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We present the full phase diagram of the spherical 2� p spin-glass model with p � 4. The main
outcome is the presence of a phase with both properties of full replica symmetry breaking phases of
discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking.
This phase has a finite complexity which leads to different dynamic and static properties. The phase
diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin
glass phase transitions.
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In the last years many efforts have been devoted to the
understanding of complex systems such as spin glasses
and structural glasses, as well as optimization, biological,
and financial problems. The common denominator of all
these systems is a large number of stable and metastable
states [1] whose complex structure determines their static
or dynamic behaviors. In this framework, mean-field
models, and among them spherical models, represent a
valuable tool of analytical and theoretical investigation
since they can be thoroughly and satisfactorily solved. Up
to now only spherical models with one replica symmetry
breaking (1RSB) phases were studied, mainly due to their
relevance for the fragile glass transition [2–4].

To our knowledge, the possibility of full replica sym-
metry breaking (FRSB) phases in spherical models was
first pointed out by Nieuwenhuizen [5] on the basis of the
similarity between the replica free energy of some spheri-
cal models with multispin interactions and the relevant
part of the free energy of the Sherrington-Kirkpatrick
(SK) model [6,7]. A complete analysis, however, was not
provided up to now. The problem was considered some
years later [8] in connection with the possible different
scenarios for the critical dynamics near the glass tran-
sition [9], therefore analyzing only the dynamical behav-
ior in the 1RSB phase.

The Model.—The model we shall consider is the spheri-
cal 2� p spin-glass model without an external field
defined by the Hamiltonian

H �
X
i<j

J�2�ij �i�j �
X

i1<...<ip

J�p�i1...ip
�i1 � � ��ip (1)

where J�p�i1i2::ip
are uncorrelated zero mean Gaussian varia-

bles of variance J2pp!=�2Np�1� and �i are N continuous
variables obeying the spherical constraint

P
i�

2
i � N.

The properties of the model strongly depend on the value
of p: for p � 3 the model reduces to the usual spherical
p-spin spin-glass model in a field [3] with a low-
temperature 1RSB phase, while for p � 4 the model
possesses an additional FRSB low-temperature phase
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[5]. A partial analysis of the phase space of the model
was carried out in Ref. [8] leaving out, however, a large
part of the phase space and, in particular, the transition
between the 1RSB and the FRSB phases.

We complete the study of the phase space focusing on
the transitions lines. We have studied the model by three
complementary approaches. The first employs the replica
method and analyzes the disorder-averaged logarithm of
the partition function following Ref. [3]. The second
approach starts from the microscopic dynamics and ex-
tends the results of Ref. [8] while the latter uses the
Thouless-Anderson-Palmer approach [10]. In the follow-
ing we shall mainly present the replica approach, discus-
sing differences with other approaches when necessary. A
complete analysis of the properties of the model is beyond
the scope of this Letter and will be presented elsewhere.

Applying the standard replica method, the free energy
per spin f can be written as a function of the symmetric
n� n replica overlap matrix Q
� as [3]

��f � ��f0 � s�1� � lim
n!0

1

n
max
Q

G�Q� (2)

where f0 is an irrelevant constant, s�1� � �1� ln2��=2
is the entropy per spin at infinite temperature T � 1=�,

G�Q� �
1

2

X1;n

�

g�Q
�� �
1

2
lndetQ; (3)

g�x� �
�2

2
x2 �

�p

p
xp; (4)

with the shorthand �p � ��J�p��2=2p. The spherical con-
straint is ensured by the condition Q

 � q � 1.

