
Design Guidelines for Apache Kafka Driven Data
Management and Distribution in Smart Cities

Theofanis P. Raptis∗, Claudio Cicconetti∗, Manolis Falelakis†, Tassos Kanellos‡, Tomás Pariente Lobo§
∗Institute of Informatics and Telematics, National Research Council, Pisa, Italy. Email: {name.surname}@iit.cnr.it

†Netcompany-Intrasoft, Athens, Greece. Email: manolis.falelakis@netcompany-intrasoft.com
‡ITML, Athens, Greece. Email: tkanellos@itml.gr

§Atos Spain, Madrid, Spain. Email: tomas.parientelobo@atos.net

Abstract—Smart city management is going through a remark-
able transition, in terms of quality and diversity of services
provided to the end-users. The stakeholders that deliver pervasive
applications are now able to address fundamental challenges in
the big data value chain, from data acquisition, data analysis
and processing, data storage and curation, and data visualisation
in real scenarios. Industry 4.0 is pushing this trend forward,
demanding for servitization of products and data, also for
the smart cities sector where humans, sensors and devices
are operating in strict collaboration. The data produced by
the ubiquitous devices must be processed quickly to allow the
implementation of reactive services such as situational awareness,
video surveillance and geo-localization, while always ensuring the
safety and privacy of involved citizens. This paper proposes a
modular architecture to (i) leverage innovative technologies for
data acquisition, management and distribution (such as Apache
Kafka and Apache NiFi), (ii) develop a multi-layer engineering
solution for revealing valuable and hidden societal knowledge in
smart cities environment, and (iii) tackle the main issues in tasks
involving complex data flows and provide general guidelines to
solve them. We derived some guidelines from an experimental
setting performed together with leading industrial technical
departments to accomplish an efficient system for monitoring
and servitization of smart city assets, with a scalable platform
that confirms its usefulness in numerous smart city use cases
with different needs.

Index Terms—Smart cities, Apache Kafka, Apache NiFi, Data
Management, Industry 4.0

I. INTRODUCTION

During the last 10–15 years, there has been an explosion
of enabling technologies for the realization of the Internet of
Things (IoT), including sensors, actuators, embedded devices
with computation capabilities, software platforms, and com-
munication protocols [1], [2]. This phenomenon was driven
initially by the huge potential foreseen in the automation and
digitization of industrial applications [3] and personal health
systems [4], but it benefited many other segments through
spillover effects. One of the most important outlets of the
growing IoT ecosystem has been the smart city market [5],
which has the potential to incorporate new technologies to
supply citizens, as well as city councils, with new services or
more efficient realizations of existing ones.

This work was funded by the European Union’s Horizon 2020 research and
innovation programme MARVEL under grant agreement No 957337. This
publication reflects the authors views only. The European Commission is not
responsible for any use that may be made of the information it contains.

In the early developments of smart cities, each service relied
on its own devices that could operate only with a dedicated
proprietary platform in a vertical manner. Typically, the plat-
forms offered Application Programming Interfaces (APIs) for
the consolidation of data across multiple services in the cloud,
e.g., for integrated user dashboards or big data analysis of his-
torical data. Indeed, many studies have focused on supporting
semantic interoperability of data only after they have been
safely stored in a common repository (currently referred to
as “data lake”) [6], [7]. However, such a compartmentalized
structure had limitations, especially in terms of redundant
deployed resources and inefficient management. Therefore, the
community has moved towards a horizontal approach, where
a common platform is able to communicate with all kinds of
devices; most often sensors in smart city applications [8].

This evolution is illustrated in Fig. 1, which also shows
the high-level architecture of the Data Management Platform
(DMP) defined the H2020 MARVEL project, which aspires
to define a comprehensive solution for multi-modal real-
time analytics applications. Such applications derive from the
analysis of the requirements and expectations in several use
cases of practical interest and high impact of the quality of
life of citizens, and they will be validated in three small-scale
field trials across Europe, i.e., in Malta, Serbia, and Italy [9].
In the project, we exploit the recent trend of breaking down
the computation elements of the system into three layers in a
hierarchy [10], [11]: the edge layer is closest to the sensing and
embedded computation devices, but it consists of devices with
modest capabilities in terms of computation, connectivity, and
storage; the fog layer has more powerful capabilities and we
treat it like a small private cloud, which is however under the
control of the end user; and, finally, the cloud layer is hosted
on public remote data centers, which have virtually infinite
capacity but incur a high latency and usage costs.

