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Abstract: Graphene (Gr)—a single layer of two-dimensional sp2 carbon atoms—and Carbon Dots
(CDs)—a novel class of carbon nanoparticles—are two outstanding nanomaterials, renowned for
their peculiar properties: Gr for its excellent charge-transport, and CDs for their impressive emission
properties. Such features, coupled with a strong sensitivity to the environment, originate the interest
in bringing together these two nanomaterials in order to combine their complementary properties.
In this work, the investigation of a solid-phase composite of CDs deposited on Gr is reported. The CD
emission efficiency is reduced by the contact of Gr. At the same time, the Raman analysis of Gr
demonstrates the increase of Fermi energy when it is in contact with CDs under certain conditions.
The interaction between CDs and Gr is modeled in terms of an electron-transfer from photoexcited
CDs to Gr, wherein an electron is first transferred from the carbon core to the surface states of CDs,
and from there to Gr. There, the accumulated electrons determine a dynamical n-doping effect
modulated by photoexcitation. The CD–graphene interaction unveiled herein is a step forward in the
understanding of the mutual influence between carbon-based nanomaterials, with potential prospects
in light conversion applications.

Keywords: graphene; nanomaterial; 2D material; carbon; Raman spectroscopy; material science

1. Introduction

Nanomaterials have rapidly attracted the interest of frontiers research in material science [1].
In particular, among the many varieties of nanostructured systems, low-dimensional materials and
carbon-based nanomaterials play an important role for research in nanotechnology [2]. Graphene (Gr),
a single layer of carbon atoms in the hexagonal honeycomb structure of a single layer of graphite,
was the first two-dimensional material to be isolated and investigated [3]. Beyond its fascinating
monoatomic thickness, its low-dimensionality gives Gr peculiar properties—high charge carrier
mobility, high thermal conduction, good optical transparency, chemical stability, mechanical resistance,
and flexibility [4–6]—which justify the intensive research on it, in view of applications in
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microelectronics: field effect transistors, radio-frequency transistors, vertical THz transistors [7–9],
volatile memories [10], composite nanomaterials [11–13], solar cells, and rigid or flexible capacitive
systems [4,14–17]. The large surface area of Gr and the presence of delocalized electrons result in
a strong interaction between Gr and surrounding species which allows charge–exchange related
processes, such as doping processes involving molecular adsorption [18,19] and charge transfer
to/from other nanosystems [13,20–23]. In regard to these Gr composites, most of literature works
concern the interaction of graphene with metal nanoparticles [24–27], transition metal oxides [28,29]
or transition metal calchogenide quantum dots [12], and graphene oxide—mainly investigated in liquid
phase. Despite that such composite nanomaterials are of cross-disciplinary interest for application
in photocatalysis, molecular detection, and microelectronics, most of them are hindered by severe
practical limitations, such as lack in visible emission, toxicity of materials, and inapplicability in
solid-state microelectronics.

In recent preliminary studies, we have explored a new type of all-carbon nanocomposite, in order
to overcome the above cited restrictions [30,31]. In particular, Gr fabricated by chemical vapor
deposition (CVD) has been selected for its high conductive properties and good implementation for
solid state devices [32]. On the other hand, carbon dots (CDs), a class of carbon-based and nontoxic
nanoparticles have been used [33]. The high efficiency and the strong sensitivity to the environment
of CDs photoluminescence (PL) stimulates the interest on the tailoring of CDs with the purpose
to substitute the more common, but toxic, metal-calchogenide quantum dots [34–36]. Despite their
nanometric size, such nanoparticles cannot be considered 0D materials since they do not show quantum
confinement effects. More specifically, the photocycle of CDs involves both their carbon core and their
surface passivation groups [37], and the consequent exposure of negative charge at the CDs surface
enables charge transfer mechanisms with other close ions [38–41] or molecular species [42,43]. We
proposed a similar process in order to describe the interaction between CDs and Gr supported on SiO2
in a solid composite, wherein the CD emission efficiency was affected by the surface of deposition [30],
noting also the lack of structural modification of Gr decorated with CDs [31] and the stability of
CDs to soft thermal treatment [30]. Based on the above considerations, the integration of such a
composite system in microelectronic devices would present several advantages compared to other
solution: inexpensive and nontoxic nanoparticles as optically active layer, and CVD Gr—which allow
a better implementation in solid state technology compared to other synthesis of this nanomaterial—as
conductive layer.

