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Double explosive transition in the synchronization of multilayer networks
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We give evidence that consecutive explosive transitions may occur in two-layered networks, when a dynamical
layer made of an ensemble of networking phase oscillators interacts with an environmental layer of oscillators
which are in a state of approximate synchronization. Under these conditions, the interlayer coupling induces
two consecutive explosive transitions in the dynamical layer, each one associated with a hysteresis loop. We
also show that the same phenomenon can be observed when the environmental layer is simplified into a single
node with phase lag. Theoretical arguments unveil that the mechanisms at the basis of the two transitions are in
fact different, with the former originating from a coupling-amplified disorder and the latter originating from a
coupling-induced synchronization. We discuss the relevance of the observed state in brain dynamics and show
how it may emerge in a real brain network.
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Explosive synchronization (ES) [1] refers to the appear-
ance (or disappearance) of synchronization in a system fol-
lowing a first-order-like phase transition, i.e., a scenario where
order (or disorder) sets in within the system in an abrupt,
discontinuous way. In some cases, ES has an irreversible
character and is accompanied by a hysteresis loop when the
control parameter undergoes forward and backward adiabatic
processes [2]. Different mechanisms have been revealed as
possible ways leading to ES [3–26]: (i) the combination
of heterogeneity in the network’s degree distribution and a
positive correlation between the natural frequencies of the
oscillatory units and their degrees [3–5] (conditions that have
been later extended to the cases of partial frequency-degree
correlation [18,19] and frequency-weighted networks [8,20]);
(ii) a frequency-weighted coupling strength [6]; (iii) a locally
adaptive coupling in mono- and multilayer networks [12–17];
and (iv) the addition of quenched disorder to the oscillators’
frequencies [11,27], or the simultaneous presence of cooper-
ation [28] or percolation [29], or even the presence of time
delay [21–23]. It was later shown that all these scenarios can
be actually seen as different realizations of a suppressive rule
for pairwise synchronization [9], i.e., a frustration mechanism
which contrasts the formation or growth of small clusters of
synchronized oscillators at intermediate coupling strengths.
Recently, explosive transitions have been shown to be a
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universal feature of nonlinear dynamical systems that have a
generic two-parameter family [30].

So far, studies have concentrated on networked systems
displaying a single ES transition when progressively increas-
ing (or decreasing) the coupling strength, accompanied by
either no hysteresis loop or only one hysteresis loop [31].
Then, the question arises as to whether multiple, consecutive,
explosive transitions can be observed in a single system. This
issue is relevant, for instance, in brain dynamics, where neural
synchronization is commonly found during the execution of
a number of tasks [32,33]. Then, a group of neurons which
has to pass from performing a task to operating on another
one needs in fact to experience an abrupt desynchronization
from the ordered state associated with the accomplishment
of the first task followed by an equally abrupt synchroniza-
tion to the different ordered state associated with the new
task.

In this paper, we give evidence that consecutive explosive
transitions take place in a multilayer network, each one asso-
ciated with its own hysteresis loop. Precisely, we consider a
two-layered network, with one layer accounting for a sort of
environmental system featuring approximate synchronization
and the other layer describing instead the networked dynam-
ical system under study. In these conditions, the interlayer
coupling induces two consecutive explosive transitions in the
dynamical layer. We further show that the same phenomenon
can be observed also when simplifying the environmental
layer into a single node with phase lag. By theoretical analysis
we demonstrate that the mechanisms at the basis of the two
transitions are in fact different, with the former originating
from a coupling-amplified disorder and the latter originating
from a coupling-induced synchronization. Finally, we prove
that the state discussed here can actually emerge in a real brain
network.
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FIG. 1. Sketch of a two-layered network, with the first layer be-
ing the environmental layer and the second one being the dynamical
layer.

Let us start by considering a two-layered network, such
as the one sketched in Fig. 1, where the first (or upper)
layer represents an environmental system and the second (or
lower) layer represents instead a generic networked dynamical
system. In what follows (and unless otherwise specified) the
two layers are independent random Erdős-Rényi (ER) net-
works [34], with N1 and N2 nodes and average degrees 〈k1〉
and 〈k2〉, respectively. Moreover, in Fig. 1 and in the rest of
this paper, we denote by λ1 and λ2 the intralayer coupling
strength of the first and second layer, respectively, while we
denote by λ the interlayer coupling strength. For simplicity,
we here only consider the case of N1 = N2 ≡ N , in which
furthermore each node is represented by a Kuramoto phase
oscillator [35].

