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Abstract: Background and Aim: Ultrasound (US) imaging is increasingly preferred over other more
invasive modalities in preclinical studies using animal models. However, this technique has some
limitations, mainly related to operator dependence. To overcome some of the current drawbacks,
sophisticated data processing models are proposed, in particular artificial intelligence models based
on deep learning (DL) networks. This systematic review aims to overview the application of DL
algorithms in assisting US analysis of images acquired in in vivo preclinical studies on animal models.
Methods: A literature search was conducted using the Scopus and PubMed databases. Studies
published from January 2012 to November 2022 that developed DL models on US images acquired in
preclinical/animal experimental scenarios were eligible for inclusion. This review was conducted
according to PRISMA guidelines. Results: Fifty-six studies were enrolled and classified into five
groups based on the anatomical district in which the DL models were used. Sixteen studies focused on
the cardiovascular system and fourteen on the abdominal organs. Five studies applied DL networks
to images of the musculoskeletal system and eight investigations involved the brain. Thirteen papers,
grouped under a miscellaneous category, proposed heterogeneous applications adopting DL systems.
Our analysis also highlighted that murine models were the most common animals used in in vivo
studies applying DL to US imaging. Conclusion: DL techniques show great potential in terms of
US images acquired in preclinical studies using animal models. However, in this scenario, these
techniques are still in their early stages, and there is room for improvement, such as sample sizes,
data preprocessing, and model interpretability.

Keywords: review; preclinical model; in vivo animal model; deep learning; artificial intelligence;
ultrasound imaging

1. Introduction

Animal models are extensively used in biomedical research, with a broad spectrum of
applications, ranging from basic science to the translation of methodological/technological
enhancements for the clinical scenario. Indeed, the development of animal models of
human disease has shown the potential in addressing questions about pathophysiological
processes while maintaining the complexity of a whole organism. Further, translational
models are currently used to achieve a more accurate classification and prediction and to
evaluate novel diagnostic approaches and interventions. It is worth noting that the design of
in vivo studies has been revolutionised by the advances of non-invasive imaging techniques
and their application in preclinical models, offering the possibility to longitudinally monitor
the same animal, with important implications in terms of data variability and the number
of animals to study in experiments, as well as of enhanced information about disease
progression and/or ageing.

The ever-increasing need for non-invasive techniques has assisted the rapid devel-
opment of ultrasound (US) imaging, which is acquiring growing importance even in the
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preclinical field, both for its low cost and for its non-ionising nature compared to other
modalities [1–5]. The US is now recognised as a valuable tool in the fields of oncology,
cardiovascular medicine, and developmental biology. It has become the clinical standard
for several procedures [6,7] and an important tool in the context of preclinical studies
as well.

Since the early 2000s, manufacturers have provided US devices that apply to small
whole animals to perform anatomical and functional imaging and the in vivo investigation
of animal physiology and embryonic development. Since then, US applications in the
preclinical setting have grown widely, with the development of scanners with enhanced
temporal and spatial resolutions. To achieve adequate spatial resolution, small animals are
imaged using ultra-high-frequency transducers, generally up to 20 MHz for rats, 40 MHz
for mice, and more than 50 MHz for adult/embryo zebrafish and neonatal mice. Moreover,
the improved temporal resolution of preclinical US systems led to the major challenge, the
rapid heart movements observed in small animals (up to 600 beats per minute (bpm) in
mice vs. 60–100 bpm in humans), being overcome [1].

US imaging has a variety of in vivo applications in animal models. One of the most
common is echocardiography, for studying cardiac morphology and function in large-,
medium-, and small-sized models of overt or subclinical cardiovascular disease [8–10].
Among the in vivo imaging modalities, functional US is widely applied to imaging brain
function with very high spatial and temporal resolutions (in the order of microns and
milliseconds, respectively). Such technological advancement led to the visualisation of
even very small vessels, including the brain microvasculature [11].

Ultrasound localisation microscopy (ULM) allows for imaging microscopic vessels
and measuring blood flow in the brain with very high spatial resolution and depth of
penetration. It works by using microscopic bubbles circulating in the bloodstream as a
contrast agent to measure the reflection of high-frequency acoustic waves passing through
the body during US imaging acquisition [12–15].

In addition, photoacoustic (PA) imaging is emerging as a modality to study blood
vessels in preclinical studies (as well as in the medical area) [16,17]. PA is based on imaging
through the acoustic detectors of signals emitted by tissue components in response to
optical excitation, and it provided high-level results in several brain studies [18–21].

In addition to the reconstructed final images (acquired in the B-mode/M-mode/A-
mode/colour Doppler modalities), some advanced US machines also provide access to raw
radio frequency (RF) signals. RF signals carry valuable information about acoustic wave
propagation and its tissue interaction, thus providing the data to characterise the tissues
and organs under study [22]. Elastography is an example of a US-based application that
uses RF raw data and performs the analysis of tissue deformation following the application
of stresses (i.e., manual, natural, and acoustical) to obtain the measures of mechanical
parameters [23].

Still, despite the potential of US imaging, open challenges remain for its application in
healthcare, including low sensitivity and specificity and operator dependence. In recent
decades, to overcome these limitations, artificial intelligence (AI) has become increasingly
widespread in the field of US image processing.

In this scenario, the available literature on the use of AI in US imaging highlights the
current application of different techniques, from machine learning (ML) to deep learning
(DL), demonstrating a significant advance in US imaging for acquiring and processing
data. DL, nowadays, represents state-of-the-art ML methods in a variety of application
areas; worth noting, it has emerged as a powerful tool in medical imaging. DL is a type of
representation learning approach that uses complex multi-layer neural network architecture
to automatically learn data representations by transforming the input information into
multiple levels of abstraction using non-linear modules [24]. DL methods have remarkable
performance compared to conventional ML due to the very high amount of data in DL
model training.
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DL techniques are developing very fast and for many tasks, from segmentation and/or
classification tasks to the detection of specific patterns in images or feature extraction, to
solving more acquisition-related problems, such as improving image quality, deleting
electromagnetic noises due to the machines and performing real-time US beamforming.

