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ABSTRACT

A new iterative method for the solution of linear systems,
based upon a new splitting of the coefficient matrix A, is
presented. A '

The method is obtained by considering splittings of the type
A=(A-M)+M, where M is a symmetric tridiagonal matrix, and by
minimizing the Frobenius norm of the iteration matrix so
derived.

Numerical examples are provided, showing that our algorithm
improves the rate of convergence of Jacobi method, without

increasing the order of magnitude of the computational efforts
required. ' ‘
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1. INTRODUCTION

In this paper we show a new iterative method for the solution of
linear systems, which can be efficiently implemented in a parallel
computational environment.

We propose the following approach.
Given an nxn nonsingular matrix A, we restrict ourselves to splittings
of the type |
A=M+(A-M),
where ™M belongs to the class of inverses of symmetric tridiagonal
matrices[1,3,5] |

We look for a matrix M such that
=Mt Al
is minimum, where [| B [l = g b]-jz denotes the Frobenius matrix
norm.
We will present either theoretical results leading to a simple and
elegant algorithm for the computation of M1 (ang therefofe of the
iteration matrix) (section 2), or an experimental discussion of the

behaviour of our method (section 3).




2. THEDRETICAL RESULTS

Let A« R™ be a nonsingular matrix, and b be a real n-vector. Moreover
let T be the class of nxn nonsingular symmetric tridiagonal matrices, and
let M be the class of nxn nonsingular symmetric matrices M such that
M leT(1,3]

Given the linear system <& % = b, we consider the splitting

A =M+ {A-M)
of &, with M« 71, Teading to the iterative method :
%ep = (=M Ta) g #1171y

We look for the matrix M. <M minimizing the norm || I-M 1A llg-
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wheresij= , and
0 otherwise

=0, j=1,...,n, for convenience .

by= 0, 8y;=0 and a,,,;

in order to find the stationary points of the function f, we compute and

equate to zero the partial derivatives of f, namely:

of
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From the sbove equalities, we have:
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t” = 0, if ij, i#j-1 and i#j+1, i=1,.n-1, j=1,..n-1,
where sy, = Ef‘kj 3.
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fr=lay 890, .8,

f2=l812% 821, 8p-1n* By |

The solution of the above linear system is a minimum point for f, since
flcy, .. .Cp. by, . by ) 15 Convex.

The computation of the entries .of matrix M™! can be performed

according to the following algorithm.




Algorithm

;. Campiite Sij , i=j, i=-1, i=j-2, j=1,..n,
2 Campute tTole, oty
3 Compuie T-tTo e, r,-1To g,

o Salve the lridiggansl Jinasr sysient
T-tTo typ=1,-1TD 11y,

3 Lompiite c= D! fy - pILbp.

The following table shows the sequential and the paraliel cost of the
algorithm, in terms of the number of operations, and of the number of

parallel steps (1) together with the number of processors (p); respectively.

TABLE 2.1
STEP segieniiel cost parailel cost
4 F 4

7 0{n?) OClogn)  0(n?)
2 O{n} o{1} 0{n)
I 0{n} o{1) 0{n)
=) O{n log n) O{logn} Oin)
& 0{n} o{1) 0{n)




Note that both the sequential cost Ofn log n) and the paraliel cost

OClog n) for step 4. can be attained by using cyclic or odd-even reduction

*

algorithms [4].




3. NUMERICAL EXPERIMENTS

In this section we present some experimental results which show the
behaviour of the method described in section 2, in comparison with Jacobi
rmethod.

we used the following approach.

The parameter chosen as a measure of the perférmance is the spectral
radius of the iteration matrix, which determines the asymptotic rate of
convergence, and therefore the number of iteration required to get a given
accuracy in the result [2]

It is worth noting that the computatjonal effort of the method based
on the results of section 2, and of Jacobi method, are equivalent, up to
constants.

Tables 3.1, 3.2, and 3.3 show the experimental results.

it turns out that:

1. when Jacobi method is convergent, our method converges as well

with improved convergence rate,

2. there exist classes of matrices for which our method converges,

while Jacobi does not.




TABLE 3.1 . :

A=uul +ol, ul=(1,.,1), a=7-(20+1)/5, h=0,1,.14 n=8

spectral radius of spectral radius of
new iteration matrix Jacobi iteration matrix
pli -M1 &) p(J)
5400 6250
3481 .6461
3267 6731
3657 7000
- 3752 7292
3833 7609
3960 7955
4074 8333
4196 | 8750
4328 9211
4471 9722
4628 1.029
4803 1.092
5000 1.167

2230 ; 1.250




TABLE 3.2

A is a symmetric Toeplitz matrix with random off diagonal entries and

i#i
spectral radius of spectral radius of
new iteration m'atrix Jacobi iteration matrix
pll =M1 A) plJ)
1.017 1.421
1.006 1.383
94853 1.366
0844 1.341
Q737 1.316
8631 1.292
9526 1.269
94272 1.246
9320 1.225
8219 1.204
9120 1.184
9022 1.164
8925 1.146
8830 1.127
8736 1.110




TABLE 3.3

A= GOT is a positive definite matrix, where Q has random entries, n=40.

spectral radius of spectral radius of

nev iteration matrix Jacobi iteration matrix

pli-M71 A) plJ)
8923 2136

9930 1143
8915 12.31
1.014 16.29
9976 27.16
9991 21.24
1.009 64.22

9997 102.4
8620 21.18
1.022 24.16
8825 47.14
9830 3112
9736 13.11
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