In the present work, we deepen the interaction between CDs and Gr by the simultaneous
investigation of the electronic properties of both materials and the role of graphene doping.
In particular, the emission efficiency of CDs is found to be strongly reduced when they are in contact
with Gr compared to CDs in contact with SiO2. At the same time, changes in the Raman spectra of Gr,
induced by the presence of photoexcited CDs, indicate a rising in the Fermi energy compared to Gr
without CDs deposited on. On the contrary, no modification in Fermi energy of Gr is found when the
CDs are kept in their unexcited state. In order to explain these findings, we propose a model involving
a photoinduced electron transfer (PET) process from CDs to Gr. The surface electron of CDs migrate to
Gr thanks to the close contact and the favorable energy alignment of the surface orbitals of the two
nanomaterials. Thus, because of the modification of the charge carriers concentration of Gr, CDs can
be used as a photo-activated source of n-doping or electron injection.

2. Materials and Methods

2.1. Graphene (Gr)

Commercial monolayer Gr produced by Graphenea Inc. was used. According to the manufacturing
specification, Gr was grown on Cu foil by chemical vapor deposition technique at a temperature
of 1000 °C, using CH4 as carbon source. In order to transfer the Gr on the substrates, a layer of
Poly(methyl methacrylate) (PMMA) was spin coated onto Gr/Cu, then a thermal release tape (TRT)
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was laminated on PMMA. The Cu foil was etched by immersion in an ammonium persulfate water
solution. The remaining TRT/PMMA/Gr stack was transferred to the substrate by thermocompression
printing causing the release of TRT, and was cleaned from PMMA layer by an acetone bath. Standard
silicon substrate with a surface covered by 300 nm of SiO2 was used, thus obtaining a Gr/SiO2/Si wafer
(in the following named Gr/SiO2). Reference data for CDs-free Gr are reported from Reference [44].

2.2. Carbon Dots (CDs)

CDs were synthesized using citric acid monohydrate, as carbon precursor, and urea as nitrogen
precursor, both dissolved in an aqueous solution. The carbonization process of the solution was
performed by microwave irradiation until the complete evaporation of water occurred [45,46].
In previous characterization, these carbon nanoparticles resulted to have typical size values in
the range 1–10 nm [45]. From the resulting CDs powder, a suspension in ethanol was prepared,
with a concentration of CDs equal to 0.1 g/L. No purification of CD solution has been applied. For the
study of CDs-Gr composite in solid phase, 1 µL volume of the CDs solution was deposited by
drop-casting technique. The depositions were performed in fume hood in order to accelerate the
drying of the solvents.

2.3. Thermal Processing

The Gr was doped by thermal treatment in a controlled atmosphere. In particular, the treatment
was performed in a stainless steel chamber of about 100 mL volume with controllable temperature and
pressure at temperature equal to 300 °C for 2 h. After a prevacuum at pressure of 0.5 mbar, the oxygen
gas (O2) was injected in the chamber, at pressure of 2 bar with 20 ppm mol of impurities.

2.4. Micro-Raman (µ-Raman) and Microphotoluminescence (µ-PL) Spectroscopy

µ-Raman and µ-PL spectroscopy by 532 nm (2.33 eV) excitation laser were performed by using
SENTERRA µ-Raman spectrometer (Bruker, Europe) equipped with a confocal optical microscopy
system with 50× optical magnification, a best spectral resolution equal to 9 cm−1, and a data pitch
equal to 0.5 cm−1. All the measurements were performed with nominal power equal to 5 mW. Target
area of measurement (about 1 × 1 µm2) was defined by the size of focused laser spot and imposed by
diffraction limit resolution of optics. µ-Raman Spectroscopy by 633 nm (1.96 eV) excitation laser was
performed using a LabRam HR-Evolution spectrometer (Horiba, Europe) equipped with a confocal
optical microscopy system with 100× optical magnification, a best spectral resolution equal to 7 cm−1,
and a data pitch equal to 1 cm−1. All the measurements were performed with at nominal power
equal to 5 mW on a target area of 1 × 1 µm2. All the spectra were aligned to the silicon band located
at 520.7 cm−1 [47,48]. For each sample, a set of at least 20 measurements was acquired in order
to evaluate heterogeneity and to determine the mean values for the Gr spectroscopic features. G
and 2D band peak positions, νG and ν2D respectively, were extracted from each Raman spectrum of
Gr [49]. The uncertainty of the reported values is expressed in terms of one standard deviation of each
values’ distribution.

