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A B S T R A C T

Land degradation is a critical issue globally requiring immediate actions for protecting biodiversity and asso-
ciated services provided by ecosystems that are supporting human quality of life. The latest Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services Landmark Assessment Report highlighted that
human activities are considerably degrading land and threating the well-being of approximately 3.2 billion
people.

In order to reduce and ideally reverse this prevailing situation, national capacities should be strengthened to
enable effective assessments and mapping of their degraded lands as recommended by the United Nations
Sustainable Development Goals (SDGs). The indicator 15.3.1 (“proportion of land that is degraded over total
land area”) requires regular data production by countries to inform and assess it through space and time. Earth
Observations (EO) can play an important role both for generating the indicator in countries where it is missing,
as well complementing or enhancing national official data sources.

In response to this issue, this paper presents an innovative, scalable and flexible approach to monitor land
degradation at various scales (e.g., national, regional, global) using various components of the Global Earth
Observation System of Systems (GEOSS) platform to leverage EO resources for informing SDG 15.3.1. The
proposed approach follows the Data-Information-Knowledge pattern using the Trends.Earth model (http://
trends.earth) and various data sources to generate the indicator. It also implements additional components for
model execution and orchestration, knowledge management, and visualization.

The proposed approach has been successfully applied at global, regional and national scales and advances the
vision of (1) establishing data analytics platforms that can potentially support countries to discover, access and
use the necessary datasets to assess land degradation; and (2) developing new capacities to effectively and
efficiently use EO-based resources.

1. Introduction

Most countries are aiming at becoming more sustainable while at
the same time being attractive business locations with a high quality of
life (Selomane et al., 2019). This ambitious objective is challenged by a
number of trends such as: climate change, population growth, in-
creasing mobility, energy demand, high consumption of resources, ur-
banization, loss of biodiversity and associated ecosystem services, and
digitalization of society. These trends have an important impact on the

environment and are placing unprecedented demands on land. Land is a
limited resource and there will be an ever-increasing demand to control
land resources and capitalize on the flow of goods and services from the
land (Verburg et al., 2015), (Wood et al., 2018). This can potentially
lead to social and political instability, intensifying poverty, conflict and
migration.

In its last report, the Intergovernmental Panel for Climate Change
(IPCC) has highlighted the fact that land is a critical resource essential
for climate change adaptation and mitigation, land degradation and
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food security (IPCC, 2019). Without sustainable land management, the
goals of the Paris Agreement will not be reached and cannot limit global
warming to 1.5 degrees. During the last 50 years, it is estimated that
human activities have affected globally about 70 % of the terrestrial
land surfaces, undermining the well-being of at least 3.2 billion people
(IPBES, 2018). Settlement and urban areas have grown, agricultural
areas have been lost, forests have disappeared, desertification has in-
creased and glaciers have receded (UNCCD, 2017a). Land Cover (LC)
and Land Use (LU) changes are considered as major visible indicators of
the human footprint (Giuliani et al., 2017a). Consequently, avoiding,
reducing and reversing land degradation is an urgent action to protect
biodiversity and ecosystem services as well as ensuring human well-
being (IPBES, 2018).

Unsustainable land use management strategies (e.g., ecosystem de-
struction for crop or grazing lands) are recognized as the main drivers
of land degradation caused by high-consumption lifestyles of developed
countries and the increasing consumption in emerging economies
(IPBES, 2018), (Cowie et al., 2018), (Ghebrezgabher et al., 2019). As-
sociated with population growth, this leads to unsustainable pathways
of agricultural expansion, natural resource and mineral extraction, as
well as urbanization, which have great impacts on degrading land (Ivits
and Cherlet, 2013). Consequently, there is a critical need to strengthen
national capacities to quantitively assess land degradation as required
by the United Nations Sustainable Development Goals (SDGs) (Sims
et al., 2019), and adopt Land Degradation Neutrality (LDN) targets as
proposed by the United Nations Convention to Combat Desertification
(UNCCD) (Cowie et al., 2018), (Chasek et al., 2019; Gilbey et al., 2019;
Metternicht et al., 2019). LDN is defined as “A state whereby the amount
and quality of land resources, necessary to support ecosystem functions and
services and enhance food security, remains stable or increases within spe-
cified temporal and spatial scales and ecosystems” (Cowie et al., 2018),
(Chasek et al., 2019). This approach represents a paradigm shift in land
management and planning policies. It aims at counterbalancing the loss
of productive land with the restauration of degraded areas by devel-
oping conservation measures and sustainable land management prac-
tices (Gilbey et al., 2019).

Remotely-sensed Earth Observations (EO) acquired by satellites can
be a reliable source for gathering effective Land Degradation (LD) in-
formation (Dubovyk, 2017). Indeed, the increasing availability of EO
data together with improved computing and storage capacities allow
monitoring, mapping, and assessing LD and its change over time on
large areas in a consistent and robust manner (Gibbs and Salmon,
2015). However, currently no mechanisms are routinely generating
accurate, consistent and regular LD information. The large volumes of
freely and openly available EO data are still underutilized and not ef-
fectively used for national environmental monitoring. Therefore, map-
ping and monitoring LD changes remains a challenge that is not ade-
quately addressed at the national scale.

