
Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author
names and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included.
Also check the accuracy of special characters, equations, and electronic supplementary
material if applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious
consequences. Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally
introduced forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are
not allowed without the approval of the responsible editor. In such a case, please contact
the Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further
changes are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.link.springer.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

http://www.link.springer.com


Metadata of the article that will be visualized in
OnlineFirst

ArticleTitle A model-based framework for mobile apps customization through context-dependent rules
Article Sub-Title

Article CopyRight Springer-Verlag GmbH Germany, part of Springer Nature
(This will be the copyright line in the final PDF)

Journal Name Universal Access in the Information Society

Corresponding Author Family Name Paternò
Particle
Given Name Fabio
Suffix
Division
Organization CNR-ISTI, HIIS Laboratory
Address Via Moruzzi 1, 56124, Pisa, Italy
Phone
Fax
Email fabio.paterno@isti.cnr.it
URL
ORCID http://orcid.org/0000-0001-8355-6909

Author Family Name Manca
Particle
Given Name Marco
Suffix
Division
Organization CNR-ISTI, HIIS Laboratory
Address Via Moruzzi 1, 56124, Pisa, Italy
Phone
Fax
Email marco.manca@isti.cnr.it
URL
ORCID

Author Family Name Santoro
Particle
Given Name Carmen
Suffix
Division
Organization CNR-ISTI, HIIS Laboratory
Address Via Moruzzi 1, 56124, Pisa, Italy
Phone
Fax
Email carmen.santoro@isti.cnr.it
URL



ORCID

Schedule
Received
Revised
Accepted

Abstract The advent of the Internet of Things and mobile applications has made the possible contexts of use more
and more varied, and creates new challenges for user interface developers. Although model-based
approaches aim to support the generation of applications for different implementation technologies, limited
attention has been paid to how to exploit them for novel context-dependent applications. We present a
model-based framework that allows developers to flexibly customize their mobile apps to react to events
not foreseen in the initial versions. It is composed of an authoring environment supporting the definition of
model-based descriptions and generating mobile apps from them. The authoring environment allows
developers to enrich the dynamic behaviour of the generated applications through trigger-action rules. The
resulting versions of the apps can provide customized behaviour according to the actual contexts of use.
The authoring environment supports efficient development of such customizations. We show its potential
by describing a trial application, and report it on a first test with developers.

Keywords (separated by '-') Authoring context-dependent applications - Model-based mobile app generation - Event–condition–action
rules

Footnote Information



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Vol.:(0123456789)1 3

Universal Access in the Information Society 
https://doi.org/10.1007/s10209-018-0620-x

LONG PAPER

A model-based framework for mobile apps customization 
through context-dependent rules

Marco Manca1 · Fabio Paternò1   · Carmen Santoro1

 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The advent of the Internet of Things and mobile applications has made the possible contexts of use more and more varied, 
and creates new challenges for user interface developers. Although model-based approaches aim to support the generation 
of applications for different implementation technologies, limited attention has been paid to how to exploit them for novel 
context-dependent applications. We present a model-based framework that allows developers to flexibly customize their 
mobile apps to react to events not foreseen in the initial versions. It is composed of an authoring environment supporting the 
definition of model-based descriptions and generating mobile apps from them. The authoring environment allows develop-
ers to enrich the dynamic behaviour of the generated applications through trigger-action rules. The resulting versions of 
the apps can provide customized behaviour according to the actual contexts of use. The authoring environment supports 
efficient development of such customizations. We show its potential by describing a trial application, and report it on a first 
test with developers.

Keywords  Authoring context-dependent applications · Model-based mobile app generation · Event–condition–action rules

1  Introduction

We are witnessing an increasing availability of environ-
ments characterized by the presence of a multitude of con-
nected objects and devices. In such environments, a variety 
of events can occur, triggered by changes in the state of such 
objects and devices, and by human behaviour. However, it 
is usually very difficult to foresee at design time the rel-
evant events to consider and how to manage their occurrence 
appropriately. Thus, it becomes important to design novel 
environments that allow developers to rapidly customize the 
context-dependent behaviour of their applications in terms 
of how they should react to dynamic events occurring in the 
surrounding environments.

Model-based approaches [1] aim to support user inter-
face generation starting with some logical descriptions. In 
this way, it is possible to obtain implementations for various 
platforms with limited effort for developers. Some of such 
approaches exploit domain-specific languages [2, 3], namely 
languages designed to support a well-defined set of tasks. 
However, when addressing context-dependent applications, 
a model of the interactive application is not enough: a model 
of the possible contexts of use should also be provided along 
with ways to connect both models. In addition, there is a 
need for continuously updating such relationships to address 
how the application behaves when faced with new contexts 
or new situations that were not originally considered.

Nowadays, the need for more effective approaches for 
developing (and even evaluating and testing [4, 5]) mobile 
context-dependent Internet of Things (IoT)-based apps is 
pressing, especially in business environments, which are 
changing rapidly and where there are many organizations 
that need to deliver their products and services in a variety of 
business contexts. For instance, this is the case of companies 
managing chains of shops, where each shop presents spe-
cific aspects to consider in terms of size, products, users, or 
organizations managing several elderly assistance facilities, 
which have specific ways to monitor and support patients 

 *	 Fabio Paternò 
	 fabio.paterno@isti.cnr.it

	 Marco Manca 
	 marco.manca@isti.cnr.it

	 Carmen Santoro 
	 carmen.santoro@isti.cnr.it

1	 CNR-ISTI, HIIS Laboratory, Via Moruzzi 1, 56124 Pisa, 
Italy

AQ1

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

A1
A2

A3
A4

A5
A6

A7
A8

http://orcid.org/0000-0001-8355-6909
http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-018-0620-x&domain=pdf


UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

depending on their conditions. Developers of such applica-
tions must rapidly provide apps for different platforms (oth-
erwise a good fraction of potential users could be lost) in a 
continuously growing device landscape [6]. Moreover, they 
also need to define, produce, and maintain different variants 
of the same application, with each version implementing a 
behaviour adjustment of the same application to the specific 
requirements, functionalities and software quality factors 
required by their clients operating in varying contexts. Typi-
cally, this often results in a laborious, costly and inefficient 
process where manual coding is the predominant approach, 
low-level configuration of heterogeneous hardware/sen-
sors is needed, and cross-platform portability remains dif-
ficult. To cope with such issues, a number of model-based 
approaches and frameworks for cross-platform development 
of mobile applications have been put forward [3, 7], some 
of them addressing specific domains: for instance, MD2 [8] 
and its enhancements [9–11] is aimed at business applica-
tions, while [12] is more oriented to be used in classrooms, 
for teaching application development on multiple platforms. 
However, current tools do not support context-based defi-
nition and configuration of such variants in an adequate 
manner, since generally each variant is defined from scratch 
and its development is kept separate. In addition, context-
dependent adaptation decisions are typically hard-coded in 
applications, whereas a separation of concerns should be 
pursued.

The work presented in this paper aims to fill this gap, and 
consists of a method and a set of tools (including an author-
ing environment) to obtain mobile apps that can be rapidly 
updated by developers. One novel aspect of the proposed 
approach is that it allows developers to dynamically obtain 
context-dependent versions of mobile apps by specifying 
and executing rules that can be added any time without gen-
erating again the application. In particular, the contributions 
of this paper are:

•	 Model-based generator: A model-based environment, 
able to generate native mobile apps;

•	 Language for rules: A language for defining relevant 
event–condition–action rules, for specifying context-
dependent adaptation rules;

•	 Support for personalisation: An authoring environ-
ment able to support developers to specify model-based 
descriptions of interactive applications, and associated 
rules that customize their context-aware behaviour.

In the paper, following the Introduction, we analyse rel-
evant work in the state of the art. Then, we describe the 
presented approach by specifying a relevant scenario, 
highlighting the original aspects of the presented solution 
and describing its relevant architectural modules. The next 
section provides information about the adaptation rules 

considered in the approach. Then, the proposed Context-
dependent applications Authoring Tool (CAT) is described, 
as well as the approach followed for generating android-
based applications from model-based descriptions. Then, we 
describe how the approach proposed manages contextual 
rules, and afterwards present an example application that 
shows its potential. Finally, we report on a test with some 
developers, and conclude the paper by providing closing 
remarks.

