
 1/23

Model-based Tools for

Pervasive Usability

Fabio Paternò

fabio.paterno@isti.cnr.it

 ISTI-CNR

Pisa, Italy

Abstract
This paper aims to provide a discussion of how model-based approaches and related
tools have been used to address important issues for obtaining usable interactive
software and the new challenges for this research area. The paper provides an analysis
of the logical descriptions that can be used in the design of interactive systems and
how they can be manipulated in order to obtain useful results. This type of approach
has recently raised further interest in the ubiquitous computing field for supporting the
design of multi-device interfaces. The new challenges currently considered are mainly
in the area of end-user development, ambient intelligence, and multimodal interfaces.

Keywords: Model-based approaches, Tools, Usability, Task Models, Multi-device
interfaces.

Introduction
Models can help in the design and evaluation of interactive applications even if such
approaches have sometimes been criticised by researchers who have considered them
too theoretical and a sort of useless complication. However, if we think of what we do
in our daily practice we can discover that we often use models. As soon as there is
some complex entity to manage, people try to identify the main aspects that should be
taken into account and their relations. For example, when we wake up in the morning
we often think about the main activities to perform, thus creating a model of the new
day. So, we build models to understand reality and to guide our interactions with it.
Such models can be represented with different levels of formality. Tools are important
in order to ease their development, analysis and use in the design process. In the
design of interactive systems the range of possible design choices is wide and has to
consider many aspects. Model-based approaches can be helpful to manage such
complexity.
The technological evolution underway has brought with it an ever increasing number
of users with a greater availability of interaction platforms, working in the most varied
environments. This tendency has raised further interest in model-based approaches.
Even researchers in user interface tools who have often been sceptical regarding such
approaches admit [MHP00] that they can be useful for developers, vendors and users

 2/23

in order to reason about user interface design solutions, especially when multi-device
applications are considered.

More generally, model-based approaches can provide useful support to address the
challenges raised by pervasive computing. Models can provide a structured
description of the relevant information, and then intelligent environments can render
the associated elements taking into account the actual context of use. Pervasive
usability means the ability of still supporting usability even when interactions can be
performed under the "anytime-anyhow-anywhere" paradigm. This means users are
able to seamlessly access information and services regardless of the device they are
using or their position, even when the system and/or the environment change
dynamically.
The goal of this paper is to review work done so far in the area of model-based
approaches and discuss the new challenges facing designers in this area. Particular
attention is devoted to concepts, methods and tools that involve the use of task models
in order to obtain usable interfaces. In the discussion, I use some results of my
research work, as well as those achieved by other groups, to exemplify and explain
the various approaches, though for the sake of brevity I cannot cite all of them. In the
last fifteen years various model-based approaches have been proposed. An overview
paper on model-based technologies was written in 1996 by Szekely [S96]. It is
interesting to discuss how the field has evolved after some years and see how the
challenges (task-centred interfaces, multi-platform support, interface tailoring, multi-
modal interfaces) that were identified at that time have been addressed and what the
new challenges are.

In the paper I first recall some basic concepts in this type of approach and some of the
previous work in the area. Then, I focus on discussing current work in this area that
centres on how model-based approaches can address the design of multi-device
interfaces. The final part is dedicated to discussing some challenges for the coming
years, such as their use for supporting ambient intelligence or the need for new
evolutions in order to become an integral part of end user development.

Basic Concepts
As often happens, the solution to a complex problem, such as the design of an
interactive system, can be based on a small set of clear basic concepts. In order to
address such issues it is important to consider the various viewpoints that it is possible
to have on an interactive system. Such viewpoints differ for the abstraction levels (to
what extent the details are considered) and the focus (whether the task or the user
interface is considered). The model-based community has long discussed such
possible viewpoints (see for example [S96]). Such abstraction levels are:

• Task and object model, at this level, the logical activities that need to be
performed in order to reach the users’ goals are considered. Often they are
represented hierarchically along with indications of the temporal relations
among them and their associated attributes. The objects that have to be
manipulated in order to perform tasks can be identified as well.

 3/23

• Abstract user interface, in this case the focus shifts to the user interface
supporting task performance. Only the logical structure is considered, in a
modality-independent manner, thereby avoiding low-level details. Interaction
objects are described in terms of their semantics through interactors [PL94].
Thus, its is possible to indicate, for example, that at a given point there is a
need for a selection object without indicating whether the selection is
performed graphically or vocally or through a gesture or some other modality.

• Concrete user interface, at this point each abstract interactor is replaced with a
concrete interaction object that depends on the type of platform and media
available and has a number of attributes that define more concretely how it
should be perceived by the user.

• Final user interface, at this level the concrete interface is translated into an
interface defined by a specific software environment (e.g. XHTML, Java, …).

To better understand such abstraction levels we can consider an example of a task:
making a hotel reservation. This task can be decomposed into selecting arrival and
departure dates and other subtasks. At the abstract user interface level we need to
identify the interaction objects needed to support such tasks. For example, for easily
specifying arrival and departure days we need selection interaction objects. When we
move on to the concrete user interface, we need to consider the specific interaction
objects supported. So, in a desktop interface, selection can be supported by a
graphical list object. This choice is more effective than others because the list
supports a single selection from a potentially long list of elements. The final user
interface is the result of these choices and others involving attributes such as the type
and size of the font, the colours, and decoration images that, for example, can show
the list in the form of a calendar.

Many transformations are possible among these four levels for each interaction
platform considered: from higher level descriptions to more concrete ones or vice
versa or between the same level of abstraction but for different type of platforms or
even any combination of them. Consequently, a wide variety of situations can be
addressed. More generally, the possibility of linking aspects related to user interface
elements to more semantic aspects opens up the possibility of intelligent tools that can
help in the design, evaluation and run-time execution.

 4/23

Figure 1: Models and Related Tools in the User Interface Development Process.

Figure 1 shows the models considered and how tools can exploit them in the
development process. There are tools that help in developing the models, others that
aim to analyse their content and others that use them in order to generate the user
interface. For this purpose these latter support set of design criteria and can implement
transformations through different abstraction levels. Other possibilities are offered by
tools that take the user interface implementation and reconstruct the corresponding
models that can then be modified or analysed through the other tools.

Model-based Approaches in Interactive Systems
The purpose of model-based design is to identify high-level models which allow
designers to specify and analyse interactive software applications from a more
semantic-oriented level rather than starting immediately to address the
implementation level. This allows them to concentrate on more important aspects
without being immediately confused by many implementation details and then to have
tools which update the implementation in order to be consistent with high-level
choices. Thus, by using models which capture semantically meaningful aspects,
designers can more easily manage the increasing complexity of interactive

Models

Task & Object
Models

Abstract UI

Concrete UI

Context

Designer

Modelling
Tools Analysis

Tools

Development
Tools

User Interface

Context of use

Reverse
Engineering
Tools

Design
criteria

Transformations

 5/23

applications and analyse them both during their development and when they have to
be modified.