The H2020 MARVEL project covers all aspects, from
the development of new sensors, e.g., directional micro-
phone arrays, to the efficient training of Artificial Intelligence
(AI)/Machine Learning (ML) models on devices with limited
capabilities, to the ethics of data collection and analysis.
However, in this paper we focus only on the DMP, which
is the core of the project’s software architecture and the
main contribution of this paper, and consists of the following
components:
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Fig. 1: Transition of smart city data management and distribution systems from vertical silos to horizontal (cloud-based)
platforms and positioning of the H2020 MARVEL project’s proposition for multi-layer Edge to Fog to Cloud (E2F2C)
environments.

– DatAna, for the processing and transmission of structured
data produced by AI components to all the layers in the
inference pipeline;

– DFB (Data Fusion Bus), which is in charge of manag-
ing heterogeneous data across multiple components in the
cloud;

– StreamHandler, which processes, stores and delivers real-
time AV data at the fog layer toward the processing servers
and the Data corpus;

– HDD (Hierarchical Data DIstribution), which can optimize
the data management based on the available resources and
current workload;

Those core components work in close connection to the
Data corpus, which is the repository of the data collected from
the sensors, mainly consisting of microphones and cameras,
for visualization and augmentation, and the SmartViz, which
provides the Human Machine Interface (HMI) for visualization
and analysis.

The rest of the paper is structured as follows. First, we
introduce the background and foundations of the H2020 MAR-
VEL project, which are needed to understand the concepts
and terminology used in the rest of the paper, in Sec. II.
This section also includes an overview of the essential state
of the art on data/resource management in edge/fog systems.
In Sec. III we then illustrate all the main components of the
H2020 MARVEL project’s DMP. Handling Audio-Video (AV)
data was found to be challenging in particular, hence it is
discussed separately in Sec. IV. Preliminary results obtained
during the mid-project integration tests are reported in Sec. V,

Pilot#1

Pilot#2

Pilot#3

fog

cloud

edge

long-term storage, visualization, AI
model training, big data analysis

raw data management,
structured data aggregation,
AI model training/inference

multi-modal sensing,
anonymization, 

AI inference

Fig. 2: E2F2C view of the H2020 MARVEL project’s pilots.

while Sec. VI presents some useful design guidelines which
directly reflect our experience.

II. BACKGROUND

In this section we provide an overview of the aspects of the
H2020 MARVEL project that are relevant to the design and
implementation of the DMP, which is the main subject of this
work.

A layered view of the physical deployment of the project’s
pilots is illustrated in Fig. 2. The lowest layer is the edge,
which contains the sensors and embedded devices to perform
on-site operations. We have two types of sensors: microphone
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arrays, producing audio streams, and cameras, producing AV
streams. All the sensors are expected to operate continu-
ously during the service lifetime. The embedded devices, i.e.,
Raspberry Pis and NVIDIA Jetson boards, perform operations
directly at the edge, which include anonymization of the AV
streams and basic inference operations. The intermediate layer
is called the fog1, which includes more powerful computation
resources that are shared by multiple edge sites, e.g., work-
stations and rack-mountable servers with Graphics Processing
Units (GPUs), which are are suitable for not only managing
the different data streams but also performing more advanced
inference tasks, as well as training of AI models. Finally,
the cloud is hosted in an infrastructure provided by a project
partner and it is common for all the pilots. The cloud provides
long-term storage of data and all the services for HMI, i.e.,
visualization and real-time (on-demand) analysis.

In Fig. 2 we distinguish between raw data vs. structured
data:
– The raw data are the AV streams generated by the sensors,

irrespective of whether they have been anonymized or not.
Their formats and characteristics are heterogeneous because
they depend on the physical devices installed (e.g., may use
different codec or sample AV at different rates). In any case,
the throughput is generally high, especially for video, which
requires carefully provisioned bandwidth, long-term storage,
and configuration of the data distribution services.