2 � Related work

The increasing availability of devices and sensors calls for 
authoring tools and frameworks able to support develop-
ers in exploiting such opportunities. For example, Nebeling 
has proposed authoring environments [13] able to facilitate 
the development of cross-device user interfaces taking into 
account relevant patterns of interactions. GlueTK [14] was a 
C++ framework for developing cross-device user interfaces 
able to exploit various interaction modalities. However, nei-
ther of these contributions addressed how to enable such 
applications to react and adapt to dynamic events detected by 
sensors associated with connected objects or environmental 
aspects.

The success of recent services such as IFTTT (http://ifttt​
.com/) demonstrates the emerging need for ways to custom-
ize the available applications to react to various contextual 
situations. However, IFTTT is limited in terms of expressive-
ness, because it allows users to create rules containing only 
one trigger and one associated action, whereas recent studies 
[15] have shown that even end users can manipulate more 
structured rules. Moreover, IFTTT only allows end users to 
connect events and actions that are already supported in a 
set of predefined applications, while our approach seeks to 
enable developers to efficiently modify their applications 
to better react to various combinations of contextual events 
and conditions. AppsGate [16] aims to support non-expert 
users to program their smart environments. In our case, we 
aim to provide an authoring environment intended for use by 
developers, since it requires some knowledge in modelling 
and programming (thus it is not for end user development 
environment). In addition, compared to [16], our solution 
can be exploited in various applications domains (not only 
the home). Another work [17] has proposed a meta-design 
approach for personalization of Internet of Things applica-
tions in various domains, though it targets end users without 
programming experience, thus narrowing the complexity of 
the customizations that can be achieved. For instance, in 
[17], only a limited number of types of UI modifications 
are supported, whereas in our approach every attribute of 
the elements belonging to a UI specification can be referred 
by a rule.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

http://ifttt.com/
http://ifttt.com/


UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

Some previous work has addressed the design of context-
dependent applications. For example, iCAP [18] is a system 
that allows designers to specify applications in terms of a set 
of rule-based conditions. Unfortunately, such rules are often 
insufficient to obtain complete application descriptions, and 
iCAP did not address user interface modifications, since it 
mainly supported controlling surrounding appliances. One 
approach to obtain customization through trigger-action 
rules was put forward in [19], but it was an authoring envi-
ronment limited to web applications, did not use a model-
based language and, since it was based on web browser 
extensions, it was not able to address native apps (which are 
often preferred because they perform more efficiently). In 
addition, that approach was able to address a limited set of 
contextual aspects.

Model-based approaches aim to support designers and 
developers to concentrate on the main aspects of application 
design by hiding implementation details through conceptual 
descriptions. One important contribution in this area was 
Supple [20], which provided a tool able to consider aspects 
related to the user and the device at hand for generating 
a personalised version of the interactive application. Other 
researchers [21] showed how to generate versions optimized 
for mobile devices. However, the combined explosion of 
mobile technologies and the Internet of Things has limited 
the impact of such contributions, since they are not able 
to address the variety of contextual aspects to consider 
for customizing interactive applications. More recently, a 
generative approach with semantic interaction descriptions 
to obtain UIs for smart things was proposed [22], though 
again it assumed static configurations of the smart things 
to address and thus was unable to support customization in 
dynamic contexts of use.

In [23], the authors address the problem of developing 
and maintaining multiple native variants of mobile applica-
tions. To this goal, they present a model-driven engineering 
approach for automated generation of feature-based applica-
tion variants for multiple mobile platforms. The approach 
allows developers to generate native mobile application 
variants covering: (1) variations due to operation systems 
and their versions; (2) variations due to software and hard-
ware capabilities of mobile devices; and (3) variations 
based on the functional requirements of a mobile applica-
tion. However, compared to our solution, this approach has 
less explicit consideration of the development/customisation 
of cross-platform applications leveraging the opportunities 
offered by the IoT world (in terms of modelling behaviour 
that can dynamically change according to the occurrence of 
events and conditions in the context).

Other authors have focused more on how model-based UI 
development approaches can be exploited to address certain 
aspects related to the experience of users interacting with 
ubiquitous applications. Recent contributions [24] presented 

a UI development framework for ambient applications inte-
grated with a user modelling system, to provide usability 
predictions during early development stages. Other authors 
[25] addressed the issue of ensuring consistency of user 
experience across different and heterogeneous devices and 
platforms. To this aim, they introduce a generative design 
pattern-based approach for cross-device services. How-
ever, as the authors themselves acknowledge, the specified 
approach is able to address only limited contextual variabil-
ity. In our work, we aim to overcome such limitations, still 
using a model-based approach. We aim to obtain a more gen-
eral solution able to also address native apps, cover a broad 
set of contextual aspects, support the composition of events, 
conditions, and actions, and access the state of appliances.

In other model-based approaches [26], the focus was 
mainly on the reusability of UI components/fragments, 
based on the idea that the work of developers could be highly 
simplified with automatic UI composer tools able to build 
new applications by reusing parts of existing ones. However, 
that approach mainly focuses on constructing standalone 
Java-based UIs, and provides limited support of context-
dependent aspects relevant for customizing applications by 
developers. To this regard, a more relevant contribution is 
[27], which presents so-called “self-adaptive UIs”, allowing 
run-time UI adaptation obtained by an automatic reaction 
to context of use changes. In that approach, a model-driven 
development of UIs (based on IFML) is coupled with a sepa-
rate model-driven development of UI adaptation rules and 
context of use called AdaptUI. However, in that work the 
opportunities for adaptation are mainly limited to UI-related 
changes, whereas in our approach a more comprehensive set 
of actions is provided, including those controlling devices, 
objects and appliances available in the current context of 
use.

3 � Approach

3.1 � Motivating scenario

The need for an application to operate in different contexts 
of use, and thus require different versions to better address 
them is important in various application domains. An exam-
ple can be found in the retail domain, in which the same 
retail application can be deployed for radically different con-
texts of use ranging, for example, from large supermarkets 
in big shopping malls to smaller stores in town quarters. The 
latter ones are generally located in older buildings and have a 
limited capability of the underlying technological infrastruc-
ture, whereas large stores are in new buildings, with highly 
technological infrastructures that allow easier integration of 
new sensors and devices. Thus, the same application asso-
ciated with the two types of shops has to handle radically 

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

different requirements. For instance, due to the small num-
ber of sensors available in the shop, the owner of the small 
shop is not able to offer a lot of functionalities in the associ-
ated customers’ application. On the contrary, owners of big 
markets would aim to offer a high quality mobile shopping 
experience exploiting advanced technological infrastruc-
ture and customized services (e.g., dynamic personalisation 
of prices and offers based on customer profiles and their 
actual behaviour while moving in the shop), also to make 
the shopping experience more efficient (e.g., real-time direc-
tions for locating hard-to-find products, mechanisms to avoid 
queues). In addition, in both cases shop managers may like 
to introduce some more specific customization rules to the 
app, based on observation of actual clients’ behaviour. From 
this small example, it is clear how the same application can 
differ in terms of events to recognise and associated context-
based functionalities offered, which can vary depending on 
resources available, types of users, and other relevant con-
textual factors.

However, handling different yet closely related imple-
mentations could be difficult and time-consuming. What 
typically happens currently is that developers that have to 
build an application for a retail brand that has both big stores 
and small ones would end up developing and maintaining 
two different versions, having a common set of core func-
tionalities typically associated with the considered domain 
(i.e., retail), and further characterised by specific function-
alities requested by the particular shop. For instance, on the 
one hand, within the version targeting the big supermarket, 
there will be functionalities devoted to smart management of 
discounts and promotions to offer to users, and other func-
tionalities for supporting customers in the mall (thanks to 
the technological infrastructure available in the big super-
market). On the other hand, the version targeting the small 
shop would not provide any specific support, for example, 
assisting customers while they are in the shop, since no par-
ticular sensing technology is likely to be available. Then, 
it would only include, e.g., personalised lists of daily and 
weekly offers (possibly customized taking into account cus-
tomer profiles, their latest purchases, seasonal aspects, etc.).