Following Parisi [11] the overlap matrix Q
� for a
number R of steps in the replica symmetry breaking is
divided into successive boxes of decreasing size pr, with
p0 � n and pR�1 � 1, and the elements of Q
� are given
by

Q
� 
 Q
\��r � qr; r � 0; � � � ; R� 1 (5)
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FIG. 1. Phase diagram �2-�4. Counterclockwise: the para-
magnetic (PM), one step RSB (1RSB), one-full RSB (1-FRSB),
and FRSB phases are plotted, separated by the static phase
transition lines (solid curves). The PM/1RSB and the 1RSB/1-
FRSB transitions also occur in the dynamics and the relative
lines are drawn as dashed curves. The dynamic and the static
PM/1RSB lines are the ‘‘m-lines’’ at constant m � 1, computed
in the 1RSB ansatz [from Eq. (10)] imposing, respectively,
Eq. (11) and Eq. (8). Their continuation as FRSB/1-FRSB
transition lines are the dynamic (dashed) and static (solid) m �
1-lines, computed in the 1-FRSB ansatz [from Eq. (13)]. They
merge at the end point (see inset). For a comparison, we also
plot the dynamic and static m � 0:5-lines. They merge on the
FRSB/1-FRSB phase transition line above the end point. As m
decreases from one, the whole continuous FRSB/1-FRSB line is
covered. Inset: the discontinuous transitions FRSB/1-FRSB
(�2 > 1) and PM/1RSB (�2 < 1).
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with QR�1 � q. The notation 
 \ � � r means that 

and � belong to the same box of size pr, but to two
distinct boxes of size pr�1 < pr. The replica symmetric
case and the FRSB case are obtained for R � 0 and
R ! 1, respectively. The matrix obtained is conveniently
expressed using the function

x�q� � p0 �
XR
r�0

�pr�1 � pr���q� qr� (6)

which equals the fraction of a pair of replicas with overlap
less or equal to q. Inserting this structure into Eqs. (2)–
(4), neglecting the terms of order O�n2�, and replacing the
sums by integrals, one obtains, after a little of algebra,

�2�f � 2s�1� � 2�f0 �
Z 1

0
dqx�q�

d
dq

g�q�

� ln�1� q�1�� �
Z q�1�

0

dqR
1
q dq

0x�q0�
(7)

where q�1� � qR and q�x� is the inverse of x�q�.
Maximization of f with respect to q�x� leads to the
self-consistent equation(s) for the order parameter func-
tion q�x�. Depending on the values of J�p� and T, the
function q�x� displays different forms which characterize
the different phases of the model. Figure 1 shows the
phase diagram in the space of the ‘‘natural’’ parameters
�p ��2 for p � 4. The results, however, are qualita-
tively valid for any p � 4. The stability analysis reveals
four different phases, which will be discussed in the
forthcoming part.

The paramagnetic phase (PM).—This phase exists for
not too large values of J ’s and/or high temperature and is
characterized by a null order parameter function. The
phase becomes unstable above the line �2 � 1 (de
Almeida–Thouless line [12]) where the replicon � � 1�
�2 becomes negative. In this region, for p � 4 and �p not
too large, a FRSB phase appears. Below �2 � 1 the PM
phase remains stable for all values of �p, similar to what
happens in the spherical p-spin model without a field [3].
However, as �p increases, a more thermodynamically
favorable 1RSB phase with a nonvanishing order parame-
ter takes over.

The one step replica symmetry breaking phase.— This
phase is characterized by a steplike order parameter
function q�x� � q1��x�m� [13] and is stable as long as
the replicon eigenvalue is positive:

� �
1

�1� q1 �mq1�
2 �

d2

dq2 g�q�jq�0 > 0: (8)

Maximization of f with respect to q1 and m leads to the
static 1RSB equations whose solution can be conveniently
expressed defining q1 � �1� y�=�1� y�my� and using
the auxiliary function

z�y� � �2y
1� y� lny

1� y
(9)
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introduced in Ref. [3] for the solution of the spherical
p-spin spin-glass model. The minimum value of y is
yielded by z�ymin� � 1=2, for which �2 � 0, while the
maximum by z�ymax� � 1=2�1� ymax�, where the repli-
con (8) vanishes. For p � 4 the solution reads

�4 � 2�1� z�y��
�1� y�my�4

m2y�1� y�2
;

�2 � �2z�y� � 1�
�1� y�my�2

m2y
:

(10)

By fixing the value of m 2 �0; 1� and varying y from ymin

to ymax one obtains the so-called m-lines. The transition
between the PM and the 1RSB phases corresponds to the
m � 1 line. Along this line q1 jumps discontinuously
from zero (PM) to a finite value (1RSB), even though
the thermodynamic quantities remain continuous.
Inserting ymax into Eq. (10) and varying m from one to
zero, one obtains the critical line between the 1RSB and a
different phase that we will discuss below (the 1-FRSB
phase).