Correlation analysis G and 2D peak positions (G-2D graph) was used to disentangle strain
and charge doping of Gr [49]. Concerning the spectra acquired with 532 nm (2.33 eV) laser, for the
calculation of doping, the same approximated relation of Reference [50] was used. For the calculation
of strain, the dispersion relation that binds volume and mode frequencies and a Grüneisen parameter
for graphene equal to 3.55 were used [51–53]. The reference axes for strain and doping according to
the excitation energy of 2.33 eV are marked in G-2D graphs by two lines whose slopes are equal to 2.45
and 0.7, respectively, and define the pairs of values (νG, ν2D) equivalent to only strain or p-type doping
effects [50,54]. The intersection between the two axes at (1582 cm−1, 2670 cm−1) determines the ideal
configuration for unstressed and undoped Gr. Other positions in the graph are interpreted in terms of
the vectorial compositions of concurrent doping and strain effects whose single evaluation is achieved
by the projection of each point on the respective axes [51–53]. For spectra acquired with 633 nm laser,
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the doping and strain axes were moved according to References [55,56] by taking into consideration the
phonon dispersion of Gr Raman bands [57,58] which implies the shift of Gr Raman bands by varying
the laser energy. The strain and doping axes slope are equal to 2.5 and 0.7, respectively, and their
intersection is placed at (1582 cm−1, 2634 cm−1). In this case, the doping of various samples was
compared only qualitatively.

µ-PL mapping was performed on a target area of 25 × 25 µm2 by acquiring 625 measurements
at 1 µm from each other, and that were therefore arranged in a 25 × 25 grid. Then, a µ-PL map was
obtained by reporting point-by-point the PL intensity of CD emission. In this work, mapping image
is shown after interpolation correction. Raw mapping is reported in Supporting Information (see
Figure S1).

2.5. Liquid-Phase Optical Characterization

Steady-state absorption measurements of ethanol-dispersed CDs were performed by a
double-beam spectrophotometer V-560 (JASCO, Japan) in the range of 250–750 nm in a 1 cm
quartz cuvette. The emission spectrum of ethanol-dispersed CDs was acquired by a FP-6500
spectrofluorometer (JASCO, Japan) in a 1 cm cuvette with a 3 nm resolution bandwidth.

2.6. Atomic Force Microscopy (AFM) and Optical Microscopy (OM)

AFM measurements were performed in Tapping Mode by using a FastScan Bio (Bruker, Europe)
and a FastScan A (Bruker, Europe) probe with tip radius approximately equal to 5 nm. AFM images
were acquired on different micrometric scales, up to 5 × 5 µm2 of area. The analysis was performed
by Gwyddion v. 2.52. Optical images were acquired by using the optical microscope included in
Bruker SENTERRA spectrometer: Olympus BX51 reflected light microscope (Bruker, Europe) provided
with video camera Infinity 1 and objective lens with 0.75 numerical aperture and 50× magnification.
Postprocessing of acquired images consisted of color curves modification. Raw images are reported in
Supporting Information file (see Figures S2 and S3).

3. Results and Discussion

3.1. Spectroscopic Characterization of Samples

3.1.1. Dispersed and Deposited CDs

Typical optical absorption and emission of CDs dispersed in liquid phase are reported in Figure 1a.
As discussed in previous works by Sciortino et al., optical absorption of CDs is characterized by two
main contributions: an edge below 300 nm due to band-to-band transition of the crystalline core; and
a composite band between 300 and 500 nm related to transition towards midgap levels belonging
to surface states. Then, absorption fades with further increase of wavelength. Moreover, CDs are
characterized by a bright tunable photoluminescence, which can be excited over a broad spectral range,
extending from the UV down to about 550 nm [38]. Despite that the maximum emission intensity was
found for an excitation corresponding to the absorption peak at about 400 nm [38], for the aims of
this work it is useful to consider the emission of CDs for higher excitation wavelengths. In the case
of a green excitation at 530 nm, the PL of CDs is located at ∼ 580 nm (∼ 2.1 eV). On the other hand,
no emission is found by using excitation at even lower energies.