The traditional development path on its own would not 
be sufficient to support adaptive capabilities, that is to say, 
support functionalities that need to change their behaviour 
over time, in a context-dependent manner. Thus, we need 
mechanisms not only allowing for easily managing different 
application versions in a consistent manner, but also sup-
porting developers to enable the application to easily evolve 
and adapt depending on changing requirements and needs 
of users, by dynamically adding new rules or modifying the 
existing ones, anytime. This is different from traditional 
approaches, which tend to handle context-dependent behav-
iour by hard-coding it in the implementation code from the 
beginning.

3.2 � Novel aspects of the solution

For describing interactive applications, we have used the 
MARIA language [28], which supports various abstraction 
levels for specifying a user interface. MARIA has one lan-
guage for the abstract description, the so-called “Abstract 
User Interface” (AUI) level, in which the UI is described in 
a platform-independent manner, and multiple Concrete User 
Interface (CUI) languages, which support specifications of a 
User Interface for a specific platform independent of imple-
mentation languages. Such CUIs are obtained as refinements 
of the abstract one depending on the interaction resources 
of the target platform. Examples of platforms include the 
graphical desktop, the graphical mobile, and the vocal. For 
this work, we chose to use MARIA because its specification 
is publicly available, and there are already generators for 
web-based implementations. Furthermore, a tool (MARIAE 
[29]) supporting MARIA language is publicly available, 
which facilitates the specification of MARIA-based UIs.

The MARIA environment also provides a tool supporting 
a reverse engineering process: it takes in input of an exist-
ing web application and returns the correspondent Abstract 
and Desktop Concrete UI description. Thus, through an 
automatic generation it is possible to obtain a native mobile 
version of an existing web application. We have developed 
a new generator for native android apps (from this work a 
generator for other types of native apps, such as iOS, can 
be obtained).

To have a clear separation of concerns (which facilitates 
the development of customized versions), in the presented 
approach the management of contextual aspects is defined in 
trigger-action rules, specified separately from the application 
description, even if the effects on the applications refer to 
MARIA elements. The only component related to the rules 
that the generator should integrate in the final application is 
the action interpreter, which is a component able to receive 
the actions, and apply them. The authoring environment has 
been designed to facilitate this integration. The novelty of 
this environment is not only the model-based generation of 
android apps (which has not been trivial since the android 
application model is quite different from the web application 
model). Another novel aspect is the integration of model-
based descriptions of user interfaces with rules specified 
in terms of event–conditions–actions. In such rules, events 
and conditions refer to the context model, whereas actions 
can affect devices, objects, and appliances deployed in 
the context and also user interface elements defined in the 
model-based description. In this way we obtain an original 
solution for customizing the behaviour of context-depend-
ent apps, which is more general than approaches such as 
iCAP [18] and more flexible than previous model-based 
approaches. The authoring environment supports composi-
tions of triggers; thus, it is possible to specify expressions 

AQ2

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

able to combine different context aspects, which cause the 
execution of a customization rule. This solution enables the 
implementation of applications personalised according to 
indications that can be provided by domain experts (e.g., 
shop managers, caregivers, etc.).

3.3 � Method

In the proposed solution (Fig. 1), designers use the CAT 
to build first the MARIA specification of the application, 
and then the relevant adaptation rules that will manage the 
context-dependent customization aspects. Such rules are 
expressed in event–condition–action format. The MARIA 
specification is a model-based description of the application 
from which various generators can derive an implementa-
tion of the application for different platforms. The rules are 
defined by first indicating relevant events and/or conditions 
referring to the contextual entities included in the context 
model (which provides a logical specification of the entities 
that characterise the context) shown by the tool, then indicat-
ing the actions to perform on the elements of the relevant 
MARIA specification. Such actions can change the user 
interface of the generated application or generate specific 
effects (e.g., reminders or alarms) or change the state of the 
appliances managed by the application.

At run-time the generated mobile application first sub-
scribes to the server-side module called adaptation engine 
(AE) so that the latter can get from the adaptation rule repos-
itory the rules (defined through the authoring environment) 
associated with the current application and a specific user. 

The code responsible for the subscription is also produced 
during the app generation. Such rules are then used by the 
AE to subscribe to the context manager to be notified when-
ever any event/condition involved in such rules is verified in 
the current context. As soon as an event occurs or a condi-
tion is verified, the context manager notifies the AE. The 
AE then checks whether there is any adaptation rule associ-
ated with the current application and user containing such 
event or condition, which could be triggered. In this case, the 
AE extracts the list of actions specified in such set of rules 
and sends them (in an XML-based format) to the mobile 
application, so that they can be interpreted and executed for 
customization goals. Indeed, applications include an inter-
preter (which is automatically generated when the context-
dependent app is created) that is able to interpret and apply 
actions written in such format.

Thus, the AE and the context manager are pre-existing 
software modules, which compose the personalization plat-
form. The AE acts as a repository of the rules and activates 
adaptations rather than directly carrying them out. Moreover, 
it is able to select which rule activate when multiple rules are 
triggered through a priority mechanism. It is also connected 
with the context manager, a software module (customizable 
for different environments) able to gather information from 
various sensors and devices and to notify other architectural 
components about the occurrence of relevant events or con-
ditions (e.g., the user enters home). When an event occurs or 
a condition is verified, the context manager informs the AE, 
which identifies relevant adaptation actions. Such actions 
can determine updates in the interactive application (e.g., 

Fig. 1   Overview of the 
approach (design and run-time)

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

reorganize the layout, activate functionalities, etc.) as well 
as change the state of appliances available in the current con-
text of use (e.g., switch on the radio, change light intensity). 
Both the AE and the context manager are deployed in the 
same host for the sake of efficiency. The reason why the AE 
is in a server and not in the mobile device is that it frequently 
has to interact with the context manager, and has to manage 
rules that can refer to different applications or application 
versions, or even to different users of the same application. 
Indeed, the rules created through the authoring tool can be 
associated to a specific application and a specific user.

The context manager provides functionalities to col-
lect data from external contextual sources, such as sensors 
(temperature, noise, light, doors/windows closure, power 
absorption, etc.) or external services (e.g., weather fore-
cast). It uniformly integrates such heterogeneous data in a 
common format, stores them, and makes them available to 
other architectural modules. The context manager is com-
posed of one centralised module (context server) and a set 
of modules (context delegates), which can be distributed on 
various devices. The context delegates are software modules 
developed for handling data coming from associated sen-
sors. In particular, they are tiny pieces of software able to 
connect to the concerned sensor, read the detected raw data 
and translate such data according to a homogeneous format 
able to abstract out from the heterogeneity of the specifica-
tions produced by the various sensors. Such data are sent 
to the context server which will update relevant data struc-
tures accordingly, to keep the state of the context updated. 
The context delegates can be deployed in various manners. 
For instance, the context delegate for monitoring the state 
of a smart lighting system can be deployed in the bridge 
that manages the associated lights. A delegate that collects 
temperature, humidity and motion values and sends them to 
the context server can be executed in an Arduino board. A 
smartphone can host a delegate that detects environmental 
noise by interfacing with the device’s microphone.

Figure 1 provides an abstract description of the over-
all approach. Figures 5 and 6 provide more detail for the 
design and run-time phases, respectively. The context model 
is structured in a hierarchical manner, which makes it well-
suited to easily define customization rules based on relevant 
contextual events/conditions. At the highest level, the con-
text model includes four main contextual dimensions: user, 
environment, technology and social aspects. Each dimen-
sion is further refined into a number of sub-categories. For 
instance, the environment dimension (which provides gen-
eral information on the surroundings) includes information 
concerning its type (e.g., indoor/outdoor), name, spatial 
aspects (e.g., size, shape, and position), ambient condi-
tions (further refined into temperature, light level, noise, 
humidity, motion, presence, time, and weather), and things/
appliances available in the considered environment. As the 

context model is described by a XML schema (XSD), the 
context manager can directly manipulate JAVA classes that 
are automatically derived from such XSD.