The static approach requires f to be maximal with
respect to variations of m. The dynamics, on the other
hand, leads to the different marginal condition
217203-2
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FIG. 2. Schematic form of the order parameter function q�x�
in the 1-FRSB phase.
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1

�1� q1�
2 �

d2

dq2
1

g�q1� � 0 (11)

yielded by maximizing the derivative of f with respect to
m (i.e., the complexity) [14]. As a consequence, the tran-
sition lines for dynamics and statics do not coincide. The
complete phase diagram is plotted in Fig. 1.

The one-full replica symmetry breaking phase (1-
FRSB).—The analysis of the instability of the 1RSB so-
lution reveals that in order to stabilize the phase above the
zero replicon line (8), a nonzero q0 would be needed, but,
in the absence of external fields, the order parameter
function must vanish as x ! 0, and, hence, a 1RSB
solution is not feasible. The different location of the static
and dynamic instability lines, however, suggests that
some sort of 1RSB-like form must survive in the solution.
The way out is to look for a solution that, below q0, has a
structure which vanishes as x ! 0. The most general form
is an order parameter

q�x� �
�

q1 for x>m
q0�x� for x<m

(12)

with q�0� � 0 and limx!m�q�x� � q0 � limx!m�q�x� �
q�1� � q1; see Fig. 2. An unbiased confirmation that
this is the correct ansatz follows from the numerical
solution of the Parisi equations derived from the statio-
narity of f with respect to q�x� performed in the varia-
tional Sommers-Dupont formalism [15]; the solution is
yielded by means of a pseudospectral technique, see, e.g.,
Ref. [16]. The 1-FRSB equations are obtained by inserting
the form (12) into the replica free energy (7) and impos-
ing stationarity with respect to q0�x�, q1, and m. The
resulting equations can be solved in term of m-lines
similarly to what was done in the 1RSB case. For the p �
4 case the solution for the ‘‘discontinuous’’ part of q�x�
reads

�4 �
�1� y�my�1� t��4

m2y�1� y�2�1� t�3�1� 2t�
;

�2 �
�1� y�my�1� t��2

m2y�1� t�3�1� 2t�
�y�1� t� t2� � 3t2�;

(13)

t 

q0

q1
�

1� y� 2z�y�
4z�y� � 3� y

; (14)

and q1 � �1� y�=�1� y�my�1� t��. The ‘‘continu-
ous’’ part of q�x�, instead, satisfies the equation

q �
Z q

0
dq0��2 � 3�4q02�"�q0�2; 0 � q � q0 � tq1;

(15)

"�q� � 1� q1 �m�q1 � q0� �
Z q0

q
dq0x�q0�: (16)

For any fixed value of m 2 �0; 1� these equations can be
solved varying y from ymin (such that x�ymin� � 0, tran-
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sition line to the 1RSB phase) up to y � 1 (t�y � 1� � 1),
where the difference between q1 and q0 vanishes. These
lines are the continuation into the 1-FRSB phase of the
1RSB m-lines. In particular, the m � 1 line represents the
transition between the 1-FRSB and the FRSB phase. For
many aspects this transition is similar to the transition
between the PM and the 1RSB phases: indeed q1 � q0

jumps discontinuously from a null value (FRSB) to a
finite value (1-FRSB) and the discontinuity appears at
m � 1, so that the thermodynamic quantities are continu-
ous across the transition. The critical m � 1 line ends at
the point where q1 � q0 (see inset of Fig. 1), which for
p � 4 is: q1 � q0 � 1=4, �4 � �4=3�4, and �2 � 32=27.
Above the end point, the FRSB/1-FRSB transition occurs
without an order parameter discontinuity. The value of t
increases along the m-lines as one moves away from the
transition line with the 1RSB phase, and the lines termi-
nates when t � 1 (q0 � q1). The set of all end points for
m 2 �0; 1� defines the continuous critical line between the
two spin-glass phases:

