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Abstract. The Blind Source Separation (BSS) is performed using multiple
observations of mixtures of dependent or independent astrophysical sources of
diffuse microwave radiation. Two separation methods are used and compared:
(a) FastICA, which has already been used for similar astrophysical data, (b) the
minimum coherence criterion. Results show that both methods give better
results in the case of independence among the sources than in the case of
dependence. In particular, in the case of the data sets considered, method (b)
(newly applied to similar astrophysical data) generally gives better source
estimates than method (a), especially in the case of correlated sources, where
FastICA is not optimal because of its assumption of orthogonality among the

sources.

1. Introduction

Under certain hypothesis, an unknown linear mixture of source signals can
be separated into its components by Blind Source Separation (BSS) methods.
These methods are devised to be applied to whatever source signal and they are
based on the a-priori principle of redundancy reduction [Barlow, 1989]. This
principle, as a form of neural coding, states that this coding is carried out so that
the outputs are as independent as possible.

Based on this principle, the Independent Component Analysis performs BSS
assuming that the components are mutually independent [Comon, 1994].
Intuitively, an equivalent approach to achieve independence is to maximize non-

Gaussianity. In particular, Hyvirinen [1999] and Hyvirinen and Oja [2000]




have proposed the negative entropy (‘neg-entropy’) as a measure of non-
Gaussianity and have performed separation by maximising it via the Newton
algorithm. Apart from the independence of the sources, this procedure assumes
that these sources have non-Gaussian distribution, save at most one. This
algorithm is known as FastICA [see, e.g., Maino et al., 2002) and it is capable to
solve component separation, even in presence of a noise whose covariance
matrix is known.

If the component sources are not independent the redundancy reduction can
be considered still valid, but the independence of the sources cannot be
postulated. The so-called Dependent Component Analysis approach achieves the
maximum source independence by minimizing the information common to the
estimated components in the mixtures. In this context, the strategy of reducing
redundancy by minimizing the output mutual spectral overlap has already been
investigated, and the related algorithm is essentially based on the minimization
of the averaged coherence function of the outputs [Barros, 2000]. In particular,
this procedure takes also into account the case of independent sources as a
special case in which the minimum coherence achievable is close to zero. In the
following, we call this approach ‘MCM’ as short of ‘Minimum Coherence
Method’.

This paper deals with the comparisons among BSS results obtained using the
FastICA and the DCA coherence method in cases of mixtures of dependent or

independent components.

2. Data and Data Analysis

The data considered here are derived from measurements made by the
Differential Microwave Radiometers (DMR), mounted on the COBE satellite
[Bennett et al., 1992]. In particular, the DMR-COBE database contains images
of all the sky for three galactic diffuse emissions (synchrotron, thermal dust and
free-free) and for the extragalactic CMB (Cosmological Microwave
Background) component. These sources were derived from observations of the

whole sky (composition of all overlapping signals on the same line of sight),




made with a 7° beam and are presented in 2.8° pixels. The separation of the sky
in its source components was computed using traditional mathematics methods
and astrophysical modelling [e.g., Bennet et al., 1992]. In consequence, the
galactic and CMB source values might be affected by the approximations
applied in the estimation procedures. At the same time, these data represent the
best measure of the considered source emissions for synchrotron, dust and
CMB. In any case, this is not of interest in this context, where the image patches
considered represent solely three image components, two of which are
correlated and the third one has correlation coefficients with the other two close
to zero.

From a theoretical point of view, statistically significant correlations are
expected among the galactic components, while the CMB should be
uncorrelated. Experimentally, the significance of the observed correlations is
found to be dependent on the galactic coordinates [Ballatore et al., 2002]. Here,
we use, specifically, the three patches for the astrophysical radiations
synchrotron, dust and CMB. Each patch image has 32x32 pixels and is centred
on the North Galactic Pole. The correlation coefficients among them are: (a)
0.67 between synchrotron and dust, (b) 0.08 between dust and CMB, (c) 0.09
between synchrotron and CMB.

The purpose of this study is to test how FastICA and MCM can perform the
component separation of correlated and uncorrelated source-image mixtures

having a number of observations x; equal to the number of sources s;j. Sources

and observations are simultaneous and time stationary.

In order to simulate mixtures of correlated and uncorrelated image signals,
we have calculated the toy observations x| and x7: (1) as linear mixtures of dust
and synchrotron, (2) as linear mixtures of dust and CMB. Then, the purpose of

FastICA and MCM is the estimation of the source images s| and sp, given the

mixtures x| and xp
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or
x=A4-s (2]
Where ajj are the elements of the matrix 4, x| and x7 are the elements of X, §]

and sy are the elements of s. The elements, a, , of the mixing matrix, 4, have

i’
been chosen randomly. Specifically, in the case shown in Figure 1, these are:
02 14
A= (3]
1.7 0.5
For the mixture of synchrotron, s, and dust, s». In the case (shown in Figure 2)

of dust, s1, and CMB, s9, the mixing matrix A has been chosen as:

0.7 1.0
A= [4]
1.2 05
Results obtained by application of FastICA and MCM are independent from

the specific channel simulations given in Figure 1 and 2, as verified by using

different A matrices.