The first generation of model-based approaches used conceptual descriptions between
the abstract and the concrete user interface levels. One of the first works in this area
was the User Interface Development Environment (UIDE) [FS94] developed by Jim
Foley’s group at the GVU Center of Georgia Tech. In this environment it was
possible to specify the pre- and post-conditions related to each interaction object of
the user interface. Pre-conditions have to be satisfied in order to make the interaction
object reactive whereas post-conditions indicate modifications of the state of the user
interface which have to be performed after a user interaction with the related object.
Humanoid [SLN93] provided a declarative modelling language consisting of five
independent parts: the application semantics, the presentation, the behaviour, the
dialogue sequencing, and the action side effects. One of its purposes was to overcome
one limitation of traditional tools for user interface development: lack of support for
exploration of new design that requires undoing portions of the existing design and
adding new code. The reason for this limitation was that such tools do not have a
notion of what is specific to a design as this information is embedded in the code.
In the second generation of model-based approaches there was a general agreement
that task models are important models in user interface design and all model-based
proposals include some sort of task models. A task-driven approach was supported by
Adept [WJKCM93], developed by Wilson, Johnson, Markopoulos et al.. In their
proposal they address the design of a task model, an abstract architectural model, and
a related implementation. This was one of the first research prototypes aiming to use
task models to support user interface development. However, the set of temporal
operators among tasks considered and the rules for creating relationships within the
levels considered have then been discussed and expanded in other methods and tools.
Trident [BHLV95] used an Activity Chaining Graph to specify the information flow
between the application domain functions and an entity-relationship diagram for the
information modelling part of the functional requirements. The MOBI-D (Model
Based Interface Designer) [PE99] approach developed by Angel Puerta and his group
at Stanford University is a model-based interface development environment for
single-user interfaces that enables designers and developers to interactively create
user interfaces by designing interface models. The environment integrates model-
editing tools, task elicitation tools [TMP98], an intelligent design assistant and
interface building tools.

There are other types of models that can provide support for the design of an
interactive application even if they have different main goals. On the one hand, in the
computer science area, we can find more traditional object-oriented modelling
techniques. The most successful has been the Unified Modelling Language (UML)
[BRJ99]. They share similar purposes with task-oriented approaches. In both cases
there is a description of both activities and objects. The main difference is in the focus
and the notations used to represent the relevant concepts. Task-based approaches first
identify activities and then the objects that they have to manipulate. Object-oriented
methods follow an inverse process as they mainly focus on modelling the objects
composing the system. Consequently, task-based approaches are more suitable to
design user-oriented interactive applications because in this way the main focus is on
effectively and efficiently supporting users’ activities (one of the most important basic
usability principle is “focus on the user and their tasks”) whereas object-oriented

 6/23

techniques have been more successful at engineering the software implementation
level.

On the other hand, in the cognitive science field, various types of cognitive models
have been proposed in the literature. In cognitive architectures there is an integrated
description of how human-cognitive mechanisms interact with each other. This makes
their simulation by automatic tools possible. Examples of cognitive architectures are
ICS (Interacting Cognitive Subsystems) [BM95] or EPIC [K96].

Task Modelling
Of the relevant models in the human-computer interaction field, task models play an
important role because they represent the logical activities that should support users in
reaching their goals. Knowing the tasks necessary to goal attainment is fundamental
to the design process. The need for modelling is most acutely felt when the design
aims to support system implementation as well. If we gave developers only informal
representations (such as scenarios or paper mock-ups), they would have to make
many design decisions on their own, likely without the necessary background, to
obtain a complete interactive system. Task models represent the intersection between
user interface design and more systematic approaches by providing designers with a
means of representing and manipulating an abstraction of activities that should be
performed to reach user goals.
It is important to distinguish between the task analysis and the task modelling phases.
The purpose of task analysis is to identify what the relevant tasks are. This
understanding not only requires a strong end user involvement but must also take into
account how activities are performed currently. The task modelling phase occurs after
the task analysis phase. The purpose of task modelling is to build a model which
describes precisely the relationships among the various tasks identified. These
relationships can be of various types, such as temporal and semantic relationships.
In order to be meaningful, even the task model of a new application should be
developed through an interdisciplinary collaborative effort involving the various
relevant viewpoints. By drawing on the various fields of competence we can obtain
user interfaces that can effectively support the desired activities. This means that the
user task model (how users think that the activities should be performed) shows a
close correspondence to the system task model (how the application assumes that
activities are performed).
There are many reasons for developing task models. In some cases the task model of
an existing system is created in order to better understand the underlying design and
analyse its potential limitations and how to overcome them. In other cases designers
create the task model of a new application yet to be developed. In this case, the
purpose is to indicate how activities should be performed in order to obtain a new,
usable system that is supported by some new technology.
Task models can be represented at various abstraction levels. When designers want to
specify only requirements regarding how activities should be performed, they
consider only the main high-level tasks. On the other hand, when designers aim to
provide precise design indications then the activities are represented at a small
granularity, thus including aspects related to the dialogue model of a user interface
(which defines how system and user actions can be sequenced).
The subject of a task model can be either an entire application or one of its parts. The
application can be either a complete, running interactive system or a prototype under
development. The larger the set of functionalities considered, the more difficult the

 7/23

modelling work. Tools such as CTTE (publicly available at
http://giove.isti.cnr.it/ctte.html) open up the possibility of modelling entire
applications, but in the majority of cases what designers wish to do is to model some
sub-sets in order to analyse them, and to identify potential design options and better
solutions.
Task models can be used for many types of applications: there are applications that
are clearly goal-oriented and so the tasks are clearly structured, other applications
support a wide range of options open at any time, with the continuous possibility for
the users to freely decide what to do and how to do it, in this case the task model
should not be particularly structured in order to allow such possibilities.

Discussion of task modelling approaches
It can be useful to consider some of the most common criticisms of task modelling
approaches in order to better understand their possibilities. Some of the most common
issues (in italics) are cited and discussed in the following.

The benefits of adopting task modelling do not justify the extra time required by their
development.
Designers have to think about the tasks to support and how the interface should
actually support them. In some cases this is just a mental exercise, in other cases it is
explicitly expressed through a notation for task modelling. The choice heavily
depends on the size of the project and the application domain. It is clear that if a
designer has to develop a small Web site, then the modelling is mainly a mental
exercise and there is no particular need to express it through a notation and a tool.
Vice versa, if the goal is to develop a large application with many people involved or
the application design has to be periodically revised or the application domain is a
safety-critical system, then there is a strong need for clarifying the design choices and
documenting them through explicit task modelling. One obstacle to the explicit
adoption of task modelling has been the lack of environments that facilitate this
process. Task modelling is a useful exercise because it can stimulate discussion of
design solutions among the different people involved (designers, developers,
managers, end users and so on). Moreover, task models provide semantic information
that can be useful for obtaining more effective context-dependent interfaces than other
approaches.

Task models are not applicable to creative tasks. They best support functionality
where the user wants to achieve a certain goal through tasks whose relations can be
modelled. Activities that do not directly "lead anywhere” may be hard to describe.
Task models allow designers to describe activities required to reach users’ goals. The
structure of the model should reflect the structure of the activities that designers want
to enable. There are applications that are clearly goal-oriented and so the tasks are
structured in-depth, there are other applications where people prefer to have a wide
range of options at anytime and freely decide what to do and how to do it; in this case
the task model should not be structured at all in order to allow for such possibilities.

If the task hierarchy is implemented directly to the interface then every branch of this
hierarchy is a mode.
Hierarchical task models do not imply modes. The modes are generated by some type
of temporal operators among tasks. So, for example, if tasks are concurrent, then there
is no mode at all even with hierarchical tasks. A high level task is decomposed into a

 8/23

number of lower level ones that represent different options or different tasks at the
same level that have to be performed to accomplish the higher level task. When there
are multiple hierarchies, then the temporal operators are used to describe their mutual
relations. Some temporal operators can lead to modal dialogues, others to completely
free and unstructured behaviours.

