
An experience with the application of three NLP
tools for the analysis of natural language

requirements?

Monica Arrabito1, Alessandro Fantechi2,3, Stefania Gnesi3, and Laura
Semini1,3

1 Dipartimento di Informatica, Università di Pisa,
2 Dipartimento di Ingegneria dell’Informazione, Università di Firenze

3 Istituto di Scienza e Tecnologie dell’Informazione “A.Faedo” Consiglio Nazionale
delle Ricerche, ISTI-CNR, Pisa

monica.arrabito@hotmail.it; alessandro.fantechi@unifi.it

stefania.gnesi@isti.cnr.it; laura.semini@unipi.it

Abstract. We report on the experience made with three Natural Lan-
guage Processing analysis tools, aimed to compare their performance in
detecting ambiguity and under-specification in requirements documents,
and to compare them with respect to other qualities like learnability,
usability, and efficiency. Two industrial tools, Requirements Scout and
QVscribe, and an academic one, QuARS, are compared.

Keywords: Natural Language Processing · Natural Language Require-
ments · Ambiguity

1 Introduction

Natural language (NL) is the most common way to express software requirements
even though it is intrinsically ambiguous, and ambiguity is seen as a possible
source of problems in the later interpretation of requirements. Ambiguity is one
of the most difficult defects to avoid since natural language is ambiguous by
nature and devoid of formal semantics. The lack of intrinsic formalism of the
requirements document must therefore be compensated by a detailed analysis
during the initial stages of the product life cycle in order to correctly extrapolate
all the needed information. For this reason, part of the work carried out during
the analysis phase is intended for disambiguation of the requirements.

Natural Language Processing (NLP) techniques have been used to analyse
requirement documents to single out, among other issues, ambiguity and under-
specification defects, analyzing the structure of sentences using grammatical and
lexical analysis, dictionaries and parsers for natural language [1].

Recently, several tools have been developed for analyzing NL requirements
in a systematic and automatic way by means of NLP techniques with a focus on
ambiguity detection.

? Work partially funded by MIUR project PRIN 2017FTXR7S IT MaTTerS (Methods
and Tools for Trustworthy Smart Systems)



2 F. Author et al.

In this paper, we report on the experience made with thee NLP analysis
tools, aimed to compare their performance in detecting ambiguity and under-
specification, and to compare them with respect to other qualities like learnabil-
ity, usability, efficiency. Two industrial tools, Requirements Scout and QVscribe,
and an academic one, QuARS, are analysed.

2 The scope of the experience

The choice of the three mentioned tools can be traced back to their similarities:

– they perform an automatic detection of possible language defects that may
determine interpretation problems and affect the following development stages;

– they highlight the word or construct that they reveal as defective;
– the detected defects may however be false positives, and a subsequent manual

analysis is needed.

The limited scope of our experience on the one hand allows us to focus on
similar tools to better highlight the differences, on the other hand it is a threat
to the validity of our results. To broaden the investigation, other requirement
analysis tools (see for instance Section 2.4) can be considered in a future work.

Notwithstanding its limited extension, we believe that this study can provide
some useful insights on the current state of the art of automatic detection of
ambiguity in natural language requirements.

In the following, we introduce the NLP tools we use for the comparison:
QuARS, QVscribe, and Requirements Scout.

2.1 QuARS

QuARS - Quality Analyzer for Requirement Specifications - is a tool for ana-
lyzing NL requirements in a systematic and automatic way by means of NLP
techniques with a focus on ambiguity detection [5].

QuARS performs an automatic linguistic analysis of a requirements docu-
ment in plain text format, based on a given quality model. Its output indicates
the defective requirements and highlights the words that reveal the defect.