By traversing the hierarchy of the context model (from 
the highest level to the lowest level), it is possible to define 
a ‘semantic’ path to the specific contextual aspect develop-
ers aim to refer to. A new sensor can be easily integrated 
in the platform by simply defining a new context delegate 
associated with it. If a new contextual attribute is not defined 
in the context model, the latter can be modified to include 
and describe the data sensed by the new sensor. Then, the 
associated context delegate can send to the context server 
the sensed data value and the path in the context model 
hierarchy corresponding to the attribute, so that the context 
server can update the relevant data structures accordingly. 
For instance, in the complex condition IF < living room 
lamp is off > AND < light level in the living room is low>, 
two attributes associated with entities defined in the context 
model are referred. The corresponding paths used to identify 
the contextual resources referred by the rule are, respec-
tively: technology/physicalObject/hue-lamp-livingroom/@
state and environment/livingroom/@light_level. As it can 
be seen from Fig. 1, the context manager shares the context 
model with the authoring tool. As it will be further described 
in the following sections, the context model can be imported 
into the authoring tool so that developers, while defining a 
certain trigger and its properties, can easily select the pos-
sible events and conditions referring to the imported context 
model.

4 � Adaptation rules

Adaptation rules are expressed through an ECA-based 
(event, condition, action) language, where events are 
instantaneous changes of the context state, conditions are 
Boolean predicates referring to states of contextual entities, 
and actions are changes to be applied either to the interac-
tive application or to the state of appliances managed by the 
target application, or they involve the activation of external 
functionalities. It is worth noting that actions are applica-
tion-dependent: since it is the application that interprets and 
executes them, the actions should be tailored to the appli-
cation. An example rule is “IF presence is detected in the 
living room AND the light level of the living room is low, 
THEN switch on the living room light that is on the table”. 
The meta-model of the language for specifying adaptation 
rules is shown in Fig. 2. A rule model is composed of one or 
more rules. Each rule can have one event part, one condition 
part, and one or more actions.

The event part can be either an elementary event, or 
a composition of events obtained by applying a 1-ary or 
an n-ary operator to event elements. Events compositions 

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

could also (optionally) specify a time interval in which the 
involved events should occur. A simple event is characterised 
by a name, and a string containing the path identifying the 
corresponding entity within the context model. Conditions 
can be elementary Boolean expressions (e.g., noise < 50), or 
complex ones [e.g., (noise < 50) AND (light = high)]. The 
specification of elementary conditions implies the specifica-
tion of one of the following elements: a context entity refer-
ence, a constant, an expression (to be used when the referred 
entity is not directly available but is the result of a calcu-
lation). The specification of complex conditions involves 
multiple elementary conditions and the use of Boolean 
operators. A rule can specify one or more actions. There 
are various action types: some elementary actions (create, 
read, update, delete) and a number of well-known constructs 
to combine them such as if, while, for each, for, block (a 
sequence of actions that can be named for further reference). 
The invoke function is used to access an existing service 
which might be connected to available appliances. Other 
actions (update, create, delete) are aimed at customizing the 
UI (in terms of presentation aspect or content), while other 
actions (update, invoke function) are directed to change the 
state of appliances managed by the application. To obtain UI 
modifications, rules refer to the MARIA Concrete UI (CUI) 
specification, to indicate the actual elements to modify in the 
UI. A rule can also activate other rules and it is also possible 
to define specialized rules that are defined for one specific 

application. In this approach, conflicting rules are those that 
would require some appliances to be in different states at the 
same time (e.g., one rule asking to switch on a lamp in the 
morning and another one asking to turn it off), or rules that 
refer to the same UI element and, while the first one hides 
the element the other one renders it. Our environment is 
able to analyse the rules, detect whether they have conflict-
ing actions, check if such actions can be executed at the 
same time, and, in the positive case, highlight the involved 
issues. Rules can also have priorities, useful when multiple, 
conflicting rules occur simultaneously.

In addition, the system is able to handle dynamic and 
rather unexpected situations that can occur during the devel-
opment and could potentially lead to inconsistent states. For 
instance, if a developer modifies the MARIA specification 
and a rule refers to a UI element that no longer exists as a 
consequence of that previous change, the authoring environ-
ment is able to detect this and inform the developer about 
this inconsistency so that she can act upon it.

Another case is when a rule refers to a device or to an 
appliance which is no longer available at run-time in the cur-
rent context. In this case, the rule will not be activated and, 
as a consequence, the associated action will not be applied 
and executed. Such an unexpected situation is identified by 
the context manager which has the overview of all the sen-
sors, appliances and devices which are actually active in the 
current context, by means of receiving regular updates from 

Fig. 2   The meta-model of the language for the rules

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

the associated context delegate. If no update associated with 
a particular context entity is received by the context server 
within a specific threshold, that element will be considered 
no more active. The structure of the adaptation rule is speci-
fied in a XSD schema. Using the CAT tool (described in the 
next section) the adaptation rules can be easily edited and 
then saved in XML language for facilitating their sharing.

5 � The CAT authoring environment

The CAT authoring environment has been developed to 
support the editing of the user interface specification and 
the associated event–condition–action rules. The part con-
cerning the authoring of the MARIA specification of the 
interactive application is similar to [29]. We focus on the 
novel part that allows developers to specify event–condi-
tion–action rules with references to a context model (for 
indicating events and conditions), and to the application 
specification (for indicating possible actions which modify 
the UI aspects). Figure 3 shows the authoring environ-
ment, which is organized in various panels. In the left 
panel, there is the list of the rules defined for the current 
application. In the central panel (the rule editor), there 
is the presentation of the rule which is currently edited. 
The right panel presents some lateral tabs that allow the 
designer to change dynamically its content. In particular, 
the tabs associated with the right panel are: rule elements, 
which shows the allowed children of the rule element cur-
rently selected in the central panel, following the structure 
and the constraints defined in the meta-model described in 
the previous section. Thus, it is possible to define a rule 

by dragging an element from the right panel and dropping 
it in the central panel; a double-click on an element cur-
rently visualised in the central panel will open a dialog box 
with the list of editable attributes; CUI (the tab currently 
selected in Fig. 3, which stands for “Concrete User Inter-
face”), which shows the interactive tree-like representation 
of the MARIA specification of the interactive application 
that the current rule refers to, so that developers can easily 
refer to elements of the associated UI while editing a rule; 
rule element attributes, for defining the attributes of vari-
ous rule elements; context model, showing the elements of 
the context model visualised according to its hierarchical 
structure.

The “CUI” tab content is useful when developers need 
to create a rule in which the included actions affect an ele-
ment of the user interface. In such cases the developer can 
select a user interface element from this tree-like specifica-
tion and, using drag & drop, include a reference to the con-
cerned CUI element into the specification of a rule action.

A similar approach has also been used to enable design-
ers to easily specify rule events and conditions. Since 
events and conditions both refer to contextual aspects, 
their definition will refer to context entities contained in 
the context model, which can be imported into the Author-
ing tool. In particular, the user can select the “context 
model” tab of the right panel of the tool (which shows the 
context model), and then drag & drop the reference to a 
specific contextual entity or attribute of interest into the 
specification of the event/condition part of the rule cur-
rently shown in the central panel. A video showing how to 
interact with the authoring tool is available at http://youtu​
.be/UbGnf​mA4Ml​A.

Fig. 3   The CAT authoring environment

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

http://youtu.be/UbGnfmA4MlA
http://youtu.be/UbGnfmA4MlA


UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

6 � From MARIA to android implementation

The MARIAE editor already provided generators for a 
number of implementation languages (HTML5 + JavaS-
cript, VoiceXML, X + V). However, the generation of 
android native mobile apps from MARIA specifications 
has not been addressed before. Here we report on how a 
generator for android apps has been designed and imple-
mented. To obtain a native app for another platform, there 
is no need to re-define the MARIA specification; it would 
simply require another generator which takes as input the 
same description and produces code for the target platform 
(e.g., iOS).

The environment in which android apps are executed 
is rather different from the one used by web ones. Indeed, 
android apps maintain their state even if they are no longer 
visible, while in web applications this has to be man-
aged explicitly by programmers. Developing an android 
application is based on two main concepts: activities and 
services. Activities are elements that require direct inter-
action with the user. Services are applications that work 
independently and can be started by activities if they are 
needed. In android apps, there are no links because the 
navigation is managed through dynamic activation and ter-
mination of the activities. Activities contain a GroupView 
object that defines the user interface, and which can con-
tain several elements of the same type (view elements), 
which represent the graphical widgets. The GroupView is 
commonly called layout. An activity can also contain one 
or more fragments. A fragment represents a portion of the 
user interface in an activity and it can be used by one or 
more activities, while an activity can use more than one 
fragment.