Some designers prefer noun-verb style interaction over verb-noun style interaction.
Task-based approaches lead to verb-noun style interfaces.
The distinction between noun-verb styles versus verb-noun styles implies two
different ways to accomplish tasks. In one case users first select a user interface object
and then indicate what to do with it, in the other case users first select the activity that
they aim to perform and then indicate what object it has to be applied to. So, task
models can be applied equally to both interaction paradigms.

How Task Models Can Be Represented
Many proposals have been put forward to represent task models. Hierarchical task
analysis [AD67] has a long history and is still cited and practiced, even more often
than some more recent approaches. The concept of hierarchical decomposition of the
activities to describe has shown to be successful because it allows designers to
consider the various possible abstraction levels while still maintaining a clear
indication of the relationships among them. Such hierarchical structure can be
organised and presented in different ways (see Figure 1): GTA [WV98] expands it
from left to right whereas the others expand it from top to down. Some of them allow
only one temporal operator among the subtasks whereas others allow the possibility of
using various operators among different subtasks. ConcurTaskTrees (CTT) [P99] also
uses icons to visually present how the task performance is allocated. Some notations
associate each node in the hierarchical structure with a task whereas others associate
the node with a temporal operators and the leaves are associated with tasks.

Figure 2: Graphical notations for task modelling.

More generally, notations for task models can vary according to various dimensions:

• syntax (textual vs graphical), there are notations that are mainly textual, such
as UAN where there is a textual composition of tasks enhanced with tables

 9/23

associated with the basic tasks. GOMS [JK99] is mainly textual.
ConcurTaskTrees and GTA, are mainly graphical representations aimed at
better highlighting the hierarchical structure.

• set of operators for task composition, this is a point where there are substantial
differences among the proposed notations. While GOMS supports only
sequential tasks (with the exception of CPM-GOMS that also supports parallel
tasks through the use of PERT-charts), UAN [HG92] and CTT provide a much
wider set of temporal relationships. This allows designers to describe more
flexible ways to perform tasks.

• level of formality, the definition of a notation can be made in various manners.
A formal definition can require time and be difficult to analyse; its advantage
is that it provides precise meaning to its elements and how they can be
composed. In some cases notations have been proposed aiming to provide a
more intuitive representation of the concepts considered, in other cases more
formal definitions have been proposed.

How Tools can Support the Development of Task Models
Often it is difficult to create a model from scratch. To overcome this problem various
approaches have been explored. CRITIQUE [HJK99] is a tool that aims to create
KLM/GOMS models from the analysis of logs of user interactions with graphical
interfaces implemented with a research tool. The model is created following two types
of rules: the types of KLM operators are identified according to the type of event, and
new levels in the hierarchical structure are built when users begin working with a new
object or when they change the input to the current object (for example, switching
from clicking to typing in a text box). In this approach the limitation is that the task
model only reflects the past use of the system and not other potential uses. These rules
for building GOMS models including mental operators have then been used in another
tool [JPSK04] that analyzes logs of interactions with Web pages. The authors reported
that this approach was tested with two users (one was an author) and the models
obtained were more accurate than previously published models.
U-Tel [TMP98] analyses textual descriptions of the activities to support and then
automatically associates tasks with verbs and objects with nouns. CTTE provides the
possibility of loading an informal textual description of a scenario or a use case and
interactively selecting the information of interest for the modelling work. In this way,
the designer can first identify tasks, then create a logical hierarchical structure and
finally complete the task model.
The developers of ISODE [PTV01] have considered the success of UML and provide
some support to import Use Cases created by Rational Rose in their tool for task
modelling. This environment also includes TAMOT a tool for modelling tasks
specified with the DIANE+ notation.

Task Models Analysis
The structure and the information of a task model can contain useful information for
designers. Their analysis can be supported by tools in various manners, such as
metrics evaluation and interactive simulation. CTTE supports the identification of a
number of metrics for the analysis of a task model. This can be useful when designers
want to compare how people work in the current system and how they could work in a
new envisioned system or are interested in comparing the implications at task level of
two alternative designs. The comparison is performed in terms of number of tasks,
number of basic tasks (the tasks that are no longer decomposed), allocation of tasks,

 10/23

number of instances of temporal operators, structure of the task models (number of
levels, maximum number of sibling tasks). This information can also be given for
single task models in order to analyse them. By comparing this type of information it
is possible to deduce some general feature of a solution with respect to another one.
For example, a higher number of application tasks and a lower number of user tasks
imply that there is a strong shift towards allocating task performance to the system, or
a higher number of sequential operators implies that the solution supports a higher
number of modes in its dialogues with the user. In Euterpe [WV98] designers can
specify constraints and heuristics. Constraints apply to every specification and should
ideally have zero results. Heuristics can be used to analyse a specification, to find
inconsistencies or problems. In this context, examples of heuristics that can be queried
on the specification are: what tasks involve a certain role, what tasks occur more than
a certain number of times, what tasks have more than a certain number of subtasks,
what tasks have more than a certain number of levels.

A simulator for task models can be useful to better analyse the dynamic behaviour of
task models, including those for cooperative applications. This feature is particularly
meaningful when the notation used to represent the model allows the specification of
many temporal relationships among tasks in addition to sequential tasks (such as
disabling tasks, concurrent tasks, suspending tasks, and so on). This is a support that
only a few tools provide (see for example VTMB [BS99] and CTTE). Also in the case
of tools for UML this is a feature usually missing. When analysing an existent
application or designing a new one it can be rather difficult for the designer to
understand the dynamic behaviour resulting from the temporal relationships specified
in the task model. The reason is that, especially for real applications, the number of
ways in which the application can evolve is high and it is difficult to mentally
remember the various temporal constraints among tasks and their possible effects. It
becomes important to support a what-if analysis aiming at identifying what tasks are
logically enabled if one specific task is performed. In interactive simulators the basic
idea is that at any time they show the list of enabled tasks, according to the constraints
specified in the task model. At any time, it is possible to go back through the
performance of the tasks which means that the effect of the performance of the last
task are undone and the list of enabled tasks becomes the same as that previous to the
performance of the last task. At this point, the user can choose to go further backward
in the task sequence or forward, either through the same path or a different one.

In summary, various solutions are possible for analysis tools based on task modelling.
CTTE represents a useful contribution to understanding the possibilities in terms of
the analyses that can be performed. We have seen that CTTE is also able to compare
two models with respect to a set of metrics. Euterpe also supports the calculation of
some metrics to analyse a specification, and help find inconsistencies or problems.
The ability to predict task performance is usually supported by tools for GOMS such
as QDGOMS [BSD96]. Overall, one important feature is the possibility of
interactively simulating the task model’s dynamic behaviour.