Below, we present the indicators used by QuARS to detect defects of lexical
and syntactic ambiguity in NL sentences.
Defect Indicators
vagueness dictionary: clear, easy, strong, good, bad, adequate...
subjectivity dictionary: similar, have in mind, take into account,...
optionality dictionary: or, and/or, possibly, eventually, case, if possible, if appropriate...
weakness dictionary: can, could, may, . . .
implicity demonstrative adjectives or pronouns
under-specification wordings missing a qualification (e.g.: interface or information without a qual-

ifier, such as user and price, respectively)
multiplicity multiple syntactic constructs such as multiple verbs or multiple subjects

The defect identification process is divided into two, independent, parts. The
first part, lexical analysis, detects candidate defective terms using a set of dictio-
naries. Lexical analysis permits to capture optionality, subjectivity, vagueness,



Title Suppressed Due to Excessive Length 3

optionality, and weakness defects. The second part is syntactical analysis, that
captures implicity, multiplicity and under-specification defects.

Other features of QuARS are (i) metrics derivation for evaluating the quality
of NL requirements; (ii) the capability to modify existing dictionaries, and to add
new dictionaries for new indicators; (iii) view derivation, to identify and collect
together those requirements belonging to given functional and non functional
characteristics, by defining specific requirements.

2.2 QVscribe

QVscribe [6] is an industrial tool for requirements analysis for quality and consis-
tency, developed by QRA (https://qracorp.com/). QVscribe analyzes the quality
of the requirements, highlighting ambiguity, inconsistencies and possible similar-
ities, providing scores to the single requirements and to the whole document. It
generates a detailed report that can be used to increase the quality of require-
ments, reducing the review and rewriting work.

The analysis performed by QVscribe is based on part of the rules defined by
the INCOSE Guide for Writing Requirements. The defects detected by the tool
and the related indicators can be classified according to following table.
Defect Indicators
imperatives absence, negation, or multiple occurrence of imperatives
optional escape clauses optional terms like: possibly, may, . . .
vague words vague nouns and verbs as: various, completed, . . .
cross-referencing pronouns both, everybody, anyone, it,. . .
non-specific temporal words early, years ago, before, . . .
continuances otherwise, in particular, below, following, . . .
superfluous infinitives since they can hide the subject, as in: shall permit
passive voice since it can hide the subject, ex: based, found, shipped
immeasurable quantification abundant, far, always, all, . . .
incomplete sentences missing critical details of who must do something or what must be done

2.3 Requirements Scout

Requirements Scout [3] is developed by Qualicen GmbH, to analyze require-
ments specifications (https://www.qualicen.de/en/). It is distributed as pluging
of NL editors, including Microsoft Word, which makes is suitable for immediate
feedback when writing requirements. Requirements Scout operates similarly to
QuARS and QVscribe, using dictionaries and syntactic rules to specify the criti-
cal words that might denote a quality smell. We list below defects and indicators.

Defect Indicators, if any, or motivation
long&complicated sentences which are difficult to read and prone to ambiguities
passive voice done, found, sent, . . . since they can hide the subject
multiple negations requirements must be expressed in positive terms
universal quantifiers all, always, every, any, nothing, . . .
imprecise phrases (vagueness) possibly, various, current, small, general, if possible, . . .
vague pronouns that, which, their, it, nobody, . . .
comparatives & superlatives faster than, fastest, bigger than, . . . they make a requirement not

understandable in isolation
exactly one shall or should more than one occurrence of shall or should
occurrence of will or may weak verbs such as will, may, . . .
wrong abstraction level to exclude implementation details
dangerous slash ”/” , that can be interpreted both as an and and an or
UI details requirements should not contain details of the user interface.
cloning since duplicates burden successive maintenance



4 F. Author et al.

Besides identifying the defects, it also permits to keep track of different ver-
sions of the requirements, creating a complete history of the detected defects: as
soon as the requirements are updated, the tool re-analyzes the modified parts
and shows whether the update has eliminated existing defects or has introduced
new ones.

2.4 Other tools

A recent industrial tool for assisting the analyst in the definition of NL re-
quirements is ReqSuite, by OSSENO Software GmbH. Differently than the tools
considered in this paper, which highlight defective words or constructs, ReqSuite
supports rigorous requirement definition by correcting the writer according to
some patterns and hence is out of the scope for our study.

Other candidate tools to experiment with are RAT (Requirements Authoring
Tool) from REUSE (https://www.reusecompany.com/) and IBM RQA
(https://www.ibm.com/products/requirements-quality-assistant), both able to
detect ambiguities, but those, for their commercial nature, were not immediately
available for our study.