The generation process recursively analyses the MARIA 
user interface elements and creates the android implemen-
tation. For this purpose, the generator uses intermediate 
representations (wrappers), which are classes that imple-
ment a specific Java interface, which in our case consists 
of a method to handle the generation of Java code. Each 
wrapper also contains the information needed to repre-
sent the UI element (e.g., the button wrapper will contain 
the text, the size, the text colour, the background colour, 
etc.). The wrappers provide an intermediate representation 
of the android elements aimed to maintain the generator 
code more readable and modular. The generator takes a 
MARIA file as input, interprets it, and transforms it to 
an android-based counterpart, based on activities, layouts 
and views. The generator analyses each MARIA element 
starting from the root. If it is elementary, the result is the 
corresponding android wrapper; otherwise (i.e., it is a 
complex element) the generator is called recursively on the 
elements contained within it. In particular, the generator 

starts by analysing the initial element of the MARIA 
file (‘interface’ element). From this element, it obtains 
information about the name of the project, the external 
functions and the data model (a data structure storing 
the values of all UI elements). Then, it creates a wrapper 
containing such information, as well as the manifest file 
and the files needed by an android compatible IDE. Then, 
the generator continues to analyse the interface children, 
which are the presentation elements. Each of them repre-
sents a view for the android interface, and the presenta-
tion is translated into a concrete android activity equipped 
with one or more fragments (this number depends on the 
number of presentation children). After having handled 
the presentation element, the generator begins to analyse 
recursively the child elements starting from the first group-
ing element. The generator applies the recursion only to 
complex elements (groupings, repeaters and relations). 
In these cases, it generates a Layout wrapper and reiter-
ates over the children to generate the respective wrappers 
and put them inside the previously generated Layout. The 
generator analyses the properties of the MARIA elements 
and adds them to the wrapper: for example, a grouping 
can have a title, a background colour, a width, etc. Simple 
interface elements typically do not need a layout but are 
objects supported by android.

In UI specifications, it may happen that one element 
appears multiple times in different parts of the specification: 
this can introduce errors and can be hard to maintain. To 
avoid such errors, we decided to allow developers to reuse 
portions of user interfaces defined in other presentations. 
For this reason, we added the “ref” (reference) attribute 
to the composition of elements: this attribute informs the 
generator that the considered composition refers to another 
one, and the generator should refer to that definition. The 
example in Fig. 4 shows a UI containing two different pres-
entations. Presentation 1 is a login view with a grouping 
element (grouping 1), which includes three different children 
elements: a text box (TextEdit 1) where the user can type 

Fig. 4   The logical structure of an example user interface

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

the username information, a text box (TextEdit 2) where the 
user can type the password, and a button that, when selected, 
makes the application check the login and the password by 
sending this information to an external function. When the 
function returns the login response and the credentials are 
not valid, presentation 2 is shown.

This second presentation has two different grouping ele-
ments: the first one (grouping 2) contains an error message 
(description) to show that the login was not successful, and 
the second (grouping 3) should contain the same text boxes 
and button as presentation 1 to re-insert the login creden-
tials. Thus, grouping 3 refers to grouping 1. In the structure 
of the android application corresponding to this MARIA 
example the presentations are mapped into two activities, 
and even if there are three groupings, only two fragments 
will be generated, because grouping 3 refers to grouping 1 
and the fragment generated from grouping 1 is used (through 
a reference) for both activities. As already mentioned, an 
application can call functions defined externally (e.g., the 
login function of the previous example). Such functions can 
return values representing the results of their execution, and 
these values can be used in different presentations of the 
same interface. For this reason, the MARIA specification 
includes the definition of a data model used to store the user 
interface state, and defined through a specific XML schema 
definition (XSD). An external function includes input and 
output parameters. The input parameters values can be taken 
either from a user interface element or from the data model. 
Once the external function has been executed, the generated 
values are stored in the data model so that one or more UI 
elements can present them.

The generated implementation manages the data model 
through a Java Class shared amongst all the activities of the 
application. To implement external functions, the generator 
creates a class called AsyncFunctionHandler to call exter-
nal functions without locking the interface. This class uses 
asynchronous threads, and the functions are called from a 
thread different from the main thread that handles the UI. 
When the code generation is completed, the generator cre-
ates the scripts associated with the MARIA elements (acti-
vators) that perform the activation of the external functions. 
To do so, the generator creates a handler for a specific event 
(e.g., the click of a button), which performs an asynchronous 
call to the web server that contains the function. The asyn-
chronous thread waits for the response from the web server 
and inserts the result inside the data model (as specified 
in the MARIA description). Finally, the generator creates 
the connections between the activities. Connections can be 
elementary or conditional: an elementary connection is acti-
vated when the user interacts with a navigator element, and 
starts a new activity. Conditional connections model cases 
when switching from one presentation to another one is trig-
gered only if a specified condition is verified; the condition 

may refer to a value of either a UI element or an element 
stored in the data model. Conditional connections are only 
executed after applying changes to the data model made by 
external functions to have it updated before making deci-
sions on which presentation to load. The generated code of 
a conditional connection starts a new activity on the screen 
if the condition is verified, while a simple connection starts 
the activity without checking anything.

7 � Contextual rules management

The generated applications are context-dependent, which 
means that they can change their dynamic behaviour depend-
ing on contextual events or conditions described by rules 
defined through the CAT authoring tool. Figure 5 shows 
what happens at design time, mainly focusing on the gen-
eration process, where the authoring environment supports 
the editing of both the MARIA specification and the rules 
for the application. The MARIA specification is handled by 
the android generator to generate the corresponding android 
application, while the event–condition–action rules are then 
sent to the AE, which stores them for use at run-time. To 
manage the contextual customization, the generator includes 
in the application a class called AsyncTaskUpdater. This 
class extends the AsyncTask interface that defines asynchro-
nous threads for android applications.

At run-time, this class will open a WebSocket channel to 
the AE and will subscribe to it sending its credentials (which 
include the app name and the user name), to receive the 
actions to support the application customisation needed for 
the specified user when a rule is triggered (see Fig. 6, which 
better details what happens at run-time).

The AE loads the rules associated with the application, 
and subscribes to the context server to be informed when an 
event occurs or when a condition is satisfied. When a sensor 
changes its value, the correspondent context delegate sends 
it to the context server, which updates its internal repre-
sentation of the context, and checks whether such update 
could trigger the execution of a rule. If this happens, the 
context server communicates the verified events/conditions 
to the AE which retrieves the actions described in the cor-
respondent triggered rules and sends them to the application 
through the web socket channel opened before. Indeed, the 
AE provides applications with the actions to carry out speci-
fied through a XML-based rule language, which can refer to 
MARIA elements (e.g., an action may require to update an 
UI element and hence its id should be indicated). The gen-
erator also includes an action interpreter in the application. 
Such interpreter is able to receive the action specifications, 
transform the MARIA identifiers included in them into refer-
ences to the corresponding android objects (the correspond-
ences are indicated in a table created during the generation 

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

phase), and execute them. This computation may also be 
applied on UI parts not currently visible, since they belong 
to a different activity. In this case, all the actions received 
are saved, and then analysed when a new activity is started.

8 � A trial application

In this section, we consider a trial application. The case 
study considers an organisation managing different types of 
residential facilities for persons 60 years old or more. In par-
ticular, the organisation manages various types of supportive 

housing options. Among all, it supports both “assisted liv-
ing” facilities providing independent living opportunities 
such as self-contained private apartments, and a medium-
scale residential centre in which several elderly people live. 
Thus, the organisation needs an application allowing them 
to manage two rather different settings, since the two options 
greatly differ in terms of services offered, technological sup-
port available, environmental conditions, needs and profiles 
of target users.

Indeed, on the one hand, the residential centre provides 
24-h care by skilled professional staff, as well as meals, 
housekeeping, supervision, storage and distribution of 

Fig. 5   The generation of 
context-dependent apps

Fig. 6   The run-time communi-
cation

AQ3

AQ4832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

medication, and even personal care assistance with basic 
activities such as hygiene, dressing, eating, bathing and 
transferring. The facility is composed of several private bed-
rooms (whose occupancy is limited to a maximum of two 
residents per bedroom) and some shared areas: residents can 
share a bathroom with other residents, and common spaces 
where residents can gather with each other or with visitors to 
socialize and recreate. Access to the facility (entrance/exit) 
is controlled by the handling organisation.