 11/23

Current Issues in Model-based Approaches
Recent years have seen the ever-increasing introduction of new types of interactive
devices. A wide variety of new interactive platforms are offered on the mass market.
A platform is a class of devices that share the same characteristics, especially in terms
of interaction resources. They range from small devices such as interactive watches to
very large flat displays. Examples of platforms are the desktop, the PDA, the mobile
phone. The availability of such platforms has forced designers to strive to make
applications run on a wide spectrum of platforms in order to enable users to
seamlessly access information and services regardless of the device they are using and
even when the system or the environment changes dynamically. If, on the one hand,
this resulted in a dramatic improvement for the activities of users, on the other hand it
has radically changed the nature of many interactive applications, converting them to
nomadic applications, namely applications supporting user access in various contexts
through different interactive devices. Thus, in order to guarantee a high level of user
satisfaction it is necessary that the applications should be able to adapt their user
interfaces to the different context of uses, in particular to the different devices used to
access their functionality. This gives rise to the fundamental issue of how to assist
software designers and developers in the development of interactive software systems
able to adapt to different targets while preserving usability.

Currently the main issue addressed in model-based design is how to support design of
multi-device interfaces. The tools addressing it can be considered the third generation
of model-based tools. In this area we can identify three main topics: authoring
environments that support editing of models and then transformations into the
corresponding user interface implementations, tools that support reverse engineering
of user interfaces in order to obtain the corresponding models, and XML languages
for the various models that ease the manipulation through, even different, tools.

Authoring Environments for Model-based Design
MOBI-D is a particularly comprehensive tool because it provides a set of model
editors (task, domain, presentation, user, and dialog) to create relations between
abstract and concrete elements, and a layout tool that can be reconfigured to reflect
the decisions made at previous stages in the design process. Designers can then
specify various parameters to define how the information in the models can be used to
design the user interface. This enables designers to tailor general design criteria to the
specific application. It supports the development of desktop graphical interfaces and it
was one of the best tools of the second generation.
As mentioned before, the main issue underlying the third generation of model-based
tools is the design of multi-device interfaces. In current practise the design of multi-
platform applications is often obtained through the development of several versions of
the same applications, one for each platform considered. Then, such versions can at
most exchange data. This solution with no tool support is rather limited, because it
implies high implementation and maintenance costs. Thus, there is a need for
authoring environments able to support the development of multi-device interfaces by
providing design suggestions taking into account the specific features of the devices at
hand.
LiquidUI is an authoring environment whose main goal is to reduce the time to
develop user interfaces for multiple devices. It is based on the User Interface Markup
Language (UIML), a declarative language that then can be transformed in Java,
HTML, and WML through specific rendering software. A UIML program, with its

 12/23

generic vocabulary, is specific to a family of devices (such as the desktop family, the
PDA family, the WAP family). There is a transformation algorithm for each family of
devices. For example, using a generic vocabulary for desktop applications, the
developer can write a program in UIML once and have it rendered for Java or HTML.
TERESA [MPS04] is intended to provide a complete semi-automatic environment
supporting a number of transformations useful for designers to build and analyse their
design at different abstraction levels, including the task level, and consequently
generate the concrete user interface for a specific type of platform. Currently, the tool
supports user interface implementations in XHTML, XHTML mobile device, and
VoiceXML [BP03] and a version for multimodal user interfaces in X+V is under
development. The tool is able to support different level of automations ranging from
completely automatic solutions to highly interactive solutions where designers can
tailor or even radically change the solutions proposed by the tool. The last version of
the tool supports different entry-points, so designers can start with a high-level task
models but they can also start with the abstract user interface level in cases where
only a part of the related design process needs to be supported. With the TERESA
tool, at each abstraction level the designer is in the position of modifying the
representations while the tool keeps maintaining forward and backward the
relationships with the other levels thanks to a number of automatic features that have
been implemented (e.g. the possibility of links between abstract interaction objects
and the corresponding tasks in the task model so that designers can immediately
identify their relations). This is useful for designers to maintain a unique overall
picture of the system, with an increased consistence among the user interfaces
generated for the different devices and consequent improved usability for end-users.

An evaluation was conducted at the Motorola Italy software development centre
[CFMRB03] with an early version of the TERESA tool. The experiment consisted in
developing a prototype version of an e-Agenda application running on both desktop
and mobile phone. Results showed similar total times for the traditional and TERESA
approaches, with different distributions over the development phases and between
time required by the first and the final version. The TERESA-supported method offers
a good support to fast prototyping, producing a first version of the interface in a
significantly shorter time. On the other side the time required to modify it results
increased. The use of the tool almost doubled required time at re-design stage, while
at development stage the results show a dramatically improved prototyping
performance, reducing needed time to half. This leaves a margin for further
improvement, since the design time required by TERESA approach is expected to
decrease as the subjects become more familiar with model-based techniques and
notations. Moreover the reported slight total time increase of using TERESA with
respect to using traditional approaches (on average, it was half an hour) is acceptable
since it involves a trade-off with design overall quality: many subjects appreciated the
benefits of a formal process supporting the individuation of the most suitable
interaction techniques. For example, designers reported satisfaction about how the
tool supported the realization of a coherent page layout and identification of links
between pages. The evaluators noticed and appreciated the improved structure of the
presentations and more consistent look of the pages resulting from the model-based
approach. This is also coupled with an increased consistence between the desktop and
the mobile version, pointed out by almost all the evaluators. After this evaluation a
number of features in TERESA have been improved so that future evaluation should
provide even better results.

 13/23

Reverse Engineering
Various approaches can be considered when designers want to start with an existing
system and obtain a conceptual description of its design in order to analyse it or
derive the user interface for another platform.

Vaquita [BV02] addresses Web applications and aims at identifying presentation
models for single pages, which mainly means the abstract description of the
interaction techniques used in the implementation. Vaquita reverse engineers any
HTML page into a presentation model expressed in XIML [PE02]. The Web page is
firstly cleaned in order to remove unused tags and obtain a standard XML code
format. Vaquita extracts the DOM model, detects objects included in this DOM model
(e.g., images, banners, controls, text), structures them into relevant categories,
translates them into different levels of abstractions (Abstract Interaction Objects,
Logical Windows, and Presentation Units). According to the designer's options (e.g.,
object inclusion or exclusion, questions, information selection), Vaquita outputs a
presentation model specified in XIML. This step completes the reverse engineering
part. The XIML file then can serve as input to generate user interface code for a
different target computing platform. To this end, Vaquita aims to support a number of
transformations depending on target platforms. These transformations are motivated
by two different aims: either the reduction of the size of the original UI, as the main
objective of reengineering Web pages is to render them on mobile platforms, or to
replace an object by another, because the current object does not exist on the target
platform. The authors of the Vaquita tool have decided to develop a new version. The
new tool (ReversiXML) produces a presentation model in UsiXML. In addition, the
new tool should support on-the-fly reengineering. Instead of a static, off-line
approach, reverse engineering of HTML pages may be done dynamically at the server
level.

Another tool for reverse engineering is WebRevenge [PP03]. The purpose of this tool
is to automatically reconstruct the task model of the Web application considered. The
tool (see Figure 3) receives as input the Web pages of the site. The site can be either
in the local system or remote. The tool is able to automatically identify the pages
composing it. At the beginning the user is required to indicate which page is the home
page of the site to analyse. It first checks that the HTML code is well-formed and, if
not, it corrects it and then creates the corresponding DOM which describes the
structure of the page (all the elements contained in it). Then, following a set of rules it
creates the task model associated with each page represented through the
ConcurTaskTrees notation. The final part of the underlying algorithm is dedicated to
identifying higher-level tasks that involve multiple pages. Thus, the resulting model is
also able to describe how the current design assumes that activities should be
performed even when they require interactions through multiple pages of the site. The
resulting task model can be saved either in XML format or in a format that can still be
subjected to modifications or adjustments by the designer using tools publicly
available for this purpose.

