daily 0.75 0.74 0.69 1.74 1.89 2.2 0.83 0.82 0.67 26.59 29.89 56.45 -0.04 0.17 -1.18 

8-days 0.87 0.86 0.84 1.11 1.21 1.7 0.88 0.88 0.68 16.80 17.97 50.36 -0.04 0.17 -1.18 

Monthly 0.90 0.90 0.87 0.93 1.00 1.59 0.90 0.89 0.68 13.69 14.85 48.08 -0.04 0.17 -1.18 

Annually 0.93 0.93 0.92 0.51 0.53 1.31 0.88 0.88 0.54 9.00 9.70 44.13 -0.04 0.17 -1.18 
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 1 

Figure 1. A conceptual diagram of the methodology. On the left side is a representation of predicting 

daily incoming short wave radiation (RSd_pred). The ANN is trained to learn the system response to a 

combination of explanatory variables i.e. instantaneous incoming short wave radiation (RSi), 

instantaneous exo-atmospheric shortwave radiation (RSiTOA), daily exo-atmospheric shortwave 

radiation (RSdTOA), solar zenith angle (Z), and day length (LD), by being fed with a sample data of 

observed daily incoming short wave radiation (RSd) which is the dependant variable. On the right side 

are methods of upscaling instantaneous (ETi) to daily ET (ETd) using our RS method (a) and other two 

approaches (b, c) are the RSTOA and EF methods respectively used which are used for comparison. 

 

 

 2 

 3 

Figure 2.  Schematic representation of a simple artificial network model. The artificial neuron has 

five input variables, for the intended output. These inputs are then assigned weights (W) and bias (b), 
and the sum of all these products (∑) is fed to an activation function (ƒ). The activation function 

alters the signal accordingly and passes the signal to the next neuron(s) until the output of the model 

is reached (Mathworks, 2015). 
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 1 

Figure 3. Distribution of 126 sites of the FLUXNET eddy covariance network used in the present 

study with 85 and 41 sites for training and validation, respectively between the years 1999 and 2006. 
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 1 

Figure 4. Statistical metric of RSd_pred by ANN for different time-of-daytime. As the study is 

intended for remote sensing application, we demonstrate the potential of the method for future 

research in the case where satellite will be used and as such we pick MODIS overpass time as an 

example to highlight on the predictive ability of the ANN at the specific overpass times. 
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 1 

Figure 5. Scatter plots between RSd_pred versus RSd_obs for different levels of daily atmospheric 

transmissivity classes () from (a) 1100 and (b) 1330 hours upscaling. Here 1–4 represent daily 

atmospheric transmissivity of four different class, 0.250, 2 0.50.25, 0.750.5, and 10.75, 

respectively, with 1 signifying high degree of cloudiness (or overcast skies) whereas 4 indicates clear 

skies. 
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Figure 6. Statistical summary of ETd_pred for different time-of-daytime using Eq. (1) based on RSi 

and RSd_pred. As the study is intended for remote sensing application, we once again demonstrate the 

potential of the method for future research in the case where satellite will be used and as such we 

pick MODIS Terra-Aqua overpass time. 
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Figure 7. ETd_pred obtained through eq. (1) versus ETd_obs for different levels of  from both 

forenoon and afternoon upscaling (1100 and 1300 daytime hours). 
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Figure 8. Assessing the statistical metrics of ETd_pred (using eq.1) for different levels of daily 

atmospheric transmissivity classes (representing cloudy to clear skies) for both 1100h and 1330h 

time-of-daytime ETi scaling. 
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 1 

Figure 9. Biome specific error characteristics of ETd_pred displaying the box plots of (a) RMSE and (b) 

coefficient of determination (R
2
). The biome classes are evergreen broadleaf forest (EBF), evergreen 

needleleaf forest (ENF), deciduous broadleaf forest (DBF), shrubland (SH), cropland (CRO), and 

grassland (GRA), respectively. 

(a) 

 

(b) 
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Figure 10. Time series comparison between measured and predicted ETd for four representative sites 

located in Australia, Brazil, South Africa and Sweden. 
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Figure 11. Statistical metrics of ETd_pred from three different ETi upscaling approaches [shortwave 

incoming radiation (RS), exo-atmospheric shortwave radiation (RSTOA) and evaporative fraction 

(EF)] at different temporal scales based on ETi measurements at (a) 1100h and (b) 1330h time-of-

daytime. 

(a) 

 
(b) 
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