– The structured data, instead, are data generated by the
analytics applications, i.e., the inference components. In the
project, have different data models for each AI component,
but all of them have been based on the fully Smart-
Data-Models (SDM)-compliant2 data models that DatAna is
producing. Furthermore, their throughput is generally much
lower than that of raw data.
A schematic of a typical multi-modal application in the

H2020 MARVEL project is illustrated in Fig. 3. We have
used “thick” arrows to represent the raw data flows, while
“thin” arrows refer to structured data flows, to reflect in a
pictorial manner their different bandwidth requirements. The
diagram is intended to provide the reader with a sketch of the
components that are involved in the deployment of a service,
which can differ in practice depending on the specific use
case and pilot. The services we support in the project include
surveillance applications (e.g., detecting anomalies in public
spaces), emotion recognition (with aerial images taken by
drones), road safety (e.g., monitoring junctions with mixed
cars and bike traffic).

A. Related work

The topic of efficient allocation of resources in E2F2C has
been extensively studied in the scientific literature (e.g., [12]).
The vast majority of the works propose highly simplified
mathematical models, which are then solved to maximize a

1We note that in the scientific literature and in the market press the terms
“edge” and “fog” do not have universally accepted meanings. Sometimes they
are even used interchangeably.

2https://smartdatamodels.org/

given objective function, but they do not linger on the practical
implementation of their solution using industry-grade tools. On
the other hand, in the H2020 MARVEL project our goal was
to realize a solution based on widely-used, reliable, and open
source software. Furthermore, some works have focused on the
specific aspect of efficient data distribution. In [13], the authors
have proposed Peer-to-Peer (P2P) as a means to distribute data
in a robust and decentralized manner among agents at the edge.
Such an approach only partially covers the needs of the H2020
MARVEL project, since, due to its use case requirements,
the H2020 MARVEL projectAV real-time streams cannot be
stored efficiently in a P2P overlay. An in-network storage
management is put forward in [14], to place both raw and
structured data on distributed resources using the Google File
System, which is however proprietary. Another perspective is
taken in [15], which builds on top of the distributed database
Apache Cassandra by adding geolocalization tags that help
distributing the load across edge/fog nodes; we have not
considered this feature since, at least in the project pilots, the
edge/fog nodes are all deployed in close proximity. Finally,
in [16], the authors distribute the execution of functions
following a Function as a Service (FaaS) approach, which is
adopted in production only in cloud systems, but has shown
some potential also for edge computing [17], even though
further research may be needed. The solutions mentioned can
be gradually incorporated in the DMP at a later stage of the
project, which is still ongoing with expected completion date
at the end of 2023.

More specifically, Apache Kafka has also been widely used
in the streaming applications domain. In [18], the authors
replicate Apache Kafka logs for various distributed data-driven
systems at LinkedIn, including source-of-truth data storage and
stream processing. In [19], the authors design a distributed
cluster processing model based on Apache Kafka data queues,
to optimize the inbound efficiency of seismic waveform data.
In [20], the authors extend Apache Kafka by building an in-
memory distributed complex event recognition engine built on
top of Apache Kafka streams. In [21], the authors design a
simulation platform enabling evaluations of future mobility
scenarios, based on an Apache Kafka architecture. In [22], the
authors break the streaming pipeline into two distinct phases
and evaluate percentile latencies for two different networks,
namely 40GbE and InfiniBand EDR (100Gbps), to determine
if a typical streaming application is network intensive enough
to benefit from a faster interconnect. Moreover, they explore
whether the volume of input data stream has any effect on
the latency characteristics of the streaming pipeline, and if
so, how does it compare for different stages in the streaming
pipeline and different network interconnections. In [23], the
authors propose a distributed framework for the application
of stream processing on heterogeneous environmental data,
which addresses the challenges of data heterogeneity from
heterogeneous systems and offers real-time processing of huge
environmental datasets through a publish/subscribe method
via a unified data pipeline with the application of Apache
Kafka for real-time analytics. In [24], the authors find that
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Fig. 3: Schematic of a typical multi-modal, i.e., audio + video, real-time analytics application in H2020 MARVEL project.
The mapping of components to the edge/fog/cloud layers is only indicative: in real applications this may depends on physical,
environmental, and administrative constraints.

filtering on large datasets is best done in a common up-
stream point instead of being pushed to, and repeated, in
downstream components. To demonstrate the advantages of
such an approach, they modify Apache Kafka to perform
limited native data transformation and filtering, relieving the
downstream Spark application from doing this. Their approach
outperforms four prevalent analytics pipeline architectures
with negligible overhead compared to standard Kafka. In the
next sections, we illustrate the high-level design and current
status of development of H2020 MARVEL project’s DMP.