Considering that the synchronization of two-layered net-
works has been well studied for the case of the same intra- and
intercouplings, it is maybe necessary for us to consider a few
specific cases where some interesting results can be expected.
One such paradigmatic example is the finding of explosive
synchronization, which comes from the specific conditions of
both a scale-free network and a positive correlation between
the natural frequencies and nodes’ degrees [3], in contrast to
the general discussions based on the analysis of the master
stability function. In this sense, we here consider a specific
situation where all oscillators of the network are influenced
by almost the same environmental signal. In the setup of
Fig. 1, this is realized by letting the natural frequencies of
each environmental oscillator be slightly different to prohibit
complete synchronization, and yet considering always a value
of λ1 which is large enough to determine approximate syn-
chronization. Moreover, we will consider the case in which
the two layers display considerably different frequency distri-
butions, with the environmental (dynamical) layer being made
of low-frequency (high-frequency) oscillators. The resulting
dynamics can be described by

θ̇i,1 = ωi,1 + λ1

N∑

j=1

Ai j,1 sin(θ j,1 − θi,1) + λ sin(θi,2 − θi,1),

θ̇i,2 = ωi,2 + λ2

N∑

j=1

Ai j,2 sin(θ j,2 − θi,2) + λ sin(θi,1 − θi,2),

(1)

where i = 1, 2, . . . , N , the subscripts 1 and 2 stand for the
upper and lower layer, respectively, and ωi,1 and ωi,2 denote
the natural frequencies of the nonidentical oscillators in the
first and second layer, respectively. Ai j are the elements of
the adjacency matrix A (with Ai j = 1 if nodes i and j of the
same layer are connected, and Ai j = 0 otherwise). Finally, the
last term on the right-hand side of Eqs. (1) accounts for the
interlayer coupling.

In order to better illustrate the observed phenomenon,
we here set the frequencies in the environmental layer (in
the network) to be equispaced and homogeneously dis-
tributed around a central frequency ω0 (3ω0). Precisely, we
set ωi,1 = ωi + ω0 and ωi,2 = ωi + 3ω0, with ωi = π�(2i −
(N − 1))/2(N − 1). Furthermore, we fix 〈k1〉 = 〈k2〉 = 10,
ω0 = 3.0, and N = 200, and we study how the interlayer
coupling strength λ drives the synchronization transition in
the network layer. This is monitored by the global order pa-
rameters R1 and R2 of the first and second layer, defined by
R1ei�1 = 1

N1

∑N1
j=1 eiθ j,1 and R2ei�2 = 1

N2

∑N2
j=1 eiθ j,2 . Specifi-

cally, we denote with R1F and R1B (R2F and R2B) the values
of R1 (R2) obtained during the forward and backward syn-
chronization processes. Moreover, we introduce the effective
frequency ωeff

i,2 = 1
T

∫ t+T
t θ̇i,2(τ )dτ for the second layer, with

T � 1, and denote by ω2F and ω2B the values of ωeff
i,2 mea-

sured during the forward and backward processes. Similarly,
ωeff

i,1 , ω1F , and ω1B are introduced.
In our simulations, initial phases of all oscillators are drawn

from a random uniform distribution in the range [0, 2π ). In
order to simulate the forward (backward) process, λ is then
adiabatically increased (decreased) from λ = 0 to λ = 5 (from
λ = 5 to λ = 0) with increment (decrement) of δλ = 0.02 at
each step [36], and the order parameters R1F and R2F (R1B and
R2B) are calculated for each λ.

When the parameter � is sufficiently large, Eqs. (1) give
rise to a classical scenario of ES transition. However, a phe-
nomenon is featured by the network layer for relatively small
�: Starting from the state where both layers are synchro-
nized (though at different frequencies), the network layer
experiences two consecutive explosive transitions, the first
corresponding to an abrupt desynchronization and the second
corresponding to an explosive resynchronization.