Convolutional neural networks (CNNs) have assumed great importance among the
several DL-based architectures proposed over the years. A CNN is a neural network
specialised for working with images as input information. The most famous CNNs are
LeNet, AlexNet, ResNet, GoogleNet, MobileNet, VGG, and U-Net [25]. Different from
CNNs, to propose systems able to work with time series data or data that involve sequences,
recurrent neural networks (RNNs) have also been developed [26].

Over the last decade, the introduction of DL methods in US imaging continues to elicit
considerable interest in a variety of research areas. Here, we provide a comprehensive
overview of the employment of DL techniques in US analysis in in vivo animal models as a
useful experimental context to discuss the challenges and opportunities of their application
in healthcare. In the next section, we provide a general description of the methods and
output of the selection process. In Section 3, we analysed recent evidence about the role of
DL techniques in US imaging by discussing their applications according to the targeted or-
gans, including both major (cardiovascular, abdominal, musculoskeletal, brain) and minor
(tumour vasculature, lymph nodes, embryos) anatomical districts. A conclusive section is
then provided to discuss the frontiers and challenges of DL application to preclinical US in
the healthcare field.

2. Materials and Methods

In this section, we described the search strategy adopted and explained in detail all the
inclusion/exclusion criteria that led to the collection of the final papers object of the review.

2.1. Data Sources and Searches

We ran a literature search to identify all the relevant articles on the use of DL tech-
niques applied to US imaging in preclinical in vivo models. We systematically searched
PubMed/Medline and Scopus databases in the decade from January 2012 to November
2022. A systematic review was performed according to the Preferred Reporting for Sys-
tematic Reviews and Meta-Analysis (PRISMA) guidelines [27]. We performed advanced
research by concatenating terms with Boolean operators. In particular, the search strategy
included a combination of the following terms: (“fish” OR “sheep” OR “non-human pri-
mate” OR “porcine” OR “swine” OR “rodents” OR “veterinary” OR “rat” OR “pig” OR
“animal” OR “mice” OR “preclinical” OR “dog” OR “mouse” OR “rabbit”) AND (“deep
learning” OR “deep-learning” OR “neural network” OR “neural networks” OR “CNN”
OR “convolutional neural network” OR “UNet” OR “U-Net” OR “artificial intelligence”)
AND (“ultrasound” OR “echography” OR “sonography”). No date or language filters were
employed in the initial search. The literature search was performed and verified by two
authors (L.D.R., S.L.A.).

2.2. Eligibility Criteria

The inclusion criteria were:

a. Studies on preclinical/animal models with in vivo US acquisitions and developed or
tested DL-based algorithms on US images or features extracted from the images;

b. No restriction on the animal species used;
c. No restriction on the DL architecture adopted in the studies and/or on their tasks;
d. Studies using in vivo preclinical US images only for testing DL model performance.

The exclusion criteria were:

a. Studies performing US acquisitions on phantoms/ex vivo models/humans only;
b. Studies proposing AI-based methods but not properly deep architectures;
c. Publications not in the English language;
d. Non-peer-reviewed original articles or conference proceedings.
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Furthermore, the following publication types were excluded: reviews, conference
abstracts, conference reviews, short communications and book chapters.

2.3. Data Extraction and Analysis

Two investigators (L.D.R. and S.L.A.) screened the articles separately. Disagreement
between reviewers was resolved by consensus via discussion and checked by a third
reviewer (F.F.). Reasons for the exclusion of some studies are better detailed in the Results
section. Publications by the same research group or by different groups using the same
dataset or DL models were included in the analysis. After selecting the articles, we collected
the following features: first author’s surname and year of publication, animal model used,
anatomical district under study, the aim of the study, task of the proposed DL network, DL
architecture used, and main results obtained.

3. Results
3.1. Search Results

The literature search revealed 405 publications as the total number of papers output
from both databases used in the study; after excluding 85 duplicates, 320 records were
screened. Then, by filtering out the 77 papers that included conference reviews, reviews,
book chapters and short communications, 243 papers were selected. Following the review
of the title and abstract and, upon necessity, the full text further 187 records were rejected.
After the reviewing process, a total of 36 original papers [28–63] and 20 conference proceed-
ings [64–83] met the inclusion criteria. Figure 1 illustrates the flow chart of identification
screening and selection processes.
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Figure 1. Flow diagram of systematic identification, screening, and inclusion of articles on the
use of DL techniques applied to US imaging in preclinical in vivo models. DL: Deep learning;
US: Ultrasound.
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Tables 1 and 2 show the main characteristics of the included original papers and
conference proceedings, respectively.

Table 1. The main characteristics of the original articles included in the analysis.

Ref Animal Model Anatomical
District Aim of Study 1 DL Network Task

1 DL Architecture 1 Main Result 1

[28] mouse Embryo Segmentation of
Embryo body Segmentation FCN

no significant changes
between control and mutant

mice embryos

[29] dog Liver

Binary
classification of

degenerative
hepatic disease

Classification DNN
AUC = 0.91; Se = 100%;
Sp = 82.8%; PLR = 5.25;

NLR = 0.0

[30] mouse Brain Vasculature
Vessel

visualisation
improvement

Image Quality
Improvement CNNs CNR ↑ 56%;

spatial resolution ' 100µm

[31] pig Femoral Artery
Needle detection
to create femoral
vascular access

Needle Detection CNN

Precision = 0.97–0.94;
Recall = 0.96–0.89 in artery

and vein detection,
respectively

[32] rat Breast Tumour
Vasculature

MB segmentation
and localisation

through a
spatiotemporal

filter

MB Localisation 3D-CNN
Acc = 88.0%
Se = 82.9%
Sp = 93.0%

[33] rat Hind Limb
Vasculature

Tissue decluttering
and contrast agent

localisation

Contrast Agent
Localisation 3D-CNN Qualitative results

[34] rabbit Plaque

Classification
vulnerability of
atherosclerosis

plaques

Classification CNN AUC = 0.714; Acc = 73.5%;
Se = 76.92% and Sp = 71.42%

[35] pig Psoas Muscle
Classification of
bone and muscle

regions

Segmentation +
Classification CNNs

DSC = 92%; Acc > 95%
for nerve detection;
DSC > 95% for bone

and muscle

[36] chicken
Embryo

Chorioallantoic
Membrane

MB localisation for
real-time

visualisation
of the

high-resolution
microvasculature

MB Localisation CNN

faster localisation than the
conventional method to

reach 90% vessel saturation;
>20% faster than

MB separation

[37] rat Liver
Classification of

liver fibrosis
severity (F0-F4)