2a. FastICA algorithm

This algorithm is devised to find the W matrix in the general case of noise

S=W-(4d-s+e)=W x [3]
where € is the noise, § components are the source estimates and x components
are the observations. The mean of the data in each observation x; is removed and

the covariance matrix C of the zero mean data is computed as the expectation
over the set of all available pixels

C=Efxx'} [4]
Given the covariance matrix for the noise X, the pre-processing consists in
evaluating the matrix:

L=(C-0)™"XC-2) [5]
and the quasi-whitened data set:

F=(C-5)"x [6]




Then the algorithm estimates the matrix W row by row as follows:

(a) choose an initial vector w (wT is a row of W);

(b) update it through

W, = Elfg(w' D)) =1 +DwE(g (W' £)) (7]
where E denotes expectation over all the available samples, g is a regular non
quadratic function such as g(u)=u3 , or g(u)=tanh(u), or g(u)=exp(—uz) and g’ 1s
its first derivative [Hyvérinen, 1999];

(€) Winew=Wnew/IWnewll [8]
(d) compare Wye,y With previous one: if not converged go back otherwise begin

another process.

This procedure maximizes the non-Gaussianity of w' %, so that, once

estimated the K77 of W, the line (K-+1)!" is searched in the sub-space orthogonal
to the first K rows, via orthogonalization between step (b) and (¢).

In this report, we do not take the noise into account.

2b. MCM algorithm
This algorithm consists in the minimization of the averaged coherence
function defined as

| or IQJwW
¢=—" - @
2 P ()P, (0)

8355

[9]

Where P, (@) is the cross-power spectrum between the estimates of the
sources §, and §,,and P, (@) [P, (®)]1is the power spectrum of the source
5, [5,]. The estimates of the sources are

S=Wx=WAs [10]

Where Eq. 2 is used for the second equivalence. The best /¥ matrix is the one for

which WA is the closest to the identity matrix L.




The W coefficients, w; , are derived as those coefficients that minimize the

average coherence ¢. Specifically, the minimization is performed using the

simulating annealing method.

3. Comparisons between FastlCA and MCM results

We have applied the FastICA and the MCM to the two-channel simulated
observations reported in Figure 1 and Figure 2. For the dependent case (see
Figure 1), the results are illustrated in Figure 3: the upper panels represent the
sources estimated using FastICA, the middle panels represent the sources
estimated using MCM and the bottom panels represent the original sources as
reported in Figure 1. All the six images shown in Figure 3 are shown using a
255 color scale, so that zero corresponds to the minimum of specific image and
255 to its maximum value. In fact, the sources are derived independently from a
possible multiplicative or additive constant. Figure 3 shows that MCM produces
source estimates better than the FastICA.

In order to quantify the difference between the two BSS methods, we have
reported in Figure 4 the histograms for the differences between the original
sources and their estimates using FastICA or using the MCM. Figure 4 confirms
and highlights results visible in Figure 3.

Apart from the histograms in Figure 3, another indicator of the precision of
FastICA and MCM source estimates is the product between the derived
estimates of W and the A reported in Eq. 3 and Eq. 4. The closest is this index to
I, the best is the component separation reached. The matrix W given by the
MCM for the dust and synchrotron mixtures is

-0.437  0.76
W= , [11]
098 -0.106

Results associated with this W give a coherence value between the source

estimates equal to 9.4-104. The W derived by FastICA and associated to the

results shown in Figure 3 and 4 is




[12]

(44813 -6220
| 246 -3008

This matrix W is the output of the FastICA and it can be normalized for
convenience. It is easy to verify that the numbers out of the diagonal of the
matrix WA obtained from MCM are closer to zero compared to those obtained
from FastICA.

Similarly to the case of the mixtures between dust and synchrotron, we have
applied FastICA and MCM algorithms to the two channel observations reported
in Figure 2 for the independent sources and the results are shown in Figure 5.
Again the upper panels show the sources estimated using FastICA, the middle
panels those estimated using MCM and the bottom panels show the original
sources as reported in Figure 2. In addition, similar to Figure 4, Figure 6 shows
the histograms for the differences between the original sources and their
estimates using FastICA or MCM. Figure 6 shows quite a surprising precision
for the MCM separation obtained in this case: both sources are perfectly
derived. The matrix W for this MCM case is

—034 068
W= [13]
1.61 —1.18

with a coherence value between the source estimates equal to 1.7-10-3. Results
reported in Figure 5 and 6 for the FastICA, correspond to
( 476.3 ~953.8J

= [14]

-19.48 27.22

The comparison between Figure 3 and Figure 5 (or Figure 4 and Figure 6)
demonstrates that both separation algorithms work better in the case of the
independent sources and MCM is generally better than the FastICA, even in this

latter case.

5. Summary and Conclusion
Two BSS methods are applied to images representing mixtures of

astrophysical sources of diffuse microwave radiations: (a) FastICA (e.g., Maino




et al., 2002), and (b) Minimum Coherence Method (Barros, 2000). The major
difference between the two methods is that the FastICA is based on the
orthogonality of the components, while MCM is not. In particular the FastICA
has previously been applied to the component separation of microwave diffuse
radiations similar to the present data sets, although these may present or not
correlations among the sources (Ballatore et al., 2002). Differently, no previous
applications of the minimum coherence method to similar astrophysical data are
known in literature.

For the present data sets, the estimates of uncorrelated sources are more
precise than the estimates of correlated sources for both the BSS algorithms
considered. However, the precision of the minimum coherence method is
generally higher than the precision of the FastICA, especially for the case of

correlated components.
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Figure Captions

Figure 1. The two dependent sources Dust and Synchrotron are shown (upper
panels), together with their combination into the simulated observed
channels (bottom panels).

Figure 2. Similar to Figure 1, but for the independent sources Dust and CMB.

Figure 3. The original dependent sources are shown in the bottom panels, the
sources estimated using MCM algorithm are shown in the middle panels
and the sources estimated using FastICA are reported in the top panels.

Figure 4. Distribution of the absolute value of the differences between pixel
value for the original dependent sources and for their estimates.

Figure 5. Similar to Figure 3, but for the independent sources.

Figure 6. Similar to Figure 4, but for the independent sources.
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