The results are reported in Figs. 2(a) and 2(b), which
display R2 vs λ for � = 0.001, λ1 = 2.4, and λ2 = 0.02
[Fig. 2(a)] and the corresponding values of ωeff

i,2 and ωeff
i,1

[Fig. 2(b)]. Figure 2(a) reveals that R2 features two con-
secutive explosive transitions (each one associated with a
hysteresis loop), while R1 does not, confirming that the
environmental layer remains approximately synchronized.
Figure 2(b) reveals that ωeff

i,2 decreases with the increase in the
interlayer coupling strength λ and eventually reaches a value
of 2ω0 when the two layers are synchronized. ωeff

i,2 shows also
two small loops in correspondence with the hysteresis loops
of R2.

Do the results of Figs. 2(a) and 2(b) depend on the dis-
tributions of the natural frequencies ωi,1 and ωi,2? To check
this, we have made simulations on other distributions and
found similar observations. The reason is that the range of
the natural frequencies is chosen as π�, which is very small
when � = 0.001. Thus different distributions do not make a
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FIG. 2. (a) The two consecutive explosive transitions featured
by the dynamical layer. λ1 = 2.4 and λ2 = 0.02 (other parameters
specified in the text). The blue line with circles (red line with squares)
indicates the R2 values during the forward (backward) transition. The
forward and backward R1 values are also reported as dashed lines.
(b) ωeff

i,2 and ωeff
i,1 (see text for definition) vs λ, in the same conditions

as in (a). (c) The case of Gaussian distribution with other parameters
being the same as in (a). (d), (e), and (f) The widths d1 and d2 of the
two hysteresis loops vs the parameters λ2, �, and λ1, respectively,
with the other parameters being fixed as λ1 = 2.4 and � = 0.001 in
(d), λ1 = 2.4 and λ2 = 0.02 in (e), and � = 0.001 and λ2 = 0.02
in (f).

large difference among individual ωi,1 and ωi,2, resulting in
a robustness to the frequency distribution. As an example,
Fig. 2(c) shows the results on a Gaussian distribution with
mean 〈ωi〉 = 0 and variance σ = 0.0009 (≈ �) and with
other parameters unchanged. We see that it is almost the same
as Fig. 2(a). Therefore we will only focus on the case of
Fig. 2(a) in the following discussions.

Next, we denote by d1 and d2 the widths of the first and
second hysteresis loops and study their dependence on the
parameters λ2, �, and λ1. The results are shown in Figs. 2(d)–
2(f). Figure 2(d) reveals that the two hysteresis loops exist
in a small range of λ2 (0, 0.021). When λ2 = 0.022, the
two loops merge and disappear simultaneously. Figure 2(e)
indicates that the two loops exist only for � < 0.025. This
is a relatively narrow range, and its limited extension is
mainly determined by the need to maintain the controlled
layer in its synchronous state. Figure S1 in the Supplemen-
tal Material (SM) [37] shows, instead, that similar scenarios
can be obtained for larger frequency ranges in the upper
layer. Figure 2(f) reveals that the two hysteresis loops exist
in the range 0.6 < λ1 < 2.7, i.e., for a condition of large
enough intracoupling within the environmental layer, which
is responsible for keeping it almost synchronized during the
entire process of the double transition occurring in the lower
layer.

The fact that the environmental layer always stays in a
state of approximate synchronization allows one to simplify
the study, by reducing the first layer to a single environmental
node. Figure 3 shows a sketch of such a network.

Considering that the oscillators are nonidentical with dis-
tributed frequencies, complete synchronization is impossible,
and thus the coupling between the two layers of Eqs. (1) is
slightly different from one interlink to another. In this sense,
one can safely assume that the small fluctuations from perfect
synchronization can be accounted for by a phase lag τi [38],

Driving Node

2N
2

Controlled Layer

FIG. 3. Sketch of a network coupled to a single node, by reduc-
ing the first layer of Fig. 1 to a single environmental node.

so that Eqs. (1) are now rewritten as (i = 1, 2, . . . , N)

θ̇1 = ω1 + λ

N

N∑

j=1

sin(θ j,2 − θ1 − τ j ),

θ̇i,2 = ωi,2 + λ2

N∑

j=1

Ai j,2 sin(θ j,2 − θi,2)

+ λ sin(θ1 − θi,2 − τi ). (2)