Classification RNN
Acc = 0.83–0.80;

AUC = 0.95–0.93
in train and validation tests,

respectively

[38] pig Tooth, Bone and
Gingiva

Segmentation and
3D reconstruction Segmentation CNN mean accuracy precision

(mAP) > 90%

[39] rat Brain and Whole
Body

Improvement of
image quality

using
image fusion (PA +

CT)

Image Quality
Improvement 3D-CNN

↑ static structural
quality/dynamic

contrast-enhanced
whole-body/dynamic

functional brain acquisitions

[40] rabbit Abdominal Artery
Differentiation of
MB from tissue on

RF signals
MB Localisation CNN/RNN ↑CTR and CNR by 22.3 dB

and 42.8 dB, respectively

[41] rat Brain Vasculature Brain vasculature
reconstruction PD Reconstruction 3D-CNN

PSNR = 28.8; NMSE = 0.05
and MAE = 0.1193, with an

85% compression factor

[42] rat Shank Muscle Segmentation of
the shank muscle Segmentation CNN

DSC = 94.82% and 90.72%
for Gas and Sol muscles,

respectively

[43] mouse Heart Left
Ventricle

Segmentation of
left ventricle Segmentation Deep CNN time analysis reduction >

92%; Pearson’s r = 0.85–0.99

[44] rat
and rabbit

Colorectum
and Urethra

Removing
EMI Noise

Image Quality
Improvement CNNs

U-Net modified
outperforming

in EMI noise removal
vs. others
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Table 1. Cont.

Ref Animal Model Anatomical
District Aim of Study 1 DL Network Task

1 DL Architecture 1 Main Result 1

[45] mouse Heart

Identification and
classification of

myocardial
regions

(health/infarction)

Classification RNN
Precision = 99.6% and 98.7%,

AUC = 0.999 and 0.996
on two test sets, respectively

[46] mouse Breast Tumour
Vasculature

Nondestructive
detection of

adherent MB
signatures

MB Localisation FCN DSC = 0.45; AUC = 0.90

[47] pig Spleen Classification
of splenic trauma Classification CNNs

Acc = 0.85; Se = 0.82;
Sp = 0.88;

PPV = 0.87; NPV = 0.83

[48] pig Heart Left
Ventricle

Segmentation
of left ventricle Segmentation CNNs

DSC = 0.90 and 0.91 for
U-Net

and segAN, respectively

[49] mouse Brain, Liver and
Kidney

Segmentation of
whole-body, liver

and kidney
Segmentation CNN

DSC = 0.91/0.96/0.97 for
brain/liver/kidney,

respectively

[50] rat Liver

Liver fibrosis
assessment by

features extraction
and integration

Features
Extraction DCNN

Acc = 0.83; Se = 0.82;
Sp = 0.84;

AUC = 0.87 for several livers
fibrosis recognition

[51] rat Brain Vasculature
MB tracking for

mouse brain
perfusion

MB Localisation 3D-CNN
↑ in resolving 10 µm

micro-vessels
vs. conventional approach

[52] pig Femoral Artery

Haemorrhage
identification by
exploring blood
flow anomalies

Anomaly
Detection DCGAN

AUC = 0.90/0.87/0.62
immediately/10 min/30 min

post-injury, respectively

[53] rabbit Liver Classification of
fatty liver state Classification CNN

Acc = 74% and 81% in
testing and training data,

respectively

[54] pig Heart
Segmentation of

the heart during a
cardiac arrest

Segmentation n.a. Borders’ recognition and
tracing in porcine hearts

[55] pig Tooth

Identification of
periodontal
structures

and assessment of
their diagnostic

dimensions

Segmentation CNN

DSC ≥ 90 ± 7.2%;
≥78.6 ± 13.2% and
≥62.6 ± 17.7% in two

test sets,
for soft tissue, bone, and

crown segmentation,
respectively

[56] rat Carotid Artery
Measuring blood
flow vessels with
high resolution

Blood Flow
Measure CNN

↑ performance in measuring
vascular stiffness and

complicated flow–vessel
dynamics vs. conventional

techniques

[57] mouse Embryo

3D Segmentation
and classification

of embryos
in normal/mutant

Segmentation +
Classification 3D-CNN

DSC = 0.924/0.887
for body and BV,

respectively

[58] rat Sentinel Lymph
Node Vasculature

Improvement of
lateral resolution
of PA microscopy

Improvement
Image Quality CNN

↑ in resolution and signal
strength

and ↓ in background signal

[59] rat Brain Vasculature

Improving
convergence rate

and image
reconstruction

quality

Pattern
Recognition CNN

↑ performance of
proposed method vs.

ResNet

[60] rabbit Liver
Classification of

liver fibrosis
stages

Classification CNN

AUC = 0.82/0.88/0.90;
Se = 0.83/0.8/0.83;

Sp = 0.66/0.86/0.92;
Acc = 0.75/0.84/0.90

for significant
fibrosis/advanced
fibrosis/cirrhosis,

respectively
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Table 1. Cont.