�4 �
1

m2

�
1� 3m

3

�
4
; �2 �

2

3

�
1� 3m
3m

�
2
: (17)

On this line q1 � q0 � 1=�1� 3m� and xc 
 x�q0� � m.
In passing from the 1-FRSB to the FRSB phase the
solution changes from stable to marginally stable.

The presence of a discontinuity in the order parameter
function leads to a finite complexity and different static
and dynamic solutions: the first associated with states of
smallest (zero) complexity, the latter with states of larg-
est complexity. As a consequence, the m-lines in the two
cases are different, as shown in Fig. 1. The inset of the
figure shows the different transition lines between the
FRSB and the 1-FRSB phases. The discontinuity, and
hence the complexity, vanishes at the ‘‘end point’’ on
the continuous transition line and the two solutions coin-
cide on this line and in the whole FRSB phase.

The full replica symmetry breaking phase.—In this
phase the order parameter function is continuous and
given by Eq. (15) with q1 � q0. By expressing (15) in
217203-3



VOLUME 93, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S week ending
19 NOVEMBER 2004
terms of q�x�, instead of x�q�, and taking successive
derivatives with respect to x, a power expansion of q�x�
of about x � 0 can be computed [15,17]. For the 2� 4
model it turns out that q�x� only contains odd powers of x,
the first of which are

q�x� �
�3=2

2

3�4
x�

�7=2
2

6�4
4

x3 �
13�11=2

2

72�3
4

x7 � � � � : (18)

One can then show that, as the PM-FRSB transition line
is approached from above ($ � �2 � 1 ! 0�), both q0 �
q�xc� and xc linearly vanish with $ as

q0 �
$
2
�O�$2�; xc �

3�4

2
$�O�$2�; $ ! 0�;

(19)

so that the phase transition occurs continuously.
Conclusions.—We have provided the full phase dia-

gram of the spherical 2� p spin-glass model with p �
4. Despite its simplicity the model has a rather rich
diagram. Not only does it present a 1RSB phase similar
to the one of the spherical p-spin spin-glass model and a
FRSB phase similar to that of the SK model, but it also
displays a phase with an order parameter made of a
continuous part for x < m � 1, and a discontinuous
jump at x � m. To emphasize its mixed nature we call
this phase, separating the FRSB phase from the 1RSB
phase, the 1-FRSB phase. In many aspects it is similar to
the 1RSB phase: (i) it can be proved stable [18] and (ii) it
displays a finite complexity counting metastable states
that are strict minima of the free energy landscape.

The FRSB/1-FRSB transition can be either continuous
(for large enough �2) or discontinuous. In the latter case,
the presence of finite complexity in the 1-FRSB phase
makes the static and dynamic transition different. The
two transition lines join at the end point where the dis-
continuity at m � 1 in the order parameter function van-
ishes. From this point on, the FRSB/1-FRSB transition
only occurs continuously. Along the continuous transition
line the complexity vanishes and the static and dynamic
approaches lead to the same results, in agreement with the
conjecture made in Ref. [21] that the complexity of the
minima of the free energy landscape in the FRSB phase is
zero [22].

In conclusion, we believe that this is a rather promising
model since not only can it be fully solved, but it pos-
sesses different phases which can be fully analyzed.
Moreover, it displays an interesting transition between
two different glassy phases, similar to what is found in
some colloidal suspensions [24]. Eventually, the analysis
of its complexity functional can be relevant even for the
comprehension of the structure(s) underlying the hard
computational region in combinatorial optimization
problems (see, e.g., Ref. [25]).
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