The case of an identical phase lag (τi = τ = 0.2) is
reported in Fig. 4(a), which shows that once again two con-
secutive explosive transitions are featured by the networked
system. Figures 4(c) and 4(d) report the widths d1 and d2 or
the hysteresis loops associated with the two transitions vs λ2

and τ , respectively, with τ = 0.05 in Fig. 4(c) and λ2 = 0.02
in Fig. 4(d). From Fig. 4(c) one sees that the loops disappear
when λ2 > 0.021, while Fig. 4(d) shows that they exist in
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FIG. 4. The two consecutive explosive transitions for the case of
a single environmental node, described in Eqs. (2), with N = 200,
〈k2〉 = 10, and � = 0.001. (a) and (b) report R2 for the cases of iden-
tical (τ = 0.2) and distributed [τi ∈ (0, 0.1)] phase lag, respectively.
λ2 = 0.02 in (a) and λ2 = 0.005 in (b). The blue line with circles
(red line with squares) indicates the R2 values during the forward
(backward) transition. (c) and (d) show the hysteresis widths d1 and
d2 vs the parameters λ2 and τ , respectively, in the case of identical
phase lag τ = 0.05 in (c) and λ2 = 0.02 in (d).

033009-3



TIANWEI WU et al. PHYSICAL REVIEW RESEARCH 4, 033009 (2022)

the range 0.05 < τ < 0.6, i.e., the two hysteresis loops are
induced in specific ranges of λ2 and τ .

Then, we move to consider the case of distributed time
delays, i.e., different τi for different nodes in the networked
system, and randomly draw τi from a homogeneous distri-
bution. Figure 4(b) shows the results for τi ∈ (0, 0.1) and
λ2 = 0.005, which once again clearly shows the presence of
two consecutive explosive transitions.

At this stage, it is worth discussing few points in sup-
port of the observed scenario, while the interested reader
can find a much more detailed theoretical description in the
SM [37]. The main conclusion which can be drawn from
our results is that the two explosive transitions are induced
in fact by two different mechanisms. In particular, the first is
coming from the fact that the intercoupling actually amplifies
the small differences among the oscillators of the dynamical
layer inducing a dynamical instability. In other words, the
intercoupling term acts as a disturbance whose strength is in-
creasing with λ. Once it is strong enough to counter the weak
intracoupling term, synchronization of the dynamical layer
is broken. To illustrate this argument, we take a simplified
approach, where the environmental layer is seen as a single
node and the dynamical layer reduces to two coupled nodes
with frequency mismatch �. In this case, Eqs. (2) reduce
to

θ̇1 = ω1 + λ

2
[sin(θ2 − θ1 − τ1) + sin(θ3 − θ1 − τ2)],

θ̇2 = ω2 + λ2 sin(θ3 − θ2) + λ sin(θ1 − θ2 − τ1),

θ̇3 = ω3 + λ2 sin(θ2 − θ3) + λ sin(θ1 − θ3 − τ2), (3)

with ω1 = ω0, ω2 = 3ω0, and ω3 = ω2 + �. Letting δθ =
θ3 − θ2, one has

δθ̇ = � − 2λ2 sin(δθ ) + λ[sin(θ1 − θ3 − τ2)

− sin(θ1 − θ2 − τ1)]. (4)

Specifically, when τ2 = τ1 + π , we have

δθ̇ = � − 2λ2 sin(δθ ) − λ[sin(θ1 − θ3 − τ1)

+ sin(θ1 − θ2 − τ1)]. (5)

When δθ << 1, one has sin(δθ ) ≈ 0 and θ3 ≈ θ2, and thus

δθ̇ = � − 2λ sin(θ1 − θ2 − τ1). (6)