Ref Animal Model Anatomical
District Aim of Study 1 DL Network Task

1 DL Architecture 1 Main Result 1

[61] rabbit Spine Surface
Segmentation and
3D Reconstruction

of spine surface
Segmentation CNN

overall
MAE = 0.24 ± 0.29 mm;
MAE ↓ 26.28% and the

number
of US surface points across
the lumbar region ↑ 21.61%

[62] rabbit Near Rectum

Removing
electrical noise
from the step

motor to reduce
scanning time

Improvement
Image Quality CNN Good denoising

[63] mouse Brain Vasculature Image
Upsampling

Image
Upsampling FCN

smoother vessel boundaries,
↓ artefacts, more consistent
vessel intensity and vessel
profile vs. undersampled

images

1 Abbreviations: MB: Microbubbles; PD: Power Doppler; RF: Radiofrequency; PA: Photoacustic; EMI: Electro-
magnetic Interference; FCN: Fully Convolutional Network; DNN: Deep Neural Network; CNN: Convolutional
Neural Network; RNN: Recurrent Neural Network; DCNN: Deep Convolutional Neural Network; DCGAN: Deep
Convolutional Generative Adversarial Network; AUC: Area under the receiver operator curve; Se: Sensitivity;
Sp: Specificity; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood Ratio; CNR: Contrast-to-Noise Ratio;
Acc: Accuracy; DSC: Dice Similarity Coefficient; CTR: Contrast-to-Tissue Ratio; PSNR: Peak Signal-to-Noise
Ratio; NMSE: Normalised Mean Square Error; MAE: Mean Absolute Error; PPV: Positive Predictive Value; NPV:
Negative Predictive Value. ↑ indicates an increase; ↓ indicates a decrease.

Table 2. The main characteristics of the conference proceedings included in the analysis.

Ref Animal Model Anatomical
District Aim of Study 1 DL Network Task

1 DL Architecture 1 Main Result 1

[64] dog Left Ventricle Tracking of left
ventricle motion Segmentation CNN good performance in tracking LV

concerning conventional methods

[65] pig Femoral Vein Detection of
catheter tips Object Detection CNNs

classification rates of 88.8% and
91.4% and MAE = 0.279 mm and
0.478 mm for linear and phased

arrays, respectively

[66] pig Femoral Vein Detection of
catheter tips Object Detection CNN a classification rate of 91.4% and a

misclassification rate of 7.86%

[67] rabbit Liver
Classification of

fatty liver disease
stages

Classification CNN
Acc = 85.48%; Se = 91.52%;

Sp = 76.67%; F1-Score = 0.89;
Precision = 85.84%

[68] rat Brain Visualisation of
blood vessels

Improving image
quality DNN

better contrast in vascular
visualisation than
common methods

[69] mouse
Liver

(Hepatocellular
Carcinoma)

Nondestructive
detection of

adherent MBs
signatures

MBs detection FCN AUC = 0.91 and DSC = 0.56

[70] mouse Brain
Detection of
microvessel

networks
MBs detection FCN

significant improvement in image
reconstruction concerning

conventional
beamforming methods

[71] pig Lung Detection of five
lung abnormalities Classification CNN Se and SP > 85% for all features

except for B-lines detection

[72] mouse Brain, Liver and
Kidney

Segmentation of
whole-body, liver

and kidney
Segmentation CNN DSC = 0.98/0.96/0.97 for

brain/liver/kidney, respectively

[73] pig Heart

Guidewire
segmentation in

cardiac
intervention

Segmentation 3D-CNN MHD = 4.1; DSC = 0.56

[74] pig Lung Pneumothorax
detection Feature extraction CNN + RNN Se = 84%; Sp = 82%; AUC = 0.88

[75] pig Femoral Artery

Haemorrhage
identification by
exploring blood
flow anomalies

Anomaly
Detection GAN

Sp = 70% and Se = 81–64%
immediately and 10 min
post-injury, respectively
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Table 2. Cont.

Ref Animal Model Anatomical
District Aim of Study 1 DL Network Task

1 DL Architecture 1 Main Result 1

[76] rabbit Liver Classification of
fatty liver state Classification CNN

Acc = 73% on testing data
compared to 60% with

conventional QUS

[77] pig Inferior Vena Cava Vessel Lumen
Segmentation Segmentation CNN

DSC = 0.90; TP = 57.80;
TN = 31.06; FP = 6.04; FN = 5.11

post-processing

[78] chicken Embryo Improvement of
image quality Beamforming CNN qualitative improvements in

image quality

[79] mouse Embryo

3D Segmentation
and classification

of embryos in
normal/mutant

Segmentation +
Classification 3D-CNN DSC = 0.925/0.896 for body and

BV, respectively

[80] mouse Embryo
3D Segmentation
of embryo brain

ventricle
Segmentation 3D-CNN DSC = 0.896 in testing

[81] rat Liver
Classification of

liver fibrosis
severity (S0–S3)

Classification RNN
Acc = 87.5/81.3/93.7/87.5%;

AUC = 0.90/0.94/0.92/0.93, for
S0/S1/S2/S3, respectively

[82] mouse Embryo
3D Segmentation
of embryos body

and brain ventricle
Segmentation 3D-CNN DSC = 0.934/0.906 for body and

BV, respectively

[83] rat Heart

Obtaining the
position of the

Epicardium and
Endocardium

Segmentation CNN

Accuracy from 82.26% to 85.03%
by comparing semi-automatic

with automatic
segmentation method

1 Abbreviations: MB: Microbubbles; CNN: Convolutional Neural Network; DNN: Deep Neural Network; FCN:
Fully Convolutional Network; RNN: Recurrent Neural Network; GAN: Generative Adversarial Network; MAE:
Mean Absolute Error; Acc: Accuracy; Se: Sensitivity; Sp: Specificity; AUC: Area under the receiver operator curve;
DSC: Dice Similarity Coefficient; MHD: Mean Hausdorff Distance; TP: True Positive; TN: True Negative; FP: False
Positive; FN: False Negative.