In this work, we deposited CDs on Gr and SiO2 substrates in order to study their interactions with
the substrate. µ-PL of CDs deposited on SiO2/Si substrate is reported in Figure 1b. Here, the emission
spectrum of CDs is peaked at about 2.1 eV, in accordance with what was found in liquid phase [38].
It is worth noting that the narrower Raman bands of silicon substrate are superimposed to the
PL of CDs (peaks at about 300, 520, and 990 cm−1). Such interpretation is strengthened by the
evaluation of the substrate spectrum, where no stray light or undefined background are found.
Furthermore, the lack of any Raman signal of CDs can be ascribed both to the low concentration
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of nanoparticles and to the competitive role of PL, which dominate the interaction between CDs
and light. Further characterization of CD synthesis, structure, and photophysics can be found in
References [38,45,46,59].

b)a)

Figure 1. (a) Optical absorption (black) and photoluminescence (PL) emission excited at 530 nm (red) of
ethanol-dispersed carbon dots (CDs). (b) µ-Raman/PL spectra of CDs deposited on SiO2/Si substrate
(red) and bare substrate (black). Raman bands of silicon are highlighted by arrows.

3.1.2. Graphene

Typical Raman spectra of Gr sample obtained by using 532 and 633 nm lasers are reported in
Figure 2. Both spectra show the characteristic bands of graphene (G, 2D, D, D’, . . .) and, according to
literature, many spectroscopic features are strongly influenced by the different laser excitation [57,58]:
compared to silicon substrate, Gr features a different scattering efficiency upon varying laser excitation
(see Figure S4); and also the intensity, width, and peak position of the characteristic Raman bands of
Gr are strongly modified. By focusing attention on the spectrum acquired at 532 nm, since the intensity
ratio between 2D and G band is higher than 1 we can confirm the single-layer morphology of our Gr
sample [60].

Figure 2. Raman spectra acquired by laser excitation at 532 nm (green) and 633 nm (red) of graphene
(Gr) transferred on SiO2/Si. Labels indicate the characteristic bands of Gr. Both spectra are normalized
on G band peak amplitude. Arbitrary vertical shift is applied.
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Furthermore, the very low relative intensity of D band suggests that even after the transfer onto
SiO2/Si, the defect concentration in Gr is still low. Finally, we point out that no background correction
was performed on these spectra. Therefore, possible PMMA residuals onto the sample due to the
transfer process are too low of a concentration to yield a detectable signal (both PL and Raman) by the
experimental parameters we used.

3.2. CDs-Graphene Morphology

The deposition of CDs on Gr/SiO2 was performed by drop-casting technique. As shown in
Figure 3a, because of many cracks in its structure, the Gr does not cover the entire surface of the SiO2/Si,
and some parts of the SiO2 surface remain uncovered. As a consequence, during the deposition, the CDs
are spread on the entire surface of the samples, and both the SiO2 and Gr surfaces are covered by
CDs. Therefore, the CDs deposited on Gr/SiO2 will be labeled as CDs/Gr and CDs/SiO2 in the
following, by distinguishing the specific surface they are in contact with. Surface morphology of
CDs/Gr/SiO2 sample is shown in Figure 3b by optical microscopy, wherein the deposition of CDs
causes the appearance of a light blue halo over the sample, with no preferential spread on the surface
of Gr (light blue regions) or SiO2 (violet regions). The spread of single CDs on the surface of Gr/SiO2
at the microscale can be evaluated by the AFM micrographs shown in Figure 3c,d.
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Figure 3. Surface morphology evaluated by (a,b) optical microscopy, and by (c,d) atomic force
microscopy of Gr/SiO2 and CDs/Gr/SiO2, respectively. In panel (d), the CDs deposited on SiO2
(CDs/SiO2) and CDs deposited on graphene (CDs/Gr) can be distinguished. In addition, in panels
(c,d), representative profile is reported (blue line) on the corresponding section line.
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Therein, as emphasized by the blue section profile in Figure 3d, nanoparticles are clearly
recognizable on the flat surfaces of both SiO2 and Gr, especially if compared to the bare surface
without CDs (Figure 3c).