III. DMP SOFTWARE ARCHITECTURE DESIGN

The main components of the DMP are introduced briefly
in Sec. I (see also Fig. 1). Below we provided an overview,
followed by component details in dedicated sub-sections.

DatAna is responsible for collecting the inference results
from all AI components from all layers through its instances
residing at each layer, transforming them into SDM-compliant
counterparts and then transferring them to higher layers in the
E2F2C continuum. The DatAna cloud layer thus aggregates
all transformed inference results and relays them to the DFB,
which also resides at the cloud. DFB persistently stores all
SDM-compliant inference results it receives, but also makes
them available in real time to SmartViz and Data Corpus. DFB
also exposes a REST API to SmartViz to allow it to access
all archived inference results in its ElasticSearch database.
In addition, the DFB receives user-generated inference result
verification messages from SmartViz and use this information
to update the corresponding inference results stored in its
database. HDD interacts exclusively with the DFB to receive
information on current Kafka topic partitioning and associated
performance metrics and to send updated, optimised Kafka
topic partitioning recommendations. In parallel, StreamHan-
dler receives information on active AV sources after requesting
it from a component called AV Registry via a REST call, and

it uses that information to connect to all active AV sources
and receive their AV data streams to segment them and store
them persistently. StreamHandler also exposes a REST API
that is accessed by SmartViz to request archived AV data
from specific sources and points in time. The Data Corpus
resides at the cloud and is subscribed to all DFB Kafka topics
where DatAna publishes SDM-compliant inference results to
receive them in real time and archive them internally to
make them available for further AI training purposes along
with the associated AV data it collects from StreamHandler.
The Data Corpus is also subscribed to the DFB Kafka topic
that is used by SmartViz to publish user-generated inference
result verifications to receive them in real time and update
the corresponding archived inference results accordingly. The
Data Corpus is also connected to StreamHandler, from which
it receives AV data as binary files that are a result of AV stream
segmentation.

A. DatAna

DatAna is a component distributed across all three E2F2C
layers, with a separate instance deployed at each infrastruc-
ture node. DatAna is complemented by an MQTT message
broker, which is also deployed at each infrastructure node,
alongside DatAna. Each instance of the MQTT message broker
is responsible for collecting structured data, i.e., inference
results, from the AI components residing on the same layer
as the respective MQTT instance. Specifically, AI components
publish their raw inference results to dedicated MQTT topics
in real time as they are being produced through the analysis of
the AV data streams they receive. The input inference results
of each AI component are formatted as JSON documents
according to a dedicated distinct data model that fits the
requirements of each AI component. The following are the
most notable fields in these data models:
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– AV source id. The id of the AV source that produced the
stream that was analysed to produce the inference result.

– Inference result id. A unique identifier for the inference
result.

– Timestamps. In case the inference result refers to an instant
in time a single timestamp is provided. In case the inference
result refers to a period in time, two timestamps are pro-
vided, corresponding to the start and end of the time period
of the result. All time information is absolute and following
the ISO 8601 UTC format.
Besides the above, the raw inference results contain other

fields that are specific to the needs of each AI component.
Each DatAna instance residing on the same infrastructure

node as an MQTT broker subscribes to the broker’s topics to
receive all incoming input AI inference results. Subsequently,
DatAna transforms the input inference results into SDM-
compliant counterparts. Three data models that belong in the
collection of smart data models of the SDM standard have
been identified to be relevant to H2020 MARVEL project,
which have been modified by adding additional fields to
account for the project’s needs:
– MediaEvent: to describe general AI inference results.
– Alert: to describe AI inference results that should be

perceived as alerts.
– Anomaly: to describe AI inference results that should be

perceived as detected anomalies.
DatAna selects autonomously the most appropriate data

model to perform the transformation, whose output is then
relayed to higher-level layers.

Specifically, the SDM-compliant inference results produced
by DatAna at the edge layer are relayed to DatAna at the fog
layer and the SDM-compliant inference results produced by
DatAna at the fog layer are relayed to DatAna at the cloud
layer. The DatAna instance at the cloud layer is responsible for
relaying the SDM-compliant inference results it collects from
all layers to the DFB by publishing them to the appropriate
DFB Kafka topics.