Although the search strategy included articles published within the decade 2012–2022,
almost all selected papers were published in the last five years (Figure 2).
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3.2. Cardiovascular System

US imaging techniques are widely used to investigate the cardiovascular system, e.g.,
to study heart function/morphology, to track blood flow and for early identification of any
functional impairment. Among the 56 selected papers, 16 (28.6%) proposed the application
of DL to US images in cardiovascular studies. In particular, these papers focused on
the heart [43,45,48,54,64,73,83], atherosclerotic plaque [34], carotid [56]/abdominal [40]/
femoral [31,52,75] arteries, femoral veins [65,66] and inferior vena cava [77].

Two papers [34,40] used rabbits in their experiments. Cao et al. [34] proposed a
network for studying the severity of atherosclerotic lesions aiming at classifying the vulner-
ability index assessed by the images of the plaque. On the other hand, in reference [40], the
DL network was validated using images from both phantoms and in vivo animals. The
purpose was to localise the microbubbles injected into the abdominal artery and distinguish
between the signal emitted by the microbubbles and the signal generated by the tissue.

Nine papers [31,48,52,54,65,66,73,75,77] dealt with porcine models. In all these stud-
ies, the number of enrolled animals was very low (1, 10, 11, 7, 1, 1, 1, 5 and 2 pigs
in [31,48,52,54,65,66,73,75,77], respectively). The small sample size of studies on medium-
sized animals could be partly due to the challenges involved in managing experiments,
such as costs and housing spaces, equipment, etc., despite the cardiovascular anatomy
and physiology of pigs being closer to that of humans [84]. In [52], a deep convolutional
generative adversarial network (GAN) was designed to explore blood flow anomalies
associated with haemorrhage on US colour Doppler images acquired from femoral arteries.
Haemorrhages were detected with an area under the receiver operator curve (AUC) of
0.90, 0.87, and 0.62 (immediately after, 10 and 30 min post-injury, respectively). Studying
the femoral vasculature, Brattain et al. [31] proposed a DL network for detecting needles
during femoral vascular access with a precision of 0.97 and 0.94, and a recall of 0.96 and
0.89 for artery and vein, respectively.

Murine models have been adopted in four papers [43,45,56,83]. Park et al. [56] pro-
posed a U-Net modified network to study flow–vessel dynamics in the carotid artery; they
also demonstrated that the DL model performed better than the conventional US-based
flow and strain measurement techniques in assessing vascular stiffness.
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In [45], a classification network for differentiating between normally perfused and infarcted
myocardial regions was proposed. The system achieved high classification precisions of 99.6%
and 98.7% and an AUC of 0.999 and 0.996 on two different test sets, respectively.

Seven papers [43,48,54,64,73,77,83] proposed DL models designed for segmentation
tasks. Three of them focused on the left ventricle [43,48,64], one at segmenting the whole
heart during cardiac arrest [54] and another on segmenting both the epicardium and en-
docardium [83]. In [73], the aim was to segment a guidewire in real-time during a cardiac
intervention, and in [77], the authors proposed a system to identify vessel lumen. In par-
ticular, Duan et al. [43] proposed a fully automated tool named mouse-echo neural net,
in which a deep CNN (U-Net-based architecture) was implemented to perform semantic
segmentation on both B-mode (to locate left ventricle borders) and M-Mode (to identify an-
terior/posterior walls, LV and background) images. The automatic segmentation achieved
a very high dice similarity coefficient (DSC) of 92.45% and 95.63% compared to the manual
segmentation of B-Mode and M-Mode images, respectively. These results were consistent
with those obtained via manual analysis. In [48], the authors applied U-Net and a GAN
model for LV cavity segmentation, achieving very similar results, with a DSC of 0.90 and
0.91 for U-Net [25] and GAN model [85], respectively. Interestingly, in [54], the authors
fed an AI-based bladder scanner designed to segment the bladder with heart images to
evaluate its performance in the segmentation of the left ventricle. They achieved very
promising results, finding that this device was able to identify cardiac arrest with high
reliability by tracing the borders of the heart in a pig model.

3.3. Abdominal Organs

The US is widely adopted for investigating organs and soft tissues in the abdominal
cavity. Indeed, 14 (25%) of the reviewed papers [29,37,44,47,49,50,53,60,62,67,69,72,76,81]
have been focused on abdominal US imaging. In particular, studies focused on liver, kidney,
spleen and bowel examinations.

Eleven papers focused on liver analysis [29,37,49,50,53,60,67,69,72,76,81]. In [49]
and [72], the same DL network was used to segment the liver, brain and kidney. The
authors proposed a U-Net-modified network able to work with hybrid optoacoustic (OA)
and US images (dual-modality) acquired in mouse models. A preliminary study has been
conducted in [72], a conference proceedings publication in which the authors trained a
CNN-based network only on OA images and then tested it on both OA and US images.
Subsequently, in [49], the authors investigated more in-depth their proposed system. In-
terestingly, they trained their model by mixing images acquired from the liver, brain, and
kidney to demonstrate the robustness of the network in segmenting different organs with
different outlines and contrast. They achieved good results in terms of the DSC index
(0.76), outperforming a traditional segmentation technique. This finding shows the transla-
tional ability of DL models from one organ to another. U-Net trained on two techniques
(OA + US) showed lower performance compared to the model trained with OA images
alone. The authors justified the lower performance achieved by the dual modality with the
lower availability of US data relating to OA data.

In [50], the authors proposed a deep CNN with multi-feature extraction applied to
B-mode rat liver images. By integrating some information extracted from the parametric
maps provided by the US device, they obtained a sensitivity of 0.82, specificity of 0.84,
accuracy of 0.83 and AUC of 0.87 in the recognition of significant liver fibrosis on the test
set data. These results were comparable with those obtained with the validation set data.