3.3. CDs-Graphene Interaction

Two different kinds of CDs-graphene composites are studied. The first one, labeled CDs/Gr,
was obtained by depositing CDs on native Gr, that is, the as-received sample of Gr characterized by
no doping. The second sample, labeled CDs/p-Gr, was obtained by subjecting a CDs/Gr sample to
thermal treatment in O2 atmosphere. The effects of such treatments on graphene and CDs (taken
separately) have already been discussed by the authors in recent works. Concerning graphene,
the treatment induces a p-type doping, as indicated by the blueshift of both G and 2D Raman bands
(see Figure S5). Further details about doping of graphene by thermal treatment in O2 can be found in
References [44,61,62]. Besides, when CDs are subjected to a similar thermal treatment their emission
capability is preserved with minor modification [30]. In the following, the spectroscopic features of
CDs/Gr and CDs/p-Gr are reported and compared. In particular, the analysis of the composite by
a µ-Raman setup allows us to acquire simultaneously the Raman spectrum and the PL band emitted by
CDs. Raman/PL spectra of CDs/Gr and CDs/p-Gr excited at 532 nm (2.33 eV) are shown in Figure 4
and compared to the PL of CDs deposited on the portion of substrate uncovered by graphene (that is
surface SiO2). The spectra differ for the Raman bands superimposed to the PL of CDs: those related to
silicon when CDs are in contact with SiO2 surface, with the addition of those of graphene when CDs
are deposited on it. Most importantly, we note that the emission of CDs is influenced by the surface
they are deposited on. In fact, CDs deposited onto graphene (both doped and undoped) feature a
reduced emission efficiency compared to those deposited onto SiO2. It is important to note that such
evaluation must be performed by comparing couples of measurements acquired on contiguous regions
at the border of a Gr flake, aiming to reduce contribution of CD concentration in the evaluation of
measured PL intensity. Despite that only two representative couples of measurements are reported
here, the PL quenching effect of graphene was found true in a large number of comparisons.

b)a)

Figure 4. µ-PL excited at 532 nm of CDs deposited on contiguous regions of graphene and SiO2 for (a)
CDs/Gr and (b) CDs/p-Gr. Raman bands of graphene and silicon are marked by arrows and labels.
Energy axis is reported both in terms of absolute value (bottom), and in terms of the Raman shift,
that is, the difference relative to the laser energy (top).
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A more accurate evidence of graphene-induced quenching of CD PL is reported by the µ-PL
mapping shown in Figure 5, where 625 measurements were acquired on a square grid in a 25 × 25 µm2

area where CDs were deposited onto Gr or SiO2. As reported in Figure 5b, different emission intensity
is found across this region and it is clearly visible a strong contrast in perfect correspondence of
Gr or SiO2 surfaces shown in Figure 5a. In particular, the emission intensity of CDs/Gr is about
30%–50% of that measured for CDs/SiO2, thus confirming the quenching effect of graphene and
suggesting the opening of a further nonradiative relaxation channel for photoexcited CDs deposited
on Gr. Further heterogeneity is found on both Gr or SiO2 surfaces, probably due to cluster formation.
However, such variability is so slight that the contrast between Gr and SiO2 surfaces is well visible.

CD PLb)OM

10 µm

a)

10 µm

CDs/Gr

CDs/SiO2

PL Intensity (arb. unit)

Figure 5. (a) Optical microscopy image and corresponding (b) µ-PL mapping excited at 532 nm of CDs
deposited on contiguous regions of undoped graphene (CDs/Gr) and SiO2 (CDs/SiO2). The intensity
of CD emission (CD PL) is reported in the color-bar.

In order to evaluate a possible influence of CDs on Gr properties, we investigated the Raman
spectrum of Gr and p-Gr with or without CDs deposited on. In particular, we studied the
correlation between G and 2D bands in the calibrated G-2D graph reported in Figure 6. In fact,
this is a well-established method which allows us to evaluate the tensile or compressive strain of
graphene lattice, and from the electronic point of view, the charge doping of graphene that is directly
correlated to the charge-carrier concentration (both for electrons and holes) and therefore to the Fermi
energy [49,50]. In particular, as discussed in the Materials and Methods section, graphene strain and
doping are revealed as shifts of the point cloud along two well-defined axes [49]. As shown in Figure 6a,
the effects of CDs deposition are evaluated by the comparison between the point clouds of native
Gr and CDs/Gr where only minor modifications are recognizable. A slight increase of compressive
strain is found, suggesting a soft deformation of Gr structure as effect of nanoparticles weight. Such a
modification is larger in absolute value, and opposite in sign than the effect of bare solvent deposition
reported in Figure S6a, which induces a decrease of strain by softening the interaction between Gr
and the substrate. On the other hand, a slight shift of CDs/Gr point cloud along the doping axis is
revealed, whereas a minor modification is induced by the bare solvent. This shift can be ascribed to
a minor influence of CDs on the electronic structure of Gr occurring during the collection of Raman
signal. However, no quantitative estimation of the Fermi energy shift can be performed in this region
of G-2D graph, where the relation between Fermi energy and spectral position of the G and 2D bands
is complex and highly nonlinear [49,60].