One limitation of such tools that should be solved in the near future is the lack of
support for the reverse engineering of Web sites implemented using dynamic pages.

 14/23

Figure 3. The architecture of WebRevEnge.

More generally, as Figure 4 shows various approaches can be considered when
designers want to start with an existing system and derive the user interface for
another platform. Transcoding mainly operates on the syntactical level and it is unable
to change the design choices. A real redesign can be obtained only if the supporting
environment is able to understand the logical aspects associated with the current user
interface elements. The more the environment is able to go up in terms of
corresponding abstraction levels, the more substantial the design choices that can be
performed taking into account the characteristics of the new target device. This means
that if the run-time environment is able to identify the concrete object associated with
the current user interface element then it is possible to represent that specific object in
a way tailored for the new device whereas if it is able to identify the corresponding
abstract object then the environment can change the choice of the interaction
technique to use for implementing it depending on the characteristics of the new
device. However, if it is also able to understand the corresponding task then the run-
time environment can reason at this level and make a wider set of decisions: the task
at hand can still be performed but with different modalities (different user interface
elements or domain elements or even a different task structure with different subtasks
associated with the same main task) or it can decide that in the new context of use the
original task has no longer importance and new tasks should be enabled and
supported.

Figure 4. Approaches to changing the design for a different platform.

Site

Task
Model

HTML
Page

Create
DOM

Apply Trasformation
Rules

Task
Model

HTML
Page

Create
DOM

Apply Trasformation
Rules

Task
Model

HTML
Page

Create
DOM

Apply Trasformation
Rules

Task
Model

Composition
Trasformation

Rules

Tasks and Objects

Abstract UI

Concrete UI

Final UI

Tasks and Objects

Abstract UI

Concrete UI

Final UI
Transcoding

Redesign
Tasks and Objects

Abstract UI

Concrete UI

Final UI

Tasks and Objects

Abstract UI

Concrete UI

Final UI
Transcoding

Redesign

 15/23

XML-based languages for model-based design of multi-device interfaces
XML-based languages can be useful for representing the relevant concepts and ease
their automatic manipulation. They can be structured through a set of simple and
clean constructs. This type of approach supports the possibility of extending the
language. Various tools are available to support manipulation of XML-based
languages. In addition, they ease the exchange of information among different tools.
For example, this allows designers to develop a model with one tool, analyse its
content with another one and generate final interfaces with still another one if such
tools share the support for the same XML language. Examples of projects that have
addressed these issues are: The User Interface Markup Language (UIML)
(http://www.uiml.org/) [APB99] is an XML-compliant language that allows a
declarative description of a user interface in a device-independent manner. This has
been developed mainly by Harmonia and Virginia Tech. However, their tools do not
support the task level. How to connect task models in CTT with UIML is currently
under investigation [AP03].

The eXtensible Interface Markup Language (XIML) (http://www.ximl.org/) [PE02] is
a XML specification language for multiple models. This has been developed by a
forum headed by RedWhale software. Tool support is not currently publicly available.
The XIML goals are: support to interface design, manipulation, organization, and
evaluation; possibility of relating abstract interfaces concepts to concrete
implementation objects; possibility of exploiting the information in XIML
specifications through knowledge-based systems. XIML separates the user interface
specification and its rendering. A single specification can be rendered in different
devices. In this transformation the implementation user interface elements are defined.
In this process it takes into account aspects such as screen dimensions, presence or
absence of other information, user preferences and so on. The XIML basic document
structure describes the interface in terms of its components, their relations and
attributes. Each component is composed of one ore more elements. There are five
fundamental types of components: tasks, domain elements, users, presentation
components, dialogue components. XIML supports manipulation of concrete and
abstract elements, clear separation between design and implementation, a knowledge
that can be exploited at run-time, and independence of the operating system and
development environment. However, the support to the manipulation of abstract
elements is still quite limited. The authors of XIML explicitly state that the relations
among UI models matter just as much as the models themselves, if not more. Some of
the mappings between models are well-understood, for example using the domain
model to select presentation elements, or using the task model to structure the
dialogue model. XIML aims to leverage this understanding to provide support for user
interface designers. The basic idea is to use task model, domain model, user model
and style guidelines to generate automatically presentation and dialogue model. The
goal of the SEESCOA project (Software Engineering for Embedded Systems using a
Component-Oriented Approach) [LC01] is to create a framework that will support run
time migratable UIs that are independent of the target platform. The approach to the
problem is component-based. In this component-based approach there are components
that export XML descriptions that can be rendered by other components.

TERESA XML is composed of a set of XML-based languages. There is one language
for the task level, one language for the abstract user interface level and one language

 16/23

for each platform considered at the concrete interface level. The task model is
described by the CTT notation, which was the first language for task models specified
by XML. The concrete interface languages share the same structure of the abstract
interface language but add aspects which are specific to the platform associated. The
main transformations supported in TERESA are performed in terms of the XML-
based representations that are supported. From the XML specification of a CTT task
model it is possible to obtain the set of tasks which are enabled over the same period
of time according to the constraints indicated in the model (enabled task sets). Such
sets, depending on the designer’s application of a number of heuristics supported by
the tool, are grouped into a number of presentation sets and related transitions. Both
the XML task model and Presentation Sets specifications are the input for the
transformation generating the associated abstract user interface. The specification of
the abstract user interface, in terms of both its static structure (the “presentation” part)
and dynamic behaviour (the “dialogue” part), is saved for further analyses and
transformations from abstract user interface to concrete interface for the specific
interaction platform selected. A number of parameters related to the customisation of
the concrete user interface are made available to the designer. Through the last
transformation the tool automatically generates the final user interface.

A recent proposal for an XML-based language for multi-device interfaces is USIXML
[LVMBL04]. The language has been formally described as UML Class Diagrams.
XML Schema are used instead of DTDs because they are more powerful and
structured. The principle of separation of concerns is respected in USIXML because
any model is self-contained and refers to other elements on demand. The task model
is a full CTT model expanded with some task attributes, and with external reference
to the context of use. The domain model is a full class diagram with classes,
attributes, methods, and relationships (predefined and custom). It also encompasses a
description of objects (i.e. instances of classes). The abstract interface level is largely
expanded through Allen relationships and a systematic description in terms of actions
and elements. The authors introduced a context model composed of a user model, a
platform model, and an environment model. The platform model is a subset of CC/PP
to preserve W3C compatibility

New Challenges for Model-based Tools
There are three main challenges for model-based approaches in the coming years:
natural development, ambient intelligence, and multi-modal interfaces.