An alternative to the experimentation of off-the-shelf tools is the adoption
and customization of more general and flexible NLP tools, that allow to tune
the kind of detected ambiguities and other defects. GATE [2] is an example of
such tools: it collects several NLP modules and provides a means to define ad
hoc rules (JAPE rules), so to create advanced and customized NLP solutions.
As an example related to requirement analysis, in [4] GATE was used to tune
the proposed requirement analysis according to the requirement writing style
adopted by the involved company, achieving a significantly better quality of the
analysis.

3 Application of the tools to a E-shop case study

We report our observations when applying QuARS, QVscribe and Requirements
Scout to a running example, a simple E-shop (requirements in Table 1). The
tools are analysed first for their general qualities, then in their ability to support
ambiguities detection in requirements.

3.1 General qualities evaluation

We first address documentation, learnability, and usability. QuARS was simple
to learn and use without referring to any manual. QVscribe comes equipped
with good documentation and video tutorials and it was easy to be acquainted
with. Requirements Scout is the tool were most difficulties were encountered,
because of lack of documentation, a non intuitive interface, and a complex setup
of the user profile. To give a rough measure of learnability, we report the number
of hours of training in order to proficiently use them: 30 for QuARS, 36 for
QVscribe, 48 for Requirements Scout.



Title Suppressed Due to Excessive Length 5

R1 The system shall enable the user to enter the search text on the screen.
R2 The system shall display all the matching products based on the search.
R3 The system possibly notifies with a pop-up the user when no matching product is found on

the search.
R4 The system shall allow a user to create his profile and set his credentials.
R5 The system shall authenticate user credentials to enter the profile.
R6 The system shall display the list of active and/or the list of completed orders in the customer

profile.
R7 The system shall maintain customer email information as a required part of customer profile.
R8 The system shall send an order confirmation to the user through email.
R9 The system shall allow an user to add and remove products in the shopping cart.
R10 The system shall display various shipping methods.
R11 The order shall be shipped to the client address or, if the “collect in-store” service is available,

to an associated store.
R12 The system shall enable the user to select the shipping method.
R13 The system may display the current tracking information about the order.
R14 The system shall display the available payment methods.
R15 The system shall allow the user to select the payment method for order.
R16 After delivery, the system may enable the users to enter their reviews or ratings.
R17 In order to publish the feedback on the purchases, the system needs to collect both reviews

and ratings.
R18 The “collect in-store” service excludes the tracking information service.

Table 1. Requirements of the E-shop case study

Efficiency was found to be an issue for Requirements Scout – to analyze
documents of 20 and 50 requirements the tool takes 1 minute and 2 minutes
respectively – while it was not for QVscribe and QuARS: with both tools the
analysis time for the considered documents was few seconds. The problem was
probably due to the larger amount of checks performed by Requirements Scout,
so it has to be considered as an issue related to the particular usage of the tool
for ambiguity detection, rather than a generic low performance of the tool.

Extensibility is represented by the ability to add new quality indicators.
QuARS has this feature and it also permits the user to select the indicators
she wants to use for the analysis. In QVscribe, only the modification of the in-
dicators already present in the tool is permitted, by adding or removing terms
to be identified during the analysis. Requirements Scout implements indicators’
selection too, but indicators are fixed.

Report generation is possible in QuARS and QVscribe. In QuARS the report
contains, for each quality indicator, the list of requirements that present an
ambiguity, together with the terms deemed incorrect. The report generated by
QVscribe assigns to each requirement a score ranging from 1 to 5, depending on
the gravity of the defects. Results can be filtered to focus on specific defects.

Other qualities are interoperability and version control. A particularly im-
portant positive aspect of QVscribe is the possibility of integrating the tool as
a Word feature, so that the analysis of a document can be started by selecting
QVscribe from the Word ribbon, and selecting the requirements to be analyzed.

A version control system is offered by Requirements Scout: the tool records
the history containing the various versions of a document so that the comparison
of two versions of the same document returns the list of defects added or removed.
However the tool does not permit any editing of the document under analysis:
the user has to edit the document externally and load the new version.