B. DFB

The DFB resides at the cloud and receives all SDM-
compliant inference results published by the DatAna cloud
instance and stores them persistently in its ElasticSearch
database. The DFB also exposes a REST API to SmartViz
to allow it to access all archived inference results in its
ElasticSearch database. The DFB receives user-gerenated ver-
ifications of inference results from SmartViz when they are
published to a dedicated DFB Kafka topic and uses them
to update the respective archived inference result entries ac-
cordingly. The DFB also accesses a REST API at the HDD
for dispatching the currently applied Kafka topic partition
information along with associated performance measurements
to it. Using the same REST API, the DFB can also receive
updated Kafka topic partition allocation that is recommended
by the HDD. SmartViz is subscribed to all DFB Kafka topics
where DatAna publishes SDM-compliant inference results

to receive them in real time and present them to the user.
SmartViz also allows users to verify the inference results they
are presented with. SmartViz transmits these user-generated
verifications to the DFB by publishing them to a dedicated
Kafka topic available at the DFB.

C. StreamHandler

StreamHandler resides at the fog and receives AV data
streams from all active AV sources (CCTV cameras, network-
enabled microphones, AV anonymization instances) via RTSP.
During initialisation, StreamHandler accesses the REST API
of the AVRegistry to discover the active AV sources and
their details. During operation, StreamHandler consumes the
AV RTSP streams and segments them according to a pre-
specified time intervals to generate binary documents, suitable
for persistent storage. StreamHandler archives the generated
AV data files and also exposes a REST API to accept requests
from SmartViz about the transmission of AV data from specific
AV sources (reference to AV Source id) and from specific
points in time. Upon such requests, StreamHandler retrieves
the necessary binary files, compiles a unified/edited version
of the stream that corresponds to the timeframe requested and
generates a link to the said binary file which is to be consumed
by SmartViz.

D. HDD

The HDD exposes a REST API to allow the reception of
the currently applied DFB Kafka topic partition information
along with associated performance measurements from the
DFB. The HDD uses this information as input to calculate an
optimised Kafka topic partition allocation and subsequently
makes it available to the DFB via its REST API. The exact
optimisation method that is implemented by the HDD can be
found in [25].

The DMP has been applied in 5 use cases defined for
the needs of the initial version of the H2020 MARVEL
projectIntegrated framework.

IV. AV DATA

In the context of the H2020 MARVEL projectframework
design activities, certain similarities and overlaps were iden-
tified between the functionalities of StreamHandler and those
of DFB and DatAna with regards to big data management.
However, following an in-depth analysis of the H2020 MAR-
VEL projectframework requirements that the DMP should
satisfy, a gap was identified that could not be covered by
the DFB and DatAna solutions. This gap was related to
the management of audio-visual data. More specifically, the
following requirements were established:
– Receive and efficiently archive live streams of audio-

visual binary data from all relevant H2020 MARVEL
projectsensors, devices and components during system op-
eration.

– The persistent storage of archived AV data should comply
with high data security standards and data privacy require-
ments.
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– Provide access to archived audiovisual binary data to the
H2020 MARVEL projectUI (SmartViz) by streaming re-
quested archived audiovisual data upon demand in order to
present them to the end-user and in association with relevant
inference results produced by H2020 MARVEL projectAI
components.

– Support the expansion of the data set of the Data Corpus
by relaying selected archived audiovisual data to it.
StreamHandler was found to be in a position to be able to

satisfy these requirements and fill the gap by extending its
supported data source types, its connectors and data storage
capabilities. This course of action was aligned with INTRA’s
strategic plan to expand the StreamHandler platform in the
direction of audiovisual data management for increased inter-
operability in order to address additional business cases and
reinforce its position in the big data management and smart
cities domains.

V. EVALUATION OF THE SETUP

In this section we summarize the results obtained during the
first system integration tests of H2020 MARVEL project.

A. DatAna

During the tests performed during the MVP, the perfor-
mance metrics of a single NiFi instance was measured. Table
I summarises the collected measurements for the specified
metrics.

TABLE I: Results of the measurements for DatAna component
Metric Value
Data loss rate 0
Service availability-failed request 100% availability
Data access restriction None
Data throughput 1.1 MB/s
Response time 47.1 ms
Number of cluster nodes 1

For a more in-depth analysis of performance metrics, there
is this Cloudera study [26], which reports how NiFi behaves
in terms of scalability and performance (data rates) using very
demanding workloads.