Natural Development
One fundamental challenge for the coming years is to develop environments that
allow people without particular background in programming to develop their own
applications. The increasing interactive capabilities of new devices have created the
potential to overcome the traditional separation between end users and software
developers. Over the next few years we will be moving from easy-to-use (which has
yet to be completely achieved) to easy-to-develop interactive software systems. Some
studies report that by 2005 there will be 55 million end-users developers, compared to
2.75 million professional developed. End User Development (EUD) is a set of
methods, tools, and techniques that allow people, who are non-professional
developers, at some point to create or modify a software artefact. There are at least

 17/23

some criteria that should be supported and pursued to extend model-based approaches
to the point of obtaining natural development environments: integrated support of
both familiar/informal and engineered/structured specifications and effective
representations supporting the analysis and highlighting of the information of interest.
In fact, at the beginning of the design process many things are vague, so it is hard to
develop precise specifications from scratch, especially because a clear understanding
of the user requirements is a non-trivial activity. The main issue of end-user
development is how to exploit personal intuition, familiar metaphors and concepts to
obtain/modify a software artefact. On the one hand, natural development implies that
people should be able to work through familiar and immediately understandable
representations that allow them to easily express relevant concepts, and thereby create
or modify applications. On the other hand, since a software artefact needs to be
precisely specified in order to be implemented, there will still be the need for
environments supporting transformations from intuitive and familiar representations
into precise −but more difficult to develop− descriptions. The main motivation for
model-based approaches to user interface design has been to support development
through the use of meaningful abstractions to avoid dealing with low-level details.
Despite such potential benefits, their adoption has mainly been limited to professional
designers, so there is a need for solutions that are able to extend such approaches in
order to achieve natural development by enabling end-users to develop or modify
interactive applications still using conceptual models, but with continuous support
that facilitates their development, analysis, and use.

Model-based Design for Multi-Modal Interfaces
Multi-modal interfaces are becoming more common because of various technological
improvements. Most model-based approaches have only considered graphical
interfaces. The few that have addressed different modalities have tackled them
separately, so that the environment generates either graphical or vocal interfaces
depending the designer’s choice. When the synergistic use of different modalities has
been considered, usually this is obtained through either ad hoc developed systems or
through methods that have no tool support for actually generating the multimodal
interface. We need to bridge this gap with integrated tools able to provide more
general and flexible solutions.

In [FS97] a method for designing multi-modal interfaces based on task models is
presented. The method starts with the development of a task model. For each task the
required type of information is indicated. Then, the communication goals are
associated with each task. All this information is useful for selecting the most suitable
media first and then the specific user interface technique. Finally, a user validation is
foreseen. The types of information can be: descriptive, spatial, operative actions,
temporal, operative procedures. The communication goals are structured according to
rhetorical categories: subject-informative (enable, result, cause, inform), subject-
organizing (sequence, summary, condition), presentational (locate, foreground,
background, emphasise). This method was applied for an application supporting ship
captains to manage fire alarms. The main limitation is that no automatic tool supports
it.

In model-based design of multi-modal interfaces many issues have to be addressed.
The task performances can be influenced by the modality available: a set of input can

 18/23

require separate interactions through a graphical device, whereas such information
can be provided through a single interaction by using a vocal interface. In addition,
different modalities can be useful for different tasks. For example, the vocal channel
is more suitable for simple or short messages, for signalling events, immediate
actions, to avoid visual overloading and when users are on the move, whereas the
visual channel is more useful for complex or long messages, for identifying spatial
relations, when multiple actions have to be performed, in noisy environments or with
stationary users.

When the goal is to obtain interfaces supporting multiple modalities (for example
graphical and vocal interaction), the choice of the implementation techniques still has
to consider other aspects of the platform. So, it will be different generating user
interfaces for a multi-modal desktop system or for a multi-modal PDA system
because in one case the user is stationary and the graphic screen large, whereas in the
other case the user can be on the move and the screen is small. Thus, the ways to
provide input information or output or feedback on the input have to take into account
the features of the available platform. The analysis of the space of the possible design
choices and the identification of the most suitable one can be done through the CARE
properties [CNSBMY95] that identify various ways to use multimodalities:
complementarity (synergistic use), assignment (one specific modality is selected),
redundancy (multiple modalities for the same purpose), and equivalence (there is a
choice of one modality from a set of available ones).

Model-based Support for Ambient Intelligence
Models are useful not only at design time, but also at run-time. For example, they
have been used to obtain more meaningful help systems [PP95]. Collagen [RS98]
uses an explicit embedded task model to support the creation of task-aware
collaborative agents. The agent interprets and guesses the user’s current intentions,
and can determine efficient plans to achieve them. The issues related to design of
multi-platform applications are not considered in this approach. In [EVP01] there is a
discussion on how model-based approaches (in particular, using a platform, a
presentation, and a task model) can be used to support multi-device applications. To
this end, the authors consider a hypothetical software application to create annotated
maps of geographical areas. However, the discussion in the paper seems more a
logical discussion on how to approach the problem, rather than the presentation of a
solution which is supported by some implementation, even a prototype.

PUC [NMH02] is an environment that supports the downloading of logical
descriptions of devices and the automatic generation of the corresponding user
interfaces. The logical description is performed through templates associated with
design conventions, which are typical design solutions for domain-specific
applications. Aura is a project at CMU (USA) coordinated by David Garlan. The
approach to the problem is to provide an infrastructure that configures itself
automatically for the mobile user, “potentially using whichever computing
capabilities are available or reachable from the current location” [SG02]. When a
user moves to a different platform, Aura attempts to reconfigure the computing
infrastructure so that the user can continue working on tasks started elsewhere. An
Aura environment is supposed to run in multiple places such as home, office, car, etc.
The context observer of an Aura environment detects events of interest that occur in

 19/23

the physical location (e.g., user is entering, user is leaving, etc.) and informs the local
environment manager as well as the local task manager of these facts. The local
environment manager is in charge of modelling the computing and interaction
resources locally available. The task manager, called Prism, checkpoints the state of
the running suppliers (i.e., services needed to support users’ tasks) at a high level of
abstraction. For example, for a text editing supplier, the task manager saves the file
name as well as the current insertion point in the text of the source document. When
the current local context observer detects that the user is leaving the Aura
environment, it informs the local task manager, which checkpoints the local suppliers
and causes the local environment manager to pause those services. When the user
enters another Aura environment, the new local context observer detects the fact and
informs the new local task manager. In turn, the task manager reinstantiates the tasks
that were suspended by finding and configuring services suppliers in the new Aura
environment. So, for example, a user who was working at home using Word can carry
on the task in the new environment, though possibly using a different text editor such
as Emacs. In this approach, tasks are considered as a cohesive collection of
applications. When a user refers to a particular task, the system automatically brings
up all the applications and files associated with that task. This mechanism relieves the
user from finding files and starting applications individually. Suppliers provide the
abstract services that tasks are composed of. In practice, these abstract services are
implemented by just wrapping existing applications and services to conform to Aura
APIs. For instance, Emacs, Word and NotePad can each be wrapped to become a
supplier of text editing services. Different suppliers for the same type of service will
typically have different capabilities. However, the issue of how to adapt a certain
interactive service to the current platform is not addressed in this research.

The Dygimes framework [CLV03] for developing a multi-device UI calls for
developing a task specification enriched with the UI building blocks. This can be
sufficient to generate prototype UIs useful in a user-centred design process. The time
necessary to create these prototypes is short because many of the steps the designer
had to do manually with traditional GUI building toolkits are now automated by the
framework. For example, the transformation from the task specification to the
resulting functional UIs built by the UI designer is done automatically. A micro-
runtime environment offers support for rendering the created UIs independent of the
chosen widget toolkit.