To address this sustainability challenge, timely and reliable access
to environmental data and information is fundamental (Giuliani et al.,
2017a). It provides the necessary basis for reliable and accountable
scientific understanding and knowledge to support informed decisions
and evidence-based policy advices (Nativi et al., 2019). Therefore,
reaching the goal of sustainable development requires the integration of
different datasets describing the three dimensions of sustainability to
adequately characterize a given location (Lehmann et al., 2017). This
allows monitoring and assessing environmental conditions at different
scales (e.g. national, regional, global); understanding interactions be-
tween various systems (e.g. atmosphere, hydrosphere, biosphere), and
model future changes (Costanza et al., 2016). Consequently, Informa-
tion Technology can play a significant role (i.e., Digital Transformation)
to leverage modern analytics and modelling technologies (e.g., Big
Data, Artificial Intelligence) and generate the required knowledge for
decision-makers (Nativi et al., 2019).

To this end, a change of paradigm is required, moving from tradi-
tional data-centric approach to more information and knowledge

centric approaches (Nativi et al., 2019). Recognizing that environ-
mental data are a fundamental resource for environmental and sus-
tainability research, monitoring and assessment, it is essential to or-
ganize actions (i.e., data acquisition to knowledge generation) in
coherent and coordinated workflows also known as data value chains
(Giuliani et al., 2017b). Data value chain is defined as an information
flow that describes a series of steps required to generate value and
useful insights from data (European Commission, 2014), (Curry, 2016).
To fully realize the value chain of EO data, the Data-Information-
Knowledge-Wisdom (DIKW) paradigm can facilitate evidence-based
decision-making processes and informs about the limits of our planet
(Ackoff, 1999), (Rowley, 2007). In DIKW, data is considered as a col-
lection of facts/measurements in a raw or unorganized form (e.g.,
numbers); information is generated from data that has been cleaned of
errors and further processed in a form that makes it easier to visualize,
analyze and interpret for a specific purpose (e.g., relation with physical
and/or social phenomena). In turn, knowledge is generated when in-
formation is not only perceived as a description of collected and or-
ganized facts (e.g., contextualization), but also when one understands
how to apply it to achieve certain objectives (i.e., elaborating valuable
patterns). Finally, wisdom is when knowledge is applied to action to
explore future scenarios and answer question such as “what is the best”
or “why do something” (Ackoff, 1999), (Rowley, 2007).

To reach the objective of a sustainable development, it is critical to
support decision/policy-makers with proper knowledge on quantitative
targets, at various spatial scales and across disciplines, in order to
support evidence-based policy making (Rockström et al., 2018). In-
formed governance can strengthen policies and planning developments
supported by best practices for sustainable development (Griggs et al.,
2013). Selecting and gathering the necessary EO to inform environ-
mental policy indicators is a scientific challenge. In order to fulfil this
task, essential variables have been defined for climate, biodiversity,
water, and oceans to describe the natural Earth system, and are now
being developed also for socio-economic variables (Lehmann et al.,
2019a).

This is exemplified by one of the objectives of the SDGs defined in
the Agenda 2030 for Sustainable Development (United Nations, 2015).
The SDG indicator 15.3.1 (“proportion of land that is degraded over
total land area”) is aiming to define such a quantifiable target to
monitor and assess degraded land nationwide. It is presumed that
UNCCD will collect, review and analyze, every four years, data reported
by countries through their national reporting process. However, there
are currently several drawbacks:

(1) This indicator was classified in Tier 2 (and since December 2019 is
now a Tier 1 indicator), meaning that the that the indicator is
conceptually understandable, has an internationally agreed meth-
odology but data are not regularly produced by countries (Anderson
et al., 2017),

(2) Lack of capacities at the country level in obtaining, using and va-
lidating EO data for UNCCD national reports,

(3) Limited data are currently officially provided by the United Nations
Global SDG Database (https://unstats.un.org/sdgs/indicators/
database/) for SDG15.3.1,

(4) Having the indicator value is an important information, but to
support efficient and effective decision-making, knowledge is re-
quired.

Consequently, the aim of this paper is to provide an initial overview
of an innovative and scalable approach to monitor land degradation at
various scales (e.g., national, regional, global) in compliance with the
SDG15.3.1 indicator UN guidance, and generate knowledge using EO
data to support SDGs.
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2. Methodology

The proposed methodology follows the Data-Information-
Knowledge-Wisdom (DIKW) (Rowley, 2007) pattern to organize the
different components into a coherent workflow to enhance scalability
(e.g., different scales from national to global) and flexibility (e.g., dif-
ferent data sources, processing platforms) for effective environmental
monitoring. It applies the official UN SDG indicator framework (United
Nations Statistical Division, 2018) and the guidance for implementation
proposed by UNCCD, the custodian agency for the SDG indicator 15.3.1
(UNCCD, 2017b). One of the objectives is to use EO data to enhance
quality, coverage and availability of the information required to gen-
erate a SDG indicator. The following characteristics of EO data can
bring major benefits to support directly or indirectly 72 targets and 30
indicators of the SDG framework (CEOS, 2018), (Group on Earth
Observations, 2017):

1 Spatial resolution: capacity to provide information, potentially for
every 10m x 10m.

2 Temporal resolution: capacity to capture data at different frequencies
of revisit (e.g., 5 days for Sentinel-2, 16 days for Landsat).