On the other hand, private apartments (ranging in size 
from small studio units to two bedroom units) have pri-
vate bathrooms, kitchenettes and locking door, and offer 
easy access to outdoor areas and gardens. Differently from 
residents in the residential care centre, residents of private 
apartments can set their own schedules for when they want 
to wake up, eat meals and go to bed. They are also able 
to enjoy customized, cooked-on-premises meals instead of 
being restricted to a fixed menu.

The two contexts also differ in terms of technological 
support offered for both monitoring conditions of residents 
(e.g., the set of sensors installed) and improving their life/
facilitating their living (e.g., the actuators available). On the 
one hand, some people living in residential facilities wear 
the Plux Bitalino [30] chest band, which gathers from vari-
ous sensors (e.g., ECG, accelerometer, temperature) data rel-
evant for monitoring their health conditions. In addition, still 
within the residential facility, the organisation is also experi-
menting light therapy to investigate its effects on cognition, 
sleep, circadian rhythms and depression on their residents. 
In this setting, the organisation would like to have an appli-
cation effectively managing all such technological support, 
monitoring and assisting the elderly, and even informing the 
staff when some anomalous situation is detected.

On the other hand, people living in private apartments 
are considered more autonomous than the ones living in 
the shared facility. As such, in private flats, the managing 
organisation is more focused on having an application which 
facilitates user themselves in managing their daily routines. 
Thus, in the setting of private apartments, the application 
should rather support users’ monitoring and controlling their 
home environments through a (typically small) set of basic 
sensors/actuators (e.g., lights, thermostats, air conditioning, 
motion), help users in managing typical routine activities 
(e.g., reminders for taking medicines), even persuading them 
in doing specific activities (e.g., doing physical exercise).

Figure 7 shows an example rule (R1) related to a customi-
zation involving a dynamic change of the user interface: “If 
the light level is less than 200 lx, then increase the fonts (by 
10%) and set to black the colour of elements representing 
the medicines the user has to take within the next 10 min”.

It shows an excerpt of the underlying specification of this 
rule obtained through the authoring tool. If the light level 
is under a specified threshold, the action iterates over the 

medicine list (stored in the data model): for each medicine 
whose intake time is expected in less than 10 min from the 
current time, the medicine name in the user interface will 
be modified by increasing its font size, and setting its font 
colour to black. It is worth noting that there is an iteration in 
which two updates actions are applied to each user interface 
element identified by current medicine name. The android 
generator then transforms the references to the MARIA 
specification into references to the corresponding elements 
in the android implementation.

However, it may happen that, after a certain time, the 
user would not suffer anymore from some of the problems 
he had when the rule visualised in Fig. 7 was created. For 
instance, imagine that after a while the user no longer needs 
to take aspirin, Maalox and collyrium (visualised in Fig. 8) 
because the related acute diseases have disappeared. How-
ever, the user has still to take insulin on a regular basis. 
In this situation, the customisation rule R1 could even be 
deleted, and replaced by just a cellphone’s vibration signal-
ling the right time for taking insulin. In addition, after a 
while, since the user frequently tends to waking up during 
the night, there might be the need of creating a rule that 
automatically switches on the light in the living room. Thus, 
a suitable customization rule (R2) could take into account 

Fig. 7   Excerpt of an example rule for elderly assistance

AQ5

AQ6

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

the motion and the light level sensors installed in the home 
in such a way that when the motion sensor detects a move-
ment and if the surrounding light level is less than 200 lx 
(low light), then the living room light is turned on. The rule 
is composed of one event and one condition: the event is 
related to the motion sensor, while the condition is related 
to the light level.

To obtain the desired change of state (from off to on in the 
light installed in the living room), when editing the action 
part, the developer has to access the list of external func-
tions in the MARIA specification (see the right panel in 
Fig. 9), select the relevant one, and indicate the parameters’ 
values that should be used by the function when it is called. 
The rule specification obtained will contain an invoke func-
tion action, indicating the relevant external function to acti-
vate and the associated parameters values. In this case, the 
updateAppliance function takes as input four parameters: the 
room where the appliance is placed, the appliance name, the 
name of attribute that should be updated and the value that 
the attribute should take. The authoring tool facilitates the 
definition of these actions by supporting drag-and-drop of 
the external function definition from the right panel into the 
central one, where the rules are edited.

In the case of residential facility, the home environ-
ment and the vital signs of its occupant are thoroughly 
monitored, and the technological infrastructure available 
is more sophisticated, with actions referring to the IoT 

Fig. 8   Reminding pills in a trial application for elderly assistance

Fig. 9   Editing a rule with invoke function action

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

appliances and devices available (e.g., allowing to con-
trol lights for the light therapy, reacting to information 
detected from the chest band). Thus, the kind of function-
alities that the application should offer is very different 
from the one offered by the version of the application used 
in the apartments. For instance, in the case of residential 
centre, the application functionality and adaptation rule 
for pill reminders presented before would not be useful 
anymore as in the residential centre the professional staff 
takes care of this aspect. Rule examples that are relevant 
for the residential care setting are provided below.

R3: When two or more seniors are in the same shared 
living room, display on the TV the next planned recrea-
tional activities of the day. This can be done to stimu-
late the elderly to do some physical exercise as well as to 
increase their socialization with other peers.

R4: When the elderly is detected to be agitated (e.g., 
heart rate above 100 beats/min and respiration rate above 
30 breaths/min), change the colours and intensity of the 
room lights to gradually move the user to a more relaxed 
and calm feeling and call the caregiver for further help. 
In situations of elderly becoming upset, a rule like this 
can be used to provide the elderly with an immediate help 
coming from the smart environment surrounding them, 
before professional staff arrive and directly offer help. 
In this case, the smart ambient would provide some light 
therapy-based support.

R5: When the elderly is likely to have fallen in her pri-
vate bedroom, send a vocal alarm to the referring staff 
persons. This rule can be used for ensuring safety also 
when the elderly is alone in her private bedroom (in some 
situations they cannot even be able to call for help). In this 
case, accelerometer-based fall detector included (e.g., that 
in the Plux Bitalino chestband) can be used to recognise 
the situation.

However, similar to the previous rules these three 
rules can also be subject to dynamic adjustments and 
adaptations by designers (even after users already started 
using the application) to cope with changed and evolving 
requirements by the elderly in the residential facility. For 
instance, considering the R4 rule, designers can be asked 
by the care personnel to decrease the concerned thresh-
olds for detecting elderly restlessness state (associated 
with a combination of respiration rate and heart rate), to 
be able to intervene timely, before the elderly becomes 
too agitated.

Likewise, after a while, the designer of the application 
can be asked to slightly change rule R5, since the involved 
vocal alarm was found not effective in noisy environments, 
thus running the risk that the alarm went unnoticed by the 
staff. In such a case, the new rule can be changed into one 
able to generate a multimodal message one (e.g., combining 
vocal, vibration, and graphical modalities).

9 � Developers test

A test was conducted to collect feedback on the author-
ing tool. Users were recruited in the local department, 
and received a small gift as compensation. Six people (1 
female) aged 25–48 (M = 33.5, SD = 8.1) participated in 
the test. As for their education, two users have a Master 
Degree (Digital Humanities and Computer Science), two 
have Bachelor, one user has a PhD in Information Engi-
neering, one only secondary school. All of them have some 
programming experience: one has 1–2 year programming 
experience, four users have 6–10 year experience, one 
user has experience of more than 10 years. Four users had 
some limited experience in using MARIAE. Before the 
test, four users had not used any tool for creating context-
dependent interactive applications, while two mentioned 
IFTTT. Five users had already heard about rule-based 
approaches for context-dependent customisation of inter-
active applications. In particular, one mentioned a generic 
trigger-action approach, three mentioned IFTTT. Users 
were asked to specify three rules referring to a shopping 
application whose MARIA specification was provided to 
them. Using the tool, they had to create rules so that the 
resulting application would exhibit more dynamic context-
dependent behaviour. The rules were: R1: “When the user 
is near a public display, show recipes that can be made 
using the products in the list”; R2: “If the user is celiac, 
add a promotion on gluten-free products in the presenta-
tion showing the list of products”; R3: “If the user is going 
to exit the shop and it is raining, load a presentation show-
ing a map with the best path to reach the user’s home and 
avoid traffic”.