One important result that can be achieved through run-time transformations is user
interface migration where the user interface is transferred from one device to another
one at run-time, still maintaining the current state. This can be very useful for users
who can freely move and dynamically exploit the resources of new devices that they
encounter during their movements. The migration takes into account the runtime state
of the interactive application and the different features of the devices involved.
Different types of runtime migration can be identified, along with different levels of
complexity for each one of them:

• total, the user interface migrates entirely to a different device;
• partial, part of the user interface migrates to a different device;
• distributed, the user interface is reconfigured in such a way to support

interaction through multiple devices.

 20/23

An example of possible solutions to migration is presented in [BP04] where
applications developed through a model-based approach are considered. The runtime
migration engine exploits information regarding the application’s runtime state and
higher-level information on the platform-dependent application versions. Runtime
application data are used to achieve interaction continuity, while semantic information
is considered to adapt the application’s appearance and behaviour to the specific
device. Since the number of presentations and the tasks supported by the various
platforms may be different, it is not possible to create a one-to-one correspondence
between presentations for different platforms. One important issue is how to identify
the presentation for the target platform corresponding to the one active on the
platform requesting migration, while maintaining the state of its interaction objects.
The page to be visualized on the target device is identified using the following
process: from the set of tasks to support, the tool identifies the most similar abstract
presentation and then the corresponding page in the application version for the target
platform. Similarity is calculated in terms of supported tasks, the more similar the
tasks associated to the two presentations (source and target) are, the more similar the
presentations will be. Presentation similarity is the basic criterion to be considered,
but under particular conditions it may not be enough. When the migrating
presentation supports a task set that is associated with multiple presentations in the
target version, each of which supports the same number of tasks, then the similarity
will be the same for each potential target presentation. Thus, a further criterion is used
to decide which target presentation to activate. To this end, we identify the target
presentation supporting the task associated with the interaction object last modified by
the user, since the user is most likely to continue interaction from that point. Once the
target presentation has been identified, it is necessary to calculate the state of the
objects contained in the corresponding page, which will be communicated to the
target device along with its URL. For this purpose, data referring to the runtime state
of the application will be associated to the corresponding tasks and adapted to the
object implementation for the target device. This allows obtaining, for example, that if
an element in a radio-button was selected and the same choice is supported through a
list in a desktop system then the corresponding element in the list will be
automatically selected. One limitation of this approach is that currently works only on
TERESA-generated interfaces.

In ambient intelligence the basic point is to allow users to freely move from one
environment to another and still be able to seamlessly perform their tasks with the
support of a wide variety of interactive devices. This can be achieved through
ubiquity, awareness, intelligence, and natural interaction. Thus, a run-time
environment based on the use of task models can open up a set of more flexible and
powerful solutions than those currently provided. This presumes a better ability to
take into account how the context of use can change depending on the device at hand
and to dynamically redesign the interface in order to preserve usability when such
changes occur.

Conclusions
The most common model-based approach in software engineering, UML, provides
little support to the design of the interactive components of software artefacts. UML is
actually a collection of languages, including collaboration diagrams, activity

 21/23

diagrams, as well as use case support. These languages are intended to cover all
aspects of specifying a computational system. While they have been used for the
interactive part as well, they have not been expressly designed to support it and they
tend to ignore some specific aspects related to the user interaction. Specific model-
based approaches have been developed to support user interface designers. A proposal
to integrate these two approaches is in [P01]. As various authors have pointed out, the
increasing availability of new interaction platforms has raised new interest in this
approach because model-based systems can help to identify the appropriate
interaction techniques without having to deal with a plethora of low-levels details.
Even recent W3C standards, such as XForms [W3C], have introduced the use of
abstractions similar to those considered in the model-based community to address
new heterogeneous environments.
The need for context-dependent services has raised interest in exploiting task models
at run-time as well in order to deploy more usable interfaces for the enabled tasks.
While in the past task models have been considered for supporting users of desktop
systems, for example through context-dependent help systems [PP95], nowadays the
steadily increasing availability of new types of interactive devices, in particular
mobile devices, opens up new possibilities for exploiting this approach.

This paper discusses model-based approaches, with particular attention to those based
on task models, tool support for their development and analysis, XML-languages
supporting their use for multi-device interfaces, and the new challenges for this area.

Despite increasing interest, only a limited number of approaches to addressing such
challenges have reached a sufficient degree of maturity. This is probably because of
the complexity of the issues involved, which require accounting for the many aspects
involved with providing user interfaces able to adapt to different devices while
preserving usability. In addition, such approaches should be integrated with the rest of
the architecture to allow convenient efficient performance and scalability, especially
considering the requirements of commercial service providers. However, model-based
design is entering industrial practice, and the importance of usability in nomadic
services calls for the design and development of intelligent infrastructures able to
follow users and support them effectively. To this end, knowledge of user preferences
and resource availability regarding task performance is important, as is a system that
maintains some representation of user intent. This can be used to obtain intelligent
environments where users can freely move about from one area to another and still be
able to continue working on tasks started elsewhere, because the system has
reconfigured the interface taking into account the resources available on the new
devices, while at the same time maintaining its state.

References
[AD67] Annett, J., Duncan, K.D., Task Analysis and Training Design, Occupational Psychology, 41,
pp.211-221, 1967.
[APA03] F.Alì, M. Perez-Qinones, M.Abrams, “Building Multi-Platform User Interfaces with UIML,
in Multiple user Interfaces A.Seffah and H.Javahery (Eds.), Wiley, pp.95-118, 2003.
[APB99] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J. UIML: An Appliance-
Independent XML User Interface Language, Proceedings of the 8th WWW conference, 1999.
[BHLV94] Bodart F., Hennerbert A., Leheureux J., Vanderdonckt J., A Model-based approach to
Presentation: A Continuum from Task Analysis to Prototype, in Proceedings DSV-IS’94, Springer
Verlag, pp.77-94, 1994.