The influence of CDs on Fermi energy of Gr can be much better investigated by using p-doped
Gr rather than undoped Gr. In fact, as previously stated, the doping process blueshifts both G and
2D Raman bands (Figure S5), so as to move the respective point cloud in a region of G-2D graph
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where the sensitivity of this technique to differential doping is maximum [49,60]. In this case, the G-2D
graph analysis for samples subjected to doping process indicates a strong difference between bare p-Gr
and CDs/p-Gr. In fact, as shown in Figure 6a, the point cloud of CDs/p-Gr is placed at intermediate
doping values, between bare p-Gr and native Gr point clouds, and it features a more complex shape.
In particular, a larger area of G-2D graph is occupied, featuring a wide distribution of strain and
doping configurations. For the latter, redshift of Raman bands indicates a competitive n-doping
due to the presence of CDs. The same analysis was performed by using a laser excitation at 633 nm
(1.96 eV). At this energy, the light absorption of CDs vanishes (see Figure 1) and no emission is revealed.
As shown in Figure 6b, we can note that in this case, the point clouds of p-Gr and CDs/p-Gr are
perfectly overlapping, thus indicating no influence of CDs on the electronic structure of Gr. Therefore,
Gr seems to be affected only by photoexcited CDs. Finally, the effect of bare solvent on p-Gr for both
light excitations is reported in Figure S6a,b, where a completely different modification is found, and is
hence unrelated to the effect of CDs.

a)

b)

532 nm
2.33 eV

633 nm
1.96 eV

Figure 6. G-2D correlation graph at (a) 532 nm and (b) 633 nm laser excitation of undoped (black dots)
and p-doped Gr (blue dots) (reported from Reference [44] for 532 nm only), CDs/Gr (orange dots), and
CDs/p-Gr(green/red dots). Doping and strain axes are marked by dotted lines and reference levels
are pointed out by continuous and dashed lines, respectively.
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3.4. Model for CD-Gr Interaction

Based on the gathered information, and by taking into account previous investigations
(References [30,38]), we propose the interpretative model of the interaction between CDs and Gr
shown in Figure 7. As a consequence of laser irradiation, the used spectrometer collects both the PL of
CDs and the Raman scattering of Gr. The light absorption of CDs occurring for 2.33 eV laser causes the
extraction of an electron from their core towards states exposed to the surface of the nanoparticles [38].
Thus, if the energies of the involved states are favorably aligned, the close contact of CDs surface and
Gr orbitals admits charge transfer between the two materials.

Unoccupied states
Occupied states
Transferred electrons

VB

CB

CDs core

       CDs
surface

CDs core

+

Raman

p-doped Gr

ΔEF = +0.2 {

ET
CB

VB

   -6.2

> -1.9
EZn = -3.8 

EF = -5.1

ECo = -4.2 

-4.6

EF = -4.9  '

KPL

En
er

gy
 (e

V
)

EV = 0 

Figure 7. Energy levels scheme of CD core electronic bands, CD surface states, and of Gr electronic
bands at K point (Dirac cones) relative to the energy of the vacuum level. The elements of the CDs-Gr
interaction described in the proposed model are reported. The laser light (green arrows) is absorbed
by CDs and scattered by Gr, thus generating CD PL and Gr Raman signals (red arrows), respectively.
In CDs, electrons are promoted from the core valence band (VB) to surface states, for which the energy
distribution is between the energies of zinc and cobalt ions. The electron migrates from the surface
states towards the conduction band (CB) of Gr by electron transfer (ET). Finally, after an ultrafast
relaxation towards lower energy states, the states in the VB of Gr are populated, as attested by the
increase of Fermi energy revealed by Raman signal.

The energy levels scheme of the present system can be reconstructed as follows, by taking as
reference the energy of vacuum level Ev = 0. Since the native Gr has no relevant charge doping,
the Fermi level is near the K point of Gr band structure. The energy position of this level is described
by the work function of undoped Gr equal to ϕGr = −4.6 eV [63]. The increase of 1.2(1) × 1013cm−2

charge carriers by p-doping treatment reported in Figure 6a implies a reduction of Fermi Energy by
∆EF = −0.5 eV [64–66], thus lowering the work function to approximately ϕp-Gr = −5.1 eV.