As there is a big difference between ω1 = ω0 = 3.0 and
ω2 = 3ω0 = 9.0, the term sin(θ1 − θ2 − τ1) in Eq. (6) will
change periodically with time t , i.e., being positive half the
time and negative half the time. Thus the right-hand side of
Eq. (6) will be positive for more than half of a period, as
� > 0. In this sense, δθ will not approach zero but will in-
crease with time t , indicating that the synchronization solution
of δθ = 0 of the dynamical layer will lose its stability. To
confirm this theoretical analysis, Figs. 5(a) and 5(b) show
the corresponding numerical simulations with ω1 = 3.0, ω2 =
9.0, ω3 = 9.0 + �, � = 0.001, λ2 = 0.02, and τ2 = τ1 + π ,
where Figs. 5(a) and 5(b) represent the cases of τ1 = 0.1 and
0.2, respectively. We see that they do have explosive transi-
tions, thus explaining the mechanism of the first hysteresis
loop in Figs. 2 and 4.
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FIG. 5. The explosive transition for the case of three oscillators
with the first one as a single environmental node and the other two
as the dynamical layer, described in Eqs. (3), with ω1 = 3.0, ω2 =
9.0, ω3 = 9.0 + �, � = 0.001, and λ2 = 0.02. (a) and (b) represent
the case of τ2 = τ1 + π , with τ1 = 0.1 in (a) and τ1 = 0.2 in (b).
(c) and (d) represent the case of τ2 �= τ1 + π , with τ1 = 0.2 and τ2 =
τ1 + 2.8 = 3.0 in (c) and τ2 = τ1 + 3.3 = 3.5 in (d). The blue line
with circles (red line with squares) indicates the R2 values during the
forward (backward) transition.

Notice that Eq. (6) is based on the condition τ2 = τ1 +
π , which makes the coupling term λ[sin(θ1 − θ3 − τ2) −
sin(θ1 − θ2 − τ1)] in Eq. (4) be maximum. However, even
when the condition is not satisfied, it is still possible to make
the right-hand side of Eq. (4) be positive in part of the pe-
riod and, consequently, to make the synchronized solution
δθ = 0 unstable. Figures 5(c) and 5(d) show the numerical
simulations with τ1 = 0.2 and τ2 �= τ1 + π , where Figs. 5(c)
and 5(d) represent the cases of τ2 = τ1 + 2.8 = 3.0 and τ2 =
τ1 + 3.3 = 3.5, respectively. We see that the hysteresis loops
in Figs. 5(c) and 5(d) are smaller than those in Figs. 5(a)
and 5(b), thus confirming our theoretical analysis. On the
other hand, one sees that the differences between values of
τi in Figs. 4(a) and 4(b) are much smaller than the difference
(τ2 − τ1) ∼ π in Eq. (5). The reason is that there is a large
number of oscillators in Figs. 4(a) and 4(b) and their accumu-
lated influence on a node will be large, i.e., equivalent to that
of (τ2 − τ1) ∼ π in Eq. (5).

Finally, we give evidence that the described phenomenon
is in fact helpful for us to characterize the dynamics and func-
tioning of a real brain network. It is known that brain networks
can be separated into different cognitive subnetworks and thus
naturally form a multilayered network structure [39], where
layers correspond to the frequency bands at which the brain
operates [40]. Such a layered structure has been confirmed
by magnetoencephalographic recordings [41,42]. Now, when
a specific input signal is received by a brain network at the
rest state, the network is switched from the rest state to the
task state, and the corresponding cognitive subnetwork is ac-
tivated while others remain inactive [43]. Such an explosive
transition may be compared with the first hysteresis loop in
our two-transition model, while the second hysteresis loop
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FIG. 6. Multiple explosive transitions occurring on the medial
default mode, ventral temporal association, and visual subnetworks.
The first, second, and third rows display the location of the nodes
(red dots) on the brain network, the connection matrix, and R2 vs λ,
respectively. (a)–(c) represent the case of the medial default mode
subnetwork with N = 172, 〈k〉 ≈ 29.56, λ2 = 0.01, � = 0.001, and
τ = 0.06. (d)–(f) represent the case of the ventral temporal associa-
tion subnetwork with N = 129, 〈k〉 ≈ 12.63, λ2 = 0.01, � = 0.001,
and τ = 0.08. (g)–(i) represent the case of the visual subnetwork
with N = 111, 〈k〉 ≈ 22.99, λ2 = 0.01, � = 0.001, and τ = 0.06.

(the one occurring at larger coupling strengths) may be as-
sociated with the further switching from one dynamical state
of the brain to another. This, in particular, shares similarities
with what seems to happen at the onset of anesthetic-induced
unconsciousness, where the inhaled anesthetic sevoflurane
is used to gradually modulate the level of consciousness
across multiple states, i.e., eyes-closed waking, uncon-
sciousness, and recovery, and an abrupt state transition is
observed [44].