B. DFB

For DFB the following high-level performance indicators
were considered:
– Data Integrity: to confirm that advanced encryption mech-

anisms over end-to-end data transfer will guarantee data
integrity. Metric: Data loss rate.

– Availability: to verify that DFB resources are available and
discoverable. Metrics: Service availability-failed request,
data access restriction.

– Performance (for high volume, heterogeneous data
streams): to measure different performance metrics under
different execution conditions. Metrics: Data transfer la-
tency, data throughput, response time, number of cluster
nodes.

Table II summarises the collected measurements for the
specified metrics.

TABLE II: Results of the measurements for DFB component
Metric Value
Data loss rate 0
Service availability-failed request 100% availability
Data access restriction None
Data transfer latency 5 ms (200 MB/s load)
Data throughput 605 MB/s
Response time 5 ms (200 MB/s load)
Number of cluster nodes 3

C. StreamHandler

Preliminary testing has indicated that StreamHandler is
capable of processing at least 3 Full HD AV data streams
in parallel with no performance lag when deployed on an
infrastructure with 2 CPU cores allocated.

D. HDD

For the purposes of evaluating the efficiency of HDD,
we took into account the industrial best practices in the
related application sectors. We identified Kafka setup guide-
lines used by credible industrial service providers. For ex-
ample, Microsoft, recommends that it would be better to
constrain the existing partitions per broker (including repli-
cas) to a number not more than 1000. In another exam-
ple, Confluent recommends to set the number of partitions
per broker to at least 100 · B. Consequently, combining
the essence of these configuration recommendations, we ar-
rive at the following benchmark method, called MS-CNFL:
P = min

(
P ∈R [1... 1.000·Br ], P ∈R [1...100 ·B]

)
and b ∈R

[1...B], where ∈R denotes uniformly random selection. We
measure the system throughput, captured by the ultimate
number of partitions selected by each algorithm (our algo-
rithms being BroMin and BroMax of [25]), the replication
latency, captured the amount of time that is needed to process
each message, in the sense of time required for data to be
stored or retrieved, the numbers or costs of the application’s
infrastructure, captured by the number of brokers used in the
Apache Kafka cluster, the OS load metric via the open file
handles and the unavailability metric via the unavailability
time. We perform the measurements for variable number of
consumers. Indicatively, we display the performance in terms
of throughput (number of partitions) and replication latency,
in Fig. 4. We can see that HDD maintains equivalent numbers
of partitions (and therefore throughput), but, at the same time,
does not violate the latency constraint (like the benchmark is
doing).

VI. DESIGN GUIDELINES

In this Section, we report some useful guidelines which
reflect the experiences that we had when building our platform.

• Distil the data exchange requirements of the involved
components to consolidate the necessary I/O interfaces
as much as possible and consequently reduce integration
complexity.
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(a) Throughput. (b) Rep. latency.

Fig. 4: Results of the simulated measurements for HDD
component.

• Decouple as much as possible the direct data exchange
between pairs of individual component instances to re-
duce integration complexity, i.e., avoid the use of REST
APIs wherever possible and promote the use of pub/sub
distributed messaging systems.

• Implement open, industry-standard approaches for in-
creased interoperability, scalability and expandability.

• Align the data models used for handling and storing
the inference results with the SDM standard in order to
improve the visibility and acceptance of the envisioned
results.

• Achieve a versatile, yet consistent and coherent solution
that can support a multitude of different use cases and
scenarios and operate on different infrastructure configu-
rations. In our case, this is achieved through the design of
the DMP and the specification of an adaptive reference
“AI Inference Pipeline” architecture. The DMP is fully
scalable and interoperable as it can be adapted to incor-
porate virtually any number of edge and fog nodes, while
it can handle data emerging from any H2020 MARVEL
projectcomponent (e.g., anonymisation components, AI
components) at any layer of the E2F2C continuum.

• Handle multimodal raw (AV) and structured (inference
results) data by collecting from and distriburing among
multiple endpoints both in real time and asynchronusly
via persistent storage mechanisms.

• Maintain an up-to-date comprehensive documentation of
the specifications for all implemented I/O interfaces and
data models using version control. In our case, a GitLab
repository was used for this purpose.
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