6 F. Author et al.

Requirement Tool Indicator Defect

R1 The system shall enable the user to
enter the search text on the screen.

QuARS multiplicity
QVscribe enable vague words
Req. Scout screen UI details

R2 The system shall display all the
matching products based on the search.

QuARS
QVscribe all universal quantifiers

based passive voice
Req. Scout all universal quantifiers

R3 The system possibly notifies with a
pop-up the user when no matching prod-
uct is found on the search.

QuARS possibly optionality
multiplicity

possibly optional escape clauses
when immeasurable quantification

QVscribe no universal quantifiers
found passive voice

no imperatives

Req. Scout
possibly vagueness
found passive voice

exactly one shall or should

R4 The system shall allow a user to cre-
ate his profile and set his credentials

QuARS multiplicity
QVscribe allow superfluous infinitives

his cross-referencing pronouns
Req. Scout his vague pronouns

R6 The system shall display the list of
active and/or the list of completed orders
in the customer profile

QuARS and/or optionality
QVscribe

Req. Scout
completed vagueness
and/or dangerous slash

R7 The system shall maintain customer
email information as a required part of
customer profile

QuARS multiplicity
QVscribe maintain superfluous infinitives

as immeasurable quantification
Req. Scout

R9 The system shall allow an user to add
and remove products in the shopping cart

QuARS multiplicity
QVscribe allow superfluous infinitives
Req. Scout

R10 The system shall display various
shipping methods

QuARS various vagueness
QVscribe
Req. Scout various vagueness

R11 The order shall be shipped to the
client address or, if the “collect in-store”
service is available, to an associated store

QuARS multiplicity
or optionality

QVscribe shipped passive voice
Req. Scout shipped passive voice

R12 The system shall enable the user to
select the shipping method

QuARS multiplicity
QVscribe enable vague words
Req. Scout

R13 The system may display the current
tracking information about the order

QuARS may weakness
may optional escape clauses

QVscribe about vague words
no imperatives

Req. Scout
current vagueness
may occurrence of will or may

exactly one shall or should

R15 The system shall allow the user to
select the payment method for order

QuARS
QVscribe allow superfluous infinitives
Req. Scout

R16 After delivery, the system may en-
able the users to enter their reviews or
ratings

multiplicity
QuARS or optionality

may weakness
after non-specific temporal words
may optional escape clauses

QVscribe enable vague words
their cross-referencing pronouns

no imperatives

Req. Scout
their vague pronouns
may occurrence of will or may

exactly one shall or should

R17 In order to publish the feedback on
the purchases, the system needs to collect
both reviews and ratings

QuARS
QVscribe both cross-referencing pronouns

no imperatives
Req. Scout exactly one shall or should

R18 The “collect in-store” service ex-
cludes the tracking information service

QuARS
QVscribe no imperatives
Req. Scout exactly one shall or should

Table 2. Results of the application of QuARS, QVscribe, and Requirements Scout to
the e-shop case study. Requirements R5, R8, and R14 contain no defect according to
all tools.



Title Suppressed Due to Excessive Length 7

E-shop QuARS Qvscribe Requirements
Scout

F.Pos. Amb. F.Pos. Amb. F.Pos. Amb.
Vagueness - 1 4 - 2 2
Optionality - 4 - 1 n.a.
Weakness - 2 - 2 - 2
Multiplicity 6 2 n.a. n.a.
Under-Specificaiton - - n.a. n.a.
Imperatives n.a. 2 3 2 3
Vague Pronouns n.a. 1 2 - 2
Passive voices n.a. 1 2 - 2
Immeasurable quantification n.a. 2 2 1 -
Superflous infinitives n.a. 4 - n.a.
Incomplete sentences n.a. - - n.a.
Long / complicated sentences n.a. n.a. - -
Multiple negations n.a. n.a. - -
Comparatives, superlatives n.a. n.a. - -
Wrong abstraction level n.a. n.a. - -
Dangerous slash n.a. n.a. - 1
UI details n.a. n.a. 1 -

Table 3. Summary of ambiguity detection (n.a. means not applicable)

3.2 Evaluation of the ability to detect defects in the requirements

We now focus on analysing the three tools from the point of view of the ability
of their indicators to detect ambiguities and under-specifications. We report in
Table 2 the raw outcomes of the analysis of the E-shop example with the three
tools, requirement by requirement: the ”Indicator” column shows the words that
have been considered by each tool to indicate a certain defect (reported in the
last column). The detected defects results have then been manually analysed to
distinguish real defects from false positives. The detailed results of this analysis
are discussed in the following indicator by indicator. Table 3 cumulatively shows
the number of false positives and ambiguities, as the result of the manual analysis
of the tools’ outcome of Table 2.