Eight papers [29,37,47,53,60,67,76,81] proposed DL models for classification tasks in
organ disease. In particular, Banzato et al. [29] developed a deep neural network using
transfer learning (AlexNet retrained and fine-tuned) for the diagnosis of degenerative liver
disease in dogs. In [81], the authors proposed an RNN (LSTM-based network) to classify
liver fibrosis stages (S0-S4) using 96 RF signals acquired (80/16 in training/validation,
respectively). Later, the same group proposed a bidirectional long short-term memory to
classify the severity of rat hepatic fibrosis according to five score classes [37] by increasing
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the number of data (160 RF signals acquired from 33 rats) and implementing the network ar-
chitecture regarding [81]. This is worth noting that the models showed a better performance
in [37] concerning [81] in the validation sets for classifying <S0/<S1/<S2/<S3. The former
study achieved AUCs of 0.93/0.95/0.98/0.99 compared to values of 0.90/0.94/0.92/0.93 in
the latter investigation. This slight improvement in the performance may be ascribed to the
increased number of data used in reference [37] for training the networks. Moreover, in
four papers, the authors proposed CNN models to classify in the rabbit the severity of liver
fat content [53,67,76] and fibrosis [60]. Finally, Jiang et al. [47] applied MobileNetV2 for 2D
feature extraction, followed by ResNet models for the classification of splenic trauma in
pigs. In the papers [37,50,60], all the authors proposed DL systems to classify the stages of
liver fibrosis. It is noteworthy that the results achieved were very similar despite the use
of different architectures and strategies. Accuracies greater than 0.8 and AUCs between
0.82 and 0.95 were reached in all cases, particularly in the detection of significant stages of
liver fibrosis.

In the conference proceedings [69], the authors studied the perfusion of hepatocellular
carcinoma through microbubble detection in a mixed dataset composed of US molecular
images acquired in a mouse model and phantoms. They achieved a significant improvement
in image reconstruction concerning conventional beamforming methods with an AUC of
0.90 in microbubble detection into the mouse tumour.

In addition, two papers [44,62] described CNN architectures aimed at improving the
quality of US images by removing electrical noise. Both papers tested the proposed DL
models on endoscopic PA/US images of the bowel, namely the rat colon–rectum and the
rabbit urinary tract [44] and the rabbit rectum [62].

3.4. Musculoskeletal System

Despite US imaging being widely used to study the musculoskeletal system in clinical
studies, there is still only a partial exploration of this imaging modality in preclinical
investigations. Indeed, only five [35,38,42,55,61] papers (8.9%) proposed deep learning
architectures to work with US images of bones [38,61], muscles [35,55] and teeth [38,55].

Pig is the preclinical model chosen in the majority of the papers in this section [35,38,55],
and only two papers proposed studies on rats [42] and rabbits [61].

All these papers [35,38,42,55,61] trained DL systems for segmentation tasks and all
of them proposed U-Net-based models properly adapted for the specific training tasks.
In [35], Carson et al. proposed a system able to detect, segment, classify, and display neural
structures during trans-psoas spine surgery by processing B-mode images. The authors
integrated a U-Net in their AI system to classify bone and muscle regions in B-mode
images surrounding the muscle psoas. A U-Net modified (called ResTU-net) has been
proposed in [42] for the segmentation of muscles (gastrocnemius and soleus) in the rat
hindlimb. The performances DSC of 94.82% and 90.72% achieved for gastrocnemius and
soleus, respectively, outperformed the state-of-the-art methods. In [55], a multi-class deep
learning segmentation system based on a U-Net was designed and trained on 274 premolar
sonograms (including augmented data) acquired from five pigs. This network was able to
automatically identify several of the dental and periodontal structures (e.g., alveolar bone,
gingiva and oral mucosa, and crown) in each image. Concerning tooth, gingiva and mouth
bones, in [38], the authors developed a model for the 3D reconstruction of those structures
using high-frequency US (HFUS) images acquired with a free-hand 2D system equipped
with a spatial positioning reading sensor. For this purpose, a network previously proposed
(Mask R-CNN [86,87]) was retrained to automatically segment tooth, bone and gingiva.

Finally, Tang et al. [61] proposed a DL segmentation network (based on U-Net) for
segmenting the spine surface using a fusion of US and computed tomography (CT) images.
The proposed 3D reconstruction method would allow its use during spinal intraoperative
sessions without the need for an external tracking system.
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3.5. Brain

Eight papers [30,39,41,51,59,63,68,70] proposed DL models applied to US images of
the brain. Seven of them focused on the study and visualisation of brain microvasculature
[30,41,51,59,63,68,70] and one [39] on the improvement of image quality using technologies
of image fusion (PA and CT). These papers applied the DL approach to mice [30,63,70] and
rats [39,41,51,59,68].

Milecki et al. [51] validated their DL system on images acquired from one rat only.
They trained a 3D-CNN based on a V-net architecture (named Deep-stULM) in brain
perfusion analysis through microbubble localisation by using a dataset composed of in
silico simulated mouse brain microvascular networks. The authors commented on how
their network performed and generalised well over an in vivo dataset without providing
any statistical demonstrations.

Six [30,39,59,63,68,70] papers aimed at using DL techniques to improve the quality of
the US microvascular images. Blons et al. [30] proposed a DL model called PerfectFlow
(U-Net modified + VGG16-derived) that used a perceptual loss function to enhance the
visualisation of brain microvessels in transcranial Doppler images of mouse brains. Alike,
in [39], the authors proposed a DL architecture, called a 3D progressive U-shaped enhance-
ment network, trained on fused photoacoustic computed tomography (PACT) and US
images. The network’s task was to improve the quality of PACT images, a practice that is
now widely used in preclinical settings. In [59], the authors compared the performances
of a convolutional robust principal component analysis network, which is a fixed-length
deep network, with a conventional ResNet in the representation of the vasculature. In [63],
Zhu et al. developed a DL method (termed fully dense U-net) to dampen the discontinu-
ity/low resolution associated with the subsampling of cerebral microvasculature images
acquired with an ultrafast functional PA microscopy (UFF-PAM) system. Their model
was trained on fully sampled images to recognise and reconstruct microvessels via over-
sampling. Once trained, a fully dense U-net was applied to their sub-sampled images
acquired with UFF-PAM. The end outcome was an improvement in spatial resolution and
a clearer visualisation of the cerebral microvascular network of the mouse. In [70], the
authors proposed an FCN-based beamforming technique on 3D ULM images, obtaining a
significant improvement in image reconstruction concerning conventional beamforming
methods. Even Cohen et al. [68] reported an improvement in vasculature visualisation
of the rat brain by using DL systems compared to common methods. Specifically, they
trained an unfolded network solely on simulated data and tested the performance on
in vivo images.