One evaluator observed the users’ interactions during 
the experiment. Before the test, users were given some 
slides providing a general introduction, instructions on 
how to access the tool, explanations of its main features 
and tasks to carry out. After the test, users filled in a ques-
tionnaire, which included a demographic section (about 
e.g., education, experience/familiarity with programming 
and modelling), and a section more related to the tool. 
In the questionnaire, a 1–5 Likert scale (1 = not usable; 
5 = very usable) was used for ratings. The feedback was 
positive, and the ratings were on average always on the 
positive side.

Allocation of screen space between the presentation of 
the model-based UI description and rules (Median = 4). 
One user said that the way this combination was supported 
is confusing and needs more detailed information.

Rule presentation and editing in the tool (Median = 4). 
One user declared that the creation of rules improves as 
soon the user understands the underlying mechanism. 
Another user said that he would have preferred more 

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

control within the central panel, without the need to move 
between the central and the right panel of the tool. Another 
user suggested adding some hints for better supporting 
users during the editing phase (e.g., if a mandatory value 
has not been set in the attributes tab yet, this should be 
highlighted to the user).

Presentation of the context hierarchy within the tool 
(Median = 4). One user said that when the underlying 
mechanism is understood, rule creation improves, though at 
first it is not very intuitive. Another user said that the con-
text model elements are visualised appropriately although 
a ‘search’ functionality could help to more directly access 
contextual model elements.

Clarity of specifying the behaviour of a context-
dependent application through this ECA-based approach 
(Median = 3.5). One user suggested using some presentation 
techniques (e.g., different colours) to better identify events/
conditions/actions in the central panel.

In the stacked bar chart below, it is possible to see an 
overview of the main aspects rated by users in the question-
naire (Fig. 10).

Aspects that users liked the most in the tool One user 
liked the context hierarchy, another user liked the idea of 
context-dependent customization of interactive applications. 
Another user appreciated the classification of the context 
model (which he judged complete and suitable for modelling 
many situations), the tree-like visualisation of the rule, and 
the possibility to act directly on the various elements of the 
UI specification.

Aspects that users disliked the most One user did not like 
the supported drag & drop, he suggested simplifying the 
tree-like structure to create actions, events and conditions, 
by making more steps automatic (when possible). One user 
said that the features of the tool become clearer as soon 
as users acquire familiarity with the tool. From the test, it 
also came out that frequent mouse movements between the 
central panel and the right panel could make the interactions 
a bit tiring: as a solution, one user suggested adding more 
controls directly in the central panel.

In terms of useful application areas, users mentioned 
AAL scenarios and domotic applications. Although the test 
was a first study, its results show that CAT was usable by 
people different from its developers, and it was appreciated 
by the test subjects (e.g., the hierarchy for defining events/
conditions), although some aspects (e.g., interacting with 
some panels) could be further improved. Participants liked 
the flexibility provided by the tool in supporting different 
types of rules and scenarios.

As for the task success, all the users successfully specified 
the 1st rule, both in terms of events/conditions and actions. 
In addition, there was just one user who wrongly specified 
the 2nd rule (he forgot to specify the condition involving the 
user’s celiac disease) and the 3rd rule (he forgot to specify 
the condition involving the rainy weather), while the remain-
ing ones successfully specified them. Thus, the results of the 
test were encouraging in terms of the capability of users in 
specifying context-dependent behaviour using the proposed 
approach. Moreover, users especially appreciated the context 
hierarchy, which is one of the key features of our approach, 
which was judged overall suitable for modelling many real 
world situations. Finally, as evaluators, we also observed 
progressively increased efficiency in the time needed for 
creating the rules during each test.

10 � Discussion and conclusions

The proposed approach can provide useful contributions in 
various aspects concerning development of context-depend-
ent mobile apps.

Rule-based approach for creating context-dependent 
versions of mobile apps effective for handling dynamic 
customisations Traditional approaches tend to handle the 
behaviour resulting from context-dependent adaptation deci-
sions by hard-coding it in the implementation code. Using 
the proposed rule-based approach, there is a separation of 
concerns between the application logic and its adaptive, con-
text-dependent behaviour, as it is possible to easily compose 
rules expressing context-based adaptation decisions for ver-
sions targeting different contexts of use.

Facilitating reuse of design artefacts among different con-
figurations of the same software application Current prac-
tises do not adequately support context-based definition and 
configuration of application variants, since the development 
of each variant is generally kept separated. This results in 
considerable redundancies between versions, and it is also 
a time-consuming and error-prone way of proceeding. With 
the proposed approach, every context-dependent variant of 
the same application shares a common set of core function-
alities (modelled in a specific high-level language), thereby 
facilitating reuse of design/development artefacts.

Fig. 10   Stacked bar chart providing an overview of users’ ratings on 
key aspects of the tool

AQ7

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148



UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

	 Universal Access in the Information Society

1 3

Abstraction level for handling heterogeneity of IoT 
hardware/sensors/events In current approaches, designers 
often need to access low-level libraries to configure and 
exploit various hardware and sensors. In this approach, 
events are modelled and made available to designers at a 
logical level and they are uniformly handled by the context 
manager, which also deals with the dynamic appearance/dis-
appearance of associated resources. In addition, the context 
management support is not hard-coded in a single applica-
tion but handled by a specific module, which can be easily 
accessed by various applications.

Support for maintenance and further evolution of the 
apps From the first tests conducted, we gathered encourag-
ing feedback regarding the potential of our approach to help 
in more easily and effectively making applications evolve 
in a context-dependent manner. However, to confirm and 
improve on such results, further tests will be carried out in 
the future.

To conclude, in this paper we present a method and a set 
of tools for supporting developers in customizing context-
aware apps by extending the original behaviour through 
event–condition–actions rules. The method exploits model-
based descriptions to facilitate obtaining implementations 
for various environments (e.g., android, web). We describe 
a trial application and report on a first test with developers.

Future work will be dedicated to systematic empirical 
evaluation of the approach with software developers to fur-
ther validate its initial—yet promising—potentialities in 
offering significant benefits to reduce development efforts 
and costs needed for the customisation, maintenance and 
evolution of mobile applications.

Acknowledgements  We thank Luca Pardini for his help in the imple-
mentation of the android generator for MARIA specifications.

References

	 1.	 https​://www.w3.org/2005/Incub​ator/model​-based​-ui/XGR-
mbui-20100​504/

	 2.	 Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL 
frameworks. In: Companion to the 21st ACM SIGPLAN Sym-
posium on Object-Oriented Programming Systems, Languages, 
and Applications (OOPSLA ‘06), pp. 602–616. ACM, New York. 
(2006). https​://doi.org/10.1145/11766​17.11766​32

	 3.	 Le Goaer, O., Waltham, S.: Yet another DSL for cross-platforms 
mobile development. In: Proceedings of the First Workshop on the 
Globalization of Domain Specific Languages (GlobalDSL ‘13), 
28–33. ACM, New York. (2013). https​://doi.org/10.1145/24898​
12.24898​19

	 4.	 Majchrzak, T.A., Schulte, M.: Context-dependent testing of appli-
cations for mobile devices. Open J. Web. Technol. (OJWT) 2(1), 
3–14 (2015) (RonPub)

	 5.	 Rieger, C., Majchrzak, T.A.: Weighted evaluation framework 
for cross-platform app development approaches. In: Wrycza, S. 
(ed.) Proceedings of the 9th SIGSAND/PLAIS EuroSymposium 
on Systems Analysis and Design Information Systems, Lecture 

Notes in Business Information Processing (LNBIP), pp. 18–39. 
Springer, Berlin (2016)

	 6.	 Rieger, C., Majchrzak, T.A.: Conquering the mobile device jungle: 
towards a taxonomy for app-enabled devices. In: Proceedings of 
13th International Conference on Web Information Systems and 
Technologies (WEBIST), pp. 332–339. SciTePress (2017)

	 7.	 Jia, X., Jones, C.A.: AXIOM: a model-driven approach to cross-
platform application development. In: Proceedings of 7th ICSOFT 
(2012)