For vagueness QuARS detects a defect, QVscribe and Requirements Scout
detect four defects each. The vagueness related to requirement R10, detected
both by QuARS and Requirements Scout, can be indeed classified as a real defect
(various). The same happens for the term possibly detected by Requirements
Scout in R3. All the other defects are false positives.

We note that the term possibly in QuARS and QVscribe is an indicator of
Optionality and is hence detected according to another indicator.

With respect to optionality, we refer to its meaning as in QuARS, and include
the term possibly, classified as Optional Escape Clause by QVscribe. According to
this indicator, there are four ambiguities detected by QuARS (R3, R6, R11, and
R16) and one by QVscribe (R3). Optionality is not an indicator of Requirement
Scout. The good number of defects detected by QuARS is due to fact that it is
the only tool looking for occurrences of or and of and/or.

For weakness all the tools perform the same on E-shop. Weakness is referred
to as optional escape clause in QVscribe and occurrence of will or may in Re-
quirement Scout. When applying the tools to other documents, we have also



8 F. Author et al.

observed that QuARS and QVscribe detect the weak verb can which is not
detected by Requirements Scout.

The only two defecs related to multiplicity in QuARS are indeed disjunctions
(R11, R16) that were already detected by optionality indicators.

Looking at Table 3, we notice that the absence of imperatives is a main am-
biguity indicator. This is an indicator considered by QVScribe (no imperatives)
and in Requirement Scout (exactly one shall or should), but not by QuARS.
However, we can notice that the requirements lacking an imperative and being
defective (R3, R13, R16) are those containing terms such as if possible, or
weak verbs such as may or can. QuARS captures them with other indicators,
namely optionality, weakness and cross-tree constraints indicators.

4 Conclusions

The three tools examined have shown to be comparable in all the considered
dimensions. They apparently use different indicators but in the end (e.g. weak
verbs vs no imperatives) they find roughly the same defects. Best performances
are obtained with best dictionaries, which means that there is room for lowering
the false negative rate with better dictionaries: to this end the extensibility
features of QuARS, permitting to add and modify dictionaries and of QVscribe
that permits to modify the built-in dictionaries are suited and helpful.

There are some differences when considering other quality aspects, and the
outcome of the comparison can help the vendors to refactor their tool and beat
the competitors. However, in the end, they all share a similar defect detecting
strategy, and from this respect younger tools (QVscribe and Requirements Scout)
do not perform better than QuARS developed 20 years before.

References

1. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of confor-
mance to requirements templates using natural language processing. IEEE Trans.
on Software Engineering 41(10), 944–968 (2015)

2. Cunningham, H.: Gate, a general architecture for text engineering. Computers and
the Humanities 36(2), 223–254 (2002)

3. Femmer, H.: Requirements quality defect detection with the qualicen requirements
scout. In: Joint Proceedings of 23rd International Conference on Requirements En-
gineering: Foundation for Software Quality (REFSQ 2018). CEUR Workshop Pro-
ceedings, vol. 2075. CEUR-WS.org (2018)

4. Ferrari, A., Gori, G., Rosadini, B., Trotta, I., Bacherini, S., Fantechi, A., Gnesi, S.:
Detecting requirements defects with NLP patterns: an industrial experience in the
railway domain. Empirical Software Engineering 23(6), 3684–3733 (2018)

5. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. Computer Systems: Science & Engineering 20(1) (2005)

6. Kenney, O., Cooper, M.: Automating requirement quality standards with QVscribe.
In: Joint Proceedings of the 26th International Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ 2020). CEUR Workshop Pro-
ceedings, vol. 2584. CEUR-WS.org (2020)