We here take the network extracted from the brain data of
Refs. [45,46]. In the data, the cerebral cortex is divided into
989 relatively uniform regions of interest (ROIs), with each
representing a network node, and the connections within all
possible pairs of the 989 ROIs were measured noninvasively
by using diffusion spectrum imaging (DSI). According to the
classification of cognitive subnetworks given in Ref. [47], one
can partition the 989 nodes into eight cognitive subnetworks:
attention, auditory, cingulo-opercular, frontoparietal, medial
default mode, motor and somatosensory, ventral temporal
association, and visual subnetworks. When performance of
a specific cognitive task is needed, the corresponding sub-
network is activated, while all the other seven subnetworks
remain inactive. Therefore the activated cognitive subnetwork
is taken as the dynamical layer, and all the other subnetworks
form the environmental layer. Furthermore, we simplify the
environmental layer as a single environmental node, and we
simulate Eqs. (2) at a fixed value of τ .

For the medial default mode subnetwork, Fig. 6(a) shows
the position of nodes in the brain network; they are dis-
tributed along the middle part, i.e., the corpus callosum,
and thus have a dense structure of intralinks. Figure 6(b)

shows its connection matrix, displaying a modular topology
with a high number of interlinks among communities. Fig-
ure 6(c) shows the order parameter of the dynamical layer
R2 for τ = 0.06, where the blue line with circles (red line
with squares) represents the forward (backward) processes of
R2. It is easy to see that with the increase in the intercou-
pling strength λ, the subnetwork displays two consecutive ES
transitions.

The same simulations are performed for the case of the
ventral temporal association subnetwork, which is now lo-
cated away from the middle region of the brain [see Fig. 6(d)]
and is divided into three communities, with a small one
at the middle and the other two big ones at the upper
left and lower right, respectively, with a negligible num-
ber of interlinks among the three communities, indicating
that they are almost isolated [see Fig. 6(e)]. Figure 6(f)
shows that, once again, multiple explosive transition occur
in such a topological arrangement. Finally, we consider the
case of the visual subnetwork. Figure 6(g) shows that, at
variance with the previous two cases, the subnetwork nodes
are now located in the bottom region of the brain. From
Fig. 6(h), one can see that the subnetwork displays again a
modular structure, characterized, however, by a density of
interlinks which stays in between the previous two cases.
Once again, Fig. 6(i) reveals the occurrence of multiple ES
transitions.

Far from being limited to brain dynamics, we would
like to remark that the same phenomenon is expected to
occur also in other networked systems, provided that they
have the structure of Fig. 1 and they satisfy the condi-
tions discussed in this paper. For instance, it is well known
that, together with primary cascading failures, power grids
may also suffer secondary cascading failures in local parts
of the network, i.e., secondary disasters [48]. Moreover,
similar phenomena are known to occur in epidemic spread-
ing, when recurrent epidemics may break out from time to
time [49–52].

In conclusion, we have given evidence that a two-layered
network may experience consecutive ES transitions. The phe-
nomenon occurs in a dynamical layer subject to interaction
with an environmental layer which always operates in a
regime of approximate synchronization. At variance with pre-
vious studies on ES, the cascade of two explosive transitions
is here induced by increasing the coupling strength between
the two layers. Moreover, we have shown that the two ex-
plosive transitions are accompanied by two distinct hysteresis
loops, and we have reported how the widths of such loops
depend on the fundamental parameters of the model. With
theoretical arguments we have further shown that the first
hysteresis loop comes from a coupling-amplified disorder
mechanism, while the second one is similar to the classical
case of coupling-induced synchronization. Finally, we have
shown that the same scenario can be observed when the en-
vironmental layer is simplified into a single node with phase
lag, and we have proven that consecutive ES transitions can
indeed emerge in a real brain network. Our results disclose the
option for an explosive desynchronization-resynchronization
transition mechanism and are of value, for instance, in
brain dynamics, to describe a possible way in which a
group of neurons can switch from performing one task to
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operating on another one, i.e., an abrupt desynchronization
from the ordered state associated with the accomplishment
of the first task followed by an equally abrupt synchroniza-
tion to the different ordered state associated with the new
task.
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