	 8.	 Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform 
model-driven development of mobile applications with md2. In: 
Proceedings of the 28th Annual ACM Symposium on Applied 
Computing (SAC ‘13), pp. 526–533. ACM, New York. (2013). 
https​://doi.org/10.1145/24803​62.24804​64

	 9.	 Majchrzak, T.A., Ernsting, J.: Achieving business practicability 
of model-driven cross-platform apps. Open. J. Inf. Syst. (OJIS) 
2(2), 3–14 (2015) (RonPub)

	10.	 Ernsting, J., Rieger, C., Wrede, F., Majchrzak, T.A.: Refining a 
reference architecture for model-driven business apps. In: Pro-
ceedings of 12th International Conference on Web Information 
Systems and Technologies (WEBIST), 307–316. SciTePress 
(2016)

	11.	 Heitkötter, H., Kuchen, H., Majchrzak, T.A.: Extending a model-
driven cross-platform development approach for business apps. 
Sci. Comput. Program 97(1), 31–36 (2015)

	12.	 Dickson, P.E.: Cabana: a cross-platform mobile development sys-
tem. In: Proceedings of 43rd SIGCSE. ACM, 2012, pp. 529–534 
(2012)

	13.	 Nebeling, M., Dey, A.K.: XDBrowser: user-defined cross-device 
web page designs. CHI 5494–5505 (2016)

	14.	 Van de Camp, F., Stiefelhagen, R.: GlueTK: a framework for 
multi-modal, multi-display human–machine-interaction. In: Pro-
ceedings IUI’13, pp. 329–338. ACM Press

	15.	 Ur, B., McManus, E., Ho, M.P.Y., Littman, M.L.: Practical trigger-
action programming in the smart home. In: Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems 
(CHI ‘14), pp. 803–812. ACM, New York. (2014). https​://doi.
org/10.1145/25562​88.25574​20

	16.	 Coutaz, J., Crowley, J.L.: A first person experience with end-user 
development for smart home. IEEE Pervasive Comput. 15(2), 
26–39 (2016)

	17.	 Ghiani, G., Manca, M., Paternò, F., Santoro, C.: Personalization 
of context-dependent applications through trigger-action rules. 
In: ACM Transactions on Computer–Human Interaction (ACM 
TOCHI), (2017)

	18.	 Dey, A., Sohn, T., Streng, S., Kodama, J.: iCAP: Interactive pro-
totyping of context-aware applications. Pervasive 254–271 (2006)

	19.	 Ghiani, G., Manca, M., Paternò, F.: Authoring context-dependent 
cross-device user interfaces based on trigger/action rules. In: The 
14th International Conference on Mobile and Ubiquitous Multi-
media (MUM2015), pp. 313–322. ACM Press

	20.	 Gajos, K., Weld, D.S.: SUPPLE: automatically generating user 
interfaces. In: IUI ‘04: Proceedings of the 9th International Con-
ference on Intelligent user interface, pp. 93–100. ACM Press, New 
York (2004)

	21.	 Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based 
techniques to the development of UIs for mobile computers. In: 
Proceedings of the 6th International Conference on Intelligent 
user interfaces (IUI ‘01), pp. 69–76. ACM, New York. (2001). 
https​://doi.org/10.1145/35978​4.36012​2

	22.	 Mayer, S., Tschofen, A., Dey, A.K., Mattern, F.: User interfaces 
for smart things-A generative approach with semantic interac-
tion descriptions. ACM Trans. Comput. Hum. Interact. (TOCHI) 
21(2), 12 (2014)

	23.	 Usman, M., Iqbal, M.Z., Khan, M.U.: A product-line model-
driven engineering approach for generating feature-based mobile 

AQ8

AQ9

AQ10

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180
1181

1182

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
https://doi.org/10.1145/1176617.1176632
https://doi.org/10.1145/2489812.2489819
https://doi.org/10.1145/2489812.2489819
https://doi.org/10.1145/2480362.2480464
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/359784.360122


UNCORRECTED PROOF

Journal : Large 10209 Article No : 620 Pages : 17 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Universal Access in the Information Society	

1 3

applications. J. Syst. Softw. 123, 1–32. (2017). https​://doi.
org/10.1016/j.jss.2016.09.049(ISSN 0164–1212)

	24.	 Halbrügge, M., Quade, M., Engelbrecht, K., Möller, S., Albay-
rak, S.: Predicting user error for ambient systems by integrating 
model-based UI development and cognitive modelling. In: Pro-
ceedings Ubicomp’16, pp. 1028–1039. ACM Press

	25.	 Nguyen, T., Vanderdonckt, J., Seffah, A.: Generative patterns for 
designing multiple user interfaces. In: Proceedings of the Interna-
tional Conference on Mobile Software Engineering and Systems 
(MOBILESoft ‘16), pp. 151–159. ACM, New York. (2016). https​
://doi.org/10.1145/28970​73.28970​84

	26.	 Karuzaki, E., Savidis, A.: Yeti: yet another automatic interface 
composer. In: Proceedings of the 7th ACM SIGCHI Symposium 
on Engineering Interactive Computing Systems (EICS ‘15), pp. 

12–21. ACM, New York. (2015). https​://doi.org/10.1145/27742​
25.27748​43

	27.	 Yigitbas, E., Sauer, S., Engels, S.: G: self-adaptive UIs: integrated 
model-driven development of UIs and their adaptations. ECMFA 
126–141 (2017)

	28.	 Paternò, F., Santoro, C., Spano, L.D.: MARIA: a universal, declar-
ative, multiple abstraction-level language for service-oriented 
applications in ubiquitous environments. ACM Trans. Comput. 
Hum. Interact. 16(4), 19:1–19:30 (2009)

	29.	 Paternò, F., Santoro, S., Spano, L.D.: Engineering the authoring 
of usable service front ends. J. Syst. Softw. 84(10), 1806–1822 
(2011)

	30.	 http://bital​ino.com/en/

AQ11

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

https://doi.org/10.1016/j.jss.2016.09.049
https://doi.org/10.1016/j.jss.2016.09.049
https://doi.org/10.1145/2897073.2897084
https://doi.org/10.1145/2897073.2897084
https://doi.org/10.1145/2774225.2774843
https://doi.org/10.1145/2774225.2774843
http://bitalino.com/en/


Journal : Large 10209 Article No : 620 Pages : 1 MS Code : UAIS-D-17-00125 Dispatch : 1-6-2018

Journal:	 10209
Article:	 620

1 3I
Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along 
with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof 
carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 
‘Author’s response’ area provided below

Query Details Required Author’s Response
AQ1 Author: This sentence" We show its potential by describing ...." has been slightly 

modified for clarity. Please check that the meaning is still correct, and amend if 
necessary.

AQ2 Author: This sentence" The MARIA environment also provides a tool supporting ...." 
has been slightly modified for clarity. Please check that the meaning is still correct, and 
amend if necessary.

AQ3 Author: This sentence" In this section we consider ....." has been slightly modified for 
clarity. Please check that the meaning is still correct, and amend if necessary.

AQ4 Author: This subheading " ...application" has been slightly modified for clarity. Please 
check that the meaning is still correct, and amend if necessary.

AQ5 Author: Please check Figures 7 and 8 are interchanged to maintain sequential order.
AQ6 Author: The caption of figure 8 has been slightly modified for clarity. Please check that 

the meaning is still correct, and amend if necessary.
AQ7 Author: Please check and confirm the inserted citation of Figure 10.
AQ8 Author: Please update references [2], [6], [7], [8], [10], [12], [14], [15], [17], [19], 

[20], [21], [24], [25] with full details.
AQ9 Author: Please update references [13], [18], [27] with volume id.
AQ10 Author: Please update reference [19] with year.
AQ11 Author: Please provide the access date for references [1] and [30].


	A model-based framework for mobile apps customization through context-dependent rules
	Abstract
	1 Introduction
	2 Related work
	3 Approach
	3.1 Motivating scenario
	3.2 Novel aspects of the solution
	3.3 Method

	4 Adaptation rules
	5 The CAT authoring environment
	6 From MARIA to android implementation
	7 Contextual rules management
	8 A trial application
	9 Developers test
	10 Discussion and conclusions
	Acknowledgements 
	References