Instead, Di Ianni et al. [41] compared the performances of their network (Deep-fUS)
based on a 3D-Res-U-Net with those of a simple U-Net on images of the brain microvas-
culature of rats. Deep-fUS achieved better performance in the reconstruction of power
Doppler images, with values of the peak signal-to-noise ratio of 28.8, normalised mean
square error of 0.05 and a mean absolute error for the activation map of 0.1193 lower than
that obtained by simple U-Net and with a compression factor of 85%.

Interestingly, all papers presented in this section proposed DL networks to improve
brain microvessel detection compared to traditional approaches, albeit using different DL
architectures and US technologies. In all these articles, the application of the DL methods
provided a significant improvement in the image quality of the visualised cerebral vessels,
both in terms of better spatial resolution and reduction in artefacts and errors.

3.6. Miscellany

This last paragraph collects 13 papers [28,32,33,36,46,57,58,71,74,78–80,82] that pro-
posed heterogeneous US-based applications adopting DL systems. In particular, papers
focused on embryo segmentation [28,57,79,80,82] and embryo reconstruction [78] or on the
vascularisation of breast cancer tissue [32,46], lymph node [58], hind limb [33], chorioallan-
toic membrane [36] and lung [71,74].
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Nine papers [28,32,33,46,57,58,79,80,82] adopted murine models, two [36,78] were
working with chicken US images and two [71,74] with pig models.

Five of the selected papers [28,57,79,80,82] have been proposed by the same research
group that provided DL-based systems for 3D body and brain ventricle segmentation in
mouse embryos. First, in a study published in [80], the authors developed a framework
based on 3D-CNN for segmenting brain ventricles. They achieved a DSC of 0.896 by
testing the model on 111 HFUS images. In a second study [79], Qiu et al. incorporated
their framework with an embryo body segmentation tool which resulted in a higher DSC
of 0.925. In addition, they developed a classification model for distinguishing between
normal and mutant embryos. An additional optimisation of their framework was presented
in [82], in which the authors reached a very similar level of network accuracy but with a
significant decrease in inference time (about 1000×). All these findings were assembled
in two original articles [28,57]. Indeed, in [57], authors comprehensively described the
previously proposed framework, and in [28], they tested it again on an external dataset that
included images acquired in nine pregnant mice/101 embryos.

In [32], the authors proposed a DL-based spatiotemporal filter for microbubbles
images formation and segmentation of in vivo super-resolution US images in a murine
model of breast cancer. Their 3D-CNN achieved 84.3% accuracy, 84.7% sensitivity and 83.8%
specificity in the in vivo training of the network. Additionally, an optimised version of the
previously mentioned DL model was applied in [33] to perform contrast agent detection
and localisation in studying the rat hind limb vasculature images. Their network was
created from blocks of the MobileNetV3 architecture customised for 3D data. In a similar
task, Hyun et al. [46] proposed a fully convolutional neural network to study breast tumour
vascularisation in a mouse model by US microscopy image processing, thus obtaining a
DSC of 0.45 and AUC of 0.91.

Sharma et al. [58] developed a network to improve the quality of PA microscopy
images of the vasculature around the sentinel lymph node in a murine model. They
designed a fully dense U-Net that improves resolution and signal strength while reducing
background signal.

Two papers [71,74] focused on lung US examination in pigs. In both articles, a CNN-
based network was used to analyse swine US videos. In [71], the authors proposed an
Inception V3-based CNN for detecting and classifying five lung abnormalities. Then,
Mehanian et al. [74] applied the previously proposed method in pneumothorax detection.
They also proposed an RNN (based on the LSTM network) to perform temporal analysis
and achieve better performance in the automatic detection of the absence of lung sliding.

Finally, Chen et al. [36] proposed a neural network for microbubbles localisation
microscopy aimed at the real-time visualisation of the high-resolution microvasculature of
the chicken embryo chorioallantoic membrane. The network has been previously trained on
simulated data, and the images acquired in vivo were used only during the testing phase.

4. Discussion

DL has recently emerged as an alternative approach to dealing with the limitations of
US image analysis (such as operator dependence), and its application to clinical in vivo US
is gaining popularity in various research fields. The integration of DL architectures into the
preclinical US might represent a valuable tool in experimental studies and a step towards
their adherence to 3R strategies. However, this approach is still evolving and relatively new
in in vivo animal models. In this review, we offered an overview of the applications of DL
techniques in preclinical US imaging on in vivo models. We searched for articles published
from 2012 onwards; our selection criteria only allowed for the collection of publications
starting from 2018 (except for one conference paper published in 2016), with a significant
increase in the number of articles in the last 2 years. Evidence indicates that the use of DL
systems in preclinical US imaging has been recently introduced and that the application of
this approach is rapidly growing in a variety of in vivo models.
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Our analysis revealed that murine models (i.e., mice and rats) are used in the majority
of in vivo studies applying DL to US imaging (52% of the selected articles). This reflects
the prevalent use of rodents in in vivo studies, and it is likely attributable to their low costs,
ease of handling, and, notably, their relatively short lifespan and reproductive cycle. These
characteristics make them a valuable model for a plethora of research applications. Our
analysis has identified a considerable variety of US-based DL applications with different
tasks, such as the segmentation of organs, disease severity classification, image quality
improvement, and contrast/microbubbles localisation for studying blood flow and mi-
crocirculation. A lower number of studies used porcine models (27% of the reviewed
papers) that are particularly suited for applications requiring a close similarity to human
anatomy, despite their costs in terms of purchase and maintenance. Among the reviewed
studies in porcine models, DL has been prevalently applied for muscle/bone structure
segmentation or for testing US-guided interventions. Rabbits were used in 9 of 56 articles as
an intermediate model between small and medium-sized animals. In these studies, DL was
applied on US images either for cardiovascular applications, including the classification of
plaque vulnerability and vascular localisation of microbubbles and for the classification of
liver steatosis and fibrosis.