Concerning CDs, despite that no direct measurement for the electron affinity of β-C3N4 core
of CDs is known, the alignment of CD electronic structure can only be hypothesized on the basis
of their spectroscopic features. The energy position of the surface states is straddled by limiting
values estimated based on their interactions with metal ions [67]. This effect has been related to the
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redox potential, which measures the tendency of a chemical species to accept electrons. The most
representative cases are for zinc and cobalt ions, which are characterized by redox potential equal to
VZn2+ = −0.76 V and VCo2+ = −0.28 V, respectively. As reported in Reference [67], the emission of these
CDs is enhanced by the interaction with Zn2+ ions, whereas the CD emission is quenched by Co2+,
as shown in Figure S7. The energy position of the excited state of CDs is thereby between those of the
acceptor level of these two ions, which can be quantified by their redox potentials. In terms of energy,
the redox potentials of zinc and cobalt correspond to the energies EZn2+ = −3.8 eV and ECo2+ = −4.2 eV,
thus placing in this range the energy level of CD surface states ECDs. Finally, the valence band of CD
core can be placed about 2 eV below the surface state, considering the lack of light absorption at energy
below this threshold.

Therefore, since ECDs − ϕGr > 0, the surface electron of photoexcited CDs can migrate to the
unoccupied states in the conduction band of Gr, hence, the PET between the two nanomaterials
spontaneously occurs. Finally, the transferred electron is expected to undergo an ultrafast relaxation
towards lower energy states, that is, the valence band states of Gr [68,69]. As PET causes an increase
of the occupancy of the states just above the Fermi level, it is equivalent to an n-doping of graphene
dynamically induced by photo-excitation of CDs. On the other hand, when CDs are in their electronic
ground state (as in the case of measurement performed at 1.96 eV, when the light absorption of CDs is
prevented), PET towards Gr cannot be activated, and no modification of Fermi energy is evidenced in
p-Gr Raman signal. The PET from CDs to Gr dynamically induced by the laser excitation is thereby
evidenced by (1) the increase of Fermi energy evaluated by the evolution of Gr Raman signal which
reveals an n-doping which reduces the previously induced p-doping; (2) the inhibition of CD PL, since
the separation of the excitonic pair interrupts the photocycle.

Some considerations originate from this model. As commonly found in literature, the charges
accumulated in graphene are expected to be ceded to the surrounding environment. Therefore,
the n-doping, due to PET from CDs, is expected to fade once the laser irradiation is stopped [28,29].
Considering the very strong PL quenching observed for CDs, it is likely that the time scale of the
electron transfer (ET) responsible for it is orders of magnitude faster than the native lifetime (a few
nanoseconds). As a matter of fact, studies of ET from CDs to model metal ions have found ET to
proceed on picosecond and subpicosecond time scales [67]. Further dedicated studies would be needed
to directly address such anticipated ultrafast dynamics. According to the used laser power, an increase
of Fermi energy at least equal to 0.2 eV is estimated by the Raman analysis, corresponding to up to
5 × 1012 cm−2 transferred electrons for the nominal power we used. However, a modulation of such
value is expected upon varying laser power.

4. Conclusions

In summary, the interaction between CDs and single-layer graphene has been investigated by
designing a novel experimental strategy which allows us to simultaneously probe the electronic
properties of both materials. Our data provide strong evidence of PET from CDs to graphene.
In particular, from a structural perspective, the deposition of CDs induces only minor modification in
Gr strain, hence, indicating a preservation of Gr structure. Besides, CDs deposited on both undoped
and p-doped Gr feature a reduced emission efficiency, highlighting the opening of a new channel for
the relaxation of photoexcited CDs. The Raman study demonstrates that Gr features a different density
of charge carriers only after the photoexcitation of CDs deposited on it, especially for CDs/p-Gr, where
the effect is more evident. These changes are interpreted in terms of a PET from photoexcited CDs to Gr
allowed by their close contact and the favorable energy alignment of CDs and Gr levels. The reported
results suggest this specific solid-phase CD-Gr nanocomposite as a promising nanosystem for light
conversion applications, such as light harvesting and optoelectronic devices, where usual liquid-phase
graphene-nanoparticle composite materials are precluded.
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