 22/23

[BM95] Barnard, P. and May, J. “Interactions with Advanced Graphical Interfaces and the Deployment
of Latent Human Knowledge”, in F. Paterno' (ed.) Interactive Systems: Design, Specification,
Verification, pp. 15-48, Springer Verlag, 1995.
[BP03] Bandelloni R. , Paternò F., Flexible Interface Migration, Proceedings ACM IUI 2004, pp.148-
157, Funchal, 2004.
[BSD96] Beard D., Smith D., Denelsbeck K., Quick and Dirty GOMS: A Case Study of Computed
Tomography, Human-Computer Interaction, V.11, N.2, pp.157-180, 1996.
[BS99] Biere M., Bomsdorf B., Szwillus G., The Visual Task Model Bulder, Proceedings CADUI’99,
Kluwer Academic Publisher.
[BRJ99] Booch G., Rumbaugh J., Jacobson I., Unified Modeling Language Reference Manual,
Addison Wesley, 1999.
[BP03] S.Berti, F.Paternò, Model-based Design of Speech Interfaces, Proceedings DSV-IS 2003,
Springer Verlag.
[BVS02] Bouillon, L., Vanderdonckt, J. and Souchon, N., “Recovering Alternative Presentation
Models of a Web Page with VAQUITA”, Proceedings of CADUI'02, Valenciennes, pp.311-322,
Kluwer, 2002.
[C04] The CAMELEON Project, http://giove.isti.cnr.it/cameleon.html, 2004.
[CNSBMY95] J.Coutaz, L.Nigay, D.Salber, A.Blandford, J.May, R.Young, Four Easy Pieces for
Assessing the Usability of Multmodal Interaction: the CARE properties. Proceedings INTERACT
1995, pp.115-120
[CLV03] Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den Bergh, and Bert Creemers,
Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and Embedded Systems,
Proccedings Mobile HCI 03, Springer Verlag, LNCS N.2795.
[CFMRB03] Chesta, C., Fliri, M., Martini, S., Russillo, B., Barbero, C., First Evaluation of Tools and
Methods, CAMELEON Project Document: D 3.4, July 2003.
[EVP01] Einsenstein, J., Vanderdonckt, J., Puerta, A. Applying Model-Based Techniques to the
Development of UIs for Mobile Computers, Proceedings IUI'01: International Conference on Intelligent
User Interfaces, ACM Press, 2001.
[FS94] Foley, J., Sukaviriya, N., “History, Results, and Bibliography of the User Interface Design
Environment (UIDE), an Early Model-based System for User Interface Design and Development”, in
F. Paterno' (ed.) Interactive Systems: Design, Specification, Verification, , pp. 3-14 Springer Verlag,
1994.
[FS97] P.Faraday, A.Sutcliffe, Designing Effective Multimedia Presentations, Proceedings ACM
CHI’97, pp.272-278.
[HG92] Hartson R., Gray P., “Temporal Aspects of Tasks in the User Action Notation”, Human
Computer Interaction, Vol.7, pp.1-45, 1992.
[HJK99] Hudson S., John B., Knudsen K., Byrne M., “A Tool for Creating Predictive Performance
Models from User Interface Demonstrations”, Proceedings UIST’99, pp.93-102.
[JK96] John, B., Kieras, D., The GOMS Family of Analysis Techniques: Comparison and Contrast.
ACM Transactions on Computer-Human Interaction, Vol.3, N.4, pp.320-351, 1996.
[JPSK04] John, B., Prevas, K., Salvucci D., Koedinger K., Predictive Human Performance Modeling
Made Easy, Proceedings ACM CHI 2004, ACM Press, pp.455-462.
[K96] Kieras D.E., Guide to GOMS model usability evaluation using NGOMSL, in The Handbook of
Human-Computer Interaction, 2nd edition, North Holland 1996.
[LVMBL04] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-Jaquero, V., UsiXML:
a Language Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP Working
Conference on Engineering for Human-Computer Interaction jointly with 11th Int. Workshop on
Design, Specification, and Verification of Interactive Systems EHCI-DSVIS'2004, to appear
[LC01] K.Luyten, K.Conix, An XML-based runtime user interface description language for mobile
computing devices. Proceedings DSV-IS 2001, pp.20-29, Springer Verlag.
[MHP00] Myers, B., Hudson, S., Pausch, R. Past, Present, Future of User Interface Tools.
Transactions on Computer-Human Interaction, ACM, 7(1), March 2000, pp. 3-28.
[MPS02] Mori G., Paternò F., Santoro C., CTTE: Support for Developing and Analysing Task Models
for Interactive System Design, IEEE Transactions in Software Engineering, pp. 797-813, (Vol. 28, No.
8), IEEE Press, August 2002.

 23/23

[MPS04] G. Mori, F. Paternò, C. Santoro, Design and Development of Multi-Device User Interfaces
through Multiple Logical Descriptions, accepted for publication on IEEE Transactions on Software
Engineering, 2004.
[NMH02] Nichols, J. Myers B. A., Higgins M., Hughes J., Harris T. K., Rosenfeld R., Pignol M..
“Generating remote control interfaces for complex appliances”. Proceedings ACM UIST’02, pp.161-
170.
[PP95] S.Pangoli, F.Paternò, "Automatic Generation of Task-oriented Help", Proceedings ACM
Symposium on User Interfaces Software and Technology, pp.181-187, ACM Press, Pittsburgh,
November 1995.
[P99] Paternò, F., Model-Based Design and Evaluation of Interactive Applications. Springer Verlag,
ISBN 1-85233-155-0, 1999.
[P01] F.Paternò, Towards a UML for Interactive Systems, Engineering HCI '01, Lecture Notes
Computer Science N.2254, pp.7-18, Springer Verlag, Toronto, 2001.
[P03] F.Paternò, Models for Universal Usability, Invited Talk at IHM, Proceedings IHM 2003, SCM
Press, Caen, November 2003.
[PE99] Puerta, A.R. and Eisenstein, J. Towards a General Computational Framework for Model-Based
Interface Development Systems. IUI99: International Conference on Intelligent User Interfaces, pp.171-
178, ACM Press, January 1999
[PL94] Paternò, F., Leonardi, A. “A Semantics-based Approach to the Design and Implementation of
Interaction Objects”, Computer Graphics Forum, Blackwell Publisher, Vol.13, N.3, pp.195-204, 1994.

 [PS03] Paternò, F. Santoro, C. “A Unified Method for Designing Interactive Systems Adaptable to
Mobile and Stationary Platforms”, Interacting with Computers, Vol.15, N.3, pp 347-364, Elsevier,
2003.
[PE02] Puerta A., Eisenstein J., "XIML: A Common Representation for Interaction Data", Proceedings
IUI2002: Sixth International Conference on Intelligent User Interfaces, ACM, January 2002.
[PTV01] Paris, C., Tarby, J. & Vander Linden, K., (2001). A Flexible Environment for Building Task
Models. Proceedings of the IHM-HCI 2001, Lille, France.
[PLV09] Pribeanu C., Limbourg Q., Vanderdonckt J., Task Modelling for Context-Sensitive User
Interfaces, Proceedings DSV-IS 2001, Sprinter Verlag, LNCS N. 2220, pp.49-68.
[PP03] L.Paganelli, F.Paternò, A Tool for Creating Design Models from Web Site Code, International
Journal of Software Engineering and Knowledge Engineering, World Scientific Publishing 13(2), pp.
169-189 (2003).
[RS98] Rich, C., Sidner C., COLLAGEN: A collaboration manager for software interface agents, User
Modelling and User-Adapted Interaction, 1998, 8(3/4), pp.315-350.
[S96] Szekely, P. Retrospective and Challenges for Model-Based Interface Development. 2nd
International Workshop on Computer-Aided Design of User Interfaces, Namur, Namur University
Press.
[SLN93] Szekely, P., Luo, P., Neches, R., “Beyond Interface Builders: Model-Based Interface Tools”.
Proceedings INTERCHI’93, pp. 383-390, ACM Press, 1993.
[SG02] de Sousa, J., Garlan, D. Aura : an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. IEEE-IFIP Conf. on Software Architecture, Montreal, 2002.
[SP89] Scapin D., Pierret-Golbreich C., Towards a Method for Task Description: MAD, Work with
Display Units (89), pp. 371-380.
[TMP98] Tam, R.C.-M., Maulsby, D., and Puerta, A., “U-TEL: A Tool for Eliciting User Task Models
from Domain Experts”, Proceedings IUI’98, ACM Press, 1998.
[W3C] XForms – The Next Generation of Web Forms, http://www.w3.org/MarkUp/Forms/
[WV98] van Welie M., van der Veer G.C., Eliëns A., “An Ontology for Task World Models”,
Proceedings DSV-IS’98, pp.57-70, Springer Verlag, 1998.
[WJKCM93] Wilson, S., Johnson, P., Kelly, C., Cunningham, J. and Markopoulos, P., “Beyond
Hacking: A Model-based Approach to User Interface Design”. Proceedings HCI’93. pp.40-48,
Cambridge University Press, 1993.