It should be underlined that, despite the recent growth of DL applications in preclinical
imaging, there is still a substantial difference between the clinical and preclinical application
fields concerning the smaller number of image samples in the latter. Indeed, many in vivo
animal model studies use a low number of data in training the networks, often without
rigorous validation, thus limiting the ability to generalise to newly acquired data never
seen by the network [88].

The studies analysed showed that the networks were trained with a limited number
of images, and the animals from which the images were obtained were also very heteroge-
neous and variable in number. Only seven articles used more than (or equal to) fifty animals
(52 dogs, 50 pigs, 653 mice, 84 and 96 rats, 57, and 80 rabbits in [29,35,43,50,53,60,81], re-
spectively). Moreover, nine papers [36,57,63,67,69,79,80,82,83] did not report the number
of animals enrolled. In the study by Duan et al. [43], which included more than 600 mice,
the authors propose an automatic tool for the rapid analysis of B-mode and M-mode
images, within which the first step of segmentation was managed by a U-Net network.
This approach resulted in a significant reduction of over 92% in the time taken for image
analysis. In addition, there were excellent correlation coefficients (ranging from 0.93 to 0.98),
and automated and manual segmentation showed good agreement. Furthermore, greater
accuracy of the analysis was found due to the reduction in operator-dependent variability.

The availability of large and shared datasets is one of the major challenges for the
widespread use of DL systems in preclinical ultrasound imaging. A large training sam-
ple with an accurately verified reference standard is mandatory for developing a well-
performing DL model. However, due to the current limited availability of large datasets,
the transfer learning (TL) technique is commonly used to overcome these problems. It
consists of the use of pre-trained networks on large datasets (e.g., ImageNet [89,90]) and
then fine-tuning them on a small number of new input data.

Another commonly used strategy to increase the number of data and minimise overfitting
is the data augmentation approach. A series of basic transformations (e.g., rotations, zoom-
ing/scaling, x- and y-axis movement) are applied to the data to generate modified copies of
it to be used in the model training. However, it should be noted that performing data aug-
mentation is not properly equivalent to an increase in new and independent data, and often
neural networks do not benefit from the excessive addition of augmented data [88]. Alter-
natively, more complicated techniques are also developing, such as Generative Adversarial
Networks (GANs), which generate plausible new data compared to the available ones [88].
The majority of the selected papers [28–34,36–38,41,42,45,47–50,57,58,61,71–74,77–80,82] used
TL techniques to overcome data limitations rather than developing models from scratch. Data
augmentation was performed in twenty-eight of the analysed papers, dealing with the cardio-
vascular system [31,34,48,56,73,75,77], abdominal organs [29,44,49,50,60,72,81], musculoskeletal
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system [55,61], embryo [28,57,78–80,82], breast tumour vascularisation [32,46], brain [59,63] and
lung [71,74] US images. In addition, GAN models have been applied in three papers [48,52,75].

The studies reported in [33,51] utilized a different approach. Brown et al. [33] per-
formed testing of a CNN using images of the rat hind limb acquired in vivo. This CNN,
however, was trained on in silico data. Milecki et al. [51] proposed a 3D-CNN model
trained on in silico ULM simulated data and validated on rat brain images acquired in vivo.
Both the studies achieved promising results and demonstrated the generalisation capability
of their models, as well as the translatability of DL applications trained on simulated data
in reproducing comparable results on real images.

The high computational power required is another important aspect in the develop-
ment of DL systems due to the large number of data involved in the process of training
DL models. Therefore, high-performance graphics processing units (GPUs) with plenty of
memory available are required to handle large volumes of calculations/operations.

It is worth mentioning that the standardisation of quantitative indicators and bench-
marking techniques is a critical aspect when evaluating the effectiveness of proposed
methods. Indeed, the selected studies had very heterogeneous objectives (Tables 1 and 2,
Main Results column), ranging from the activity of classification to segmentation, extraction
of image characteristics or improvement of the quality of the image. Consequently, the
criteria used to evaluate performance were also quite heterogeneous and varied: e.g., the
DSC for the evaluation of DL-model segmentation performance compared to the manual
segmentation or the accuracy/specificity/sensitivity for assessing the performance for
classification tasks, the quantitative signal-to-noise ratio to assess the image quality or
more specific indexes of performance for specific tasks. This variety made it challenging to
compare and comment on the numerical results presented by the authors.

Despite the current circumstances, it is highly recommended to enhance the develop-
ment and implementation of DL algorithms in preclinical US data analysis. The results
obtained so far seem encouraging. Preclinical US imaging, with its different modalities
and applications, can serve as a great platform for developing and testing DL systems on
translational model images of human diseases. These models range from small animals to
those more similar in size to humans. Therefore, the implementation of high-performing
DL models, along with their validation in preclinical studies, can represent an added value
when successfully imported into medical imaging.

5. Conclusions

The use of DL methods with US imaging in medical imaging has recently gained
attention, but its application in preclinical in vivo studies is still in its early stages. This
paper aimed to systematically review the literature to determine the potential validity of
DL-based systems for US preclinical data analysis. In preclinical studies, there is a high
priority for the role of DL to automate complex tasks (e.g., quantification, segmentation,
reconstruction) or improve image quality (e.g., dose/noise reduction). There are still
some weaknesses that prevent the widespread use of DL models, such as the need to
collect large numbers of samples and the requirement for more rigorous and standardised
approaches to compare the models used in different studies. The implementation of these
technologies in preclinical biomedical science is highly advisable, as they can provide a
vast amount of information through animal models that mimic human pathophysiology
or clinical scenarios. In perspective, well-trained and tested DL algorithms developed on
preclinical US imaging can potentially be imported as new diagnostic/prognostic tools in
the medical field.
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