3 Scale: capacity to provide information for scales ranging from local
up to global.

4 Time-series: capacity to provide continuous data starting from 1972
(e.g., Landsat).

5 Multi-spectral: provides measurement in different wavelengths (e.g.,
visible, thermal near-infrared) to capture different information on
various environmental components (e.g., land, water).

6 Consistency: gives the ability to compare generated information in a
consistent manner at various scales.

7 Complementarity: data can be validated using additional sources such
as sensors or crowd-sourced data.

2.1. SDG15.3.1 definition and calculation

Land degradation is defined by the United Nations as “the reduction
or loss of the biological or economic productivity and complexity of rain fed
cropland, irrigated cropland, or range, pasture, forest and woodlands re-
sulting from a combination of pressures, including land use and management
practices” (United Nations Statistical Division, 2018). Total land area is
the total country area without considering inland waters surfaces (e.g.,
major rivers and lakes). It is expressed in hectares or km2. The indicator
represents the portion, in percentage, of degraded land over total land

area, derived from a binary classification of land condition (i.e., de-
graded or not degraded) measures by three sub-indicators:

(1) land cover and land cover changes, to determine the possible di-
minution of ecosystem services that are valuable in a local or na-
tional context (Burkhard et al., 2009, Ban et al., 2015; Andrew
et al., 2014).

(2) land productivity trends, to assess land productive capacity and
health changes. It can indicate changes in ecosystem functioning
and decreasing trends can suggest that land is degrading (Cowie
et al., 2018), (Oehri et al., 2017).

(3) carbon stocks (above and below ground) trends, to evaluate soil
quality associated with nutrient cycling and its stability and struc-
ture with direct implications for water infiltration, soil biodiversity,
vulnerability to erosion, and ultimately the productivity of vege-
tation, and in agricultural contexts, yields (Stumpf et al., 2018),
(Hengl et al., 2017).

The quantification of the indicator is based on the evaluation of
changes in the sub-indicators to derive the proportion of land that is
degraded. The three sub-indicators are complementary and responsive
to different degradation elements. To determine whether a given land
unit is degrading, stable or improving the One Out, All Out (1OAO)
principle is used.

If one of the values of sub-indicators is negative, then the land unit
is considered as degraded. This is a precautionary rule considering that
stable or improved land condition in any sub-indicators cannot coun-
terbalance the degradation effects in the others (Fig. 1).

Land degradation is generally context-specific and therefore makes
it difficult for a single indicator to capture the full complexity of land
state and condition (Gilbey et al., 2019). However, the sub-indicators
are sufficiently robust to address changes in different relevant ways
such as understanding relatively fast changes with land cover or pro-
ductivity trends while capturing slower changes through carbon stocks
(Cowie et al., 2018), (Gonzalez-Roglich et al., 2019). These sub-in-
dicators are widely accepted for monitoring major factors and driving
variables reflecting the capacity to deliver valuable ecosystem services
(Fu et al., 2015). Their definition and methodology for calculation are
recognized as technically and economically feasible for systematic ob-
servation (Bojinski et al., 2014), (Pereira et al., 2013). The indicator
should be derived generally from standardized and comparable na-
tional official data sources. However, due to their nature, these sub-
indicators can be derived from satellite EO as well as geospatial data

Fig. 1. Schematic representation of the methodology for generating the sub-indicators and calculating the SDG15.3.1 indicator (adapted from United Nations
Statistical Division 2018).
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from regional and global data repositories and can replace, complement
or enhance national official data sources after validation by national
authorities (UNCCD, 2017b).

2.2. System architecture and implementation

Currently, the reference implementation to help countries mon-
itoring degraded land is Trends.Earth (Gonzalez-Roglich et al., 2019). It
is a QGIS plugin working in combination with the Google Earth Engine
(GEE) to facilitate data preparation, processing and visualization for
generating both the sub-indicators and the final SDG indicator 15.3.1
(Meyer and Riechert, 2019), (Gorelick et al., 2017). The objective of
this model is to help countries in analyzing data and preparing their
reporting (e.g., plot time-series of sub-indicators, maps, graphics) in a
format that is directly aligned with the UNCCD’s Performance Review
and Assessment of Implementation System (PRAIS), which is the re-
porting portal of LDN.. The default datasets provided with Trends.Earth
are indeed coarse in scale, but they are also among the most consistent
globally, and this tool is desgined to use any dataset at any scale. Even if
this tool greatly facilitates the production of the SDG indicator, it has
some shortcomings:

(1) it mostly relies on regional and global datasets derives from EO
data. However, it lacks greater spatial and longer temporal re-
solution to better capture the dynamics of land degradation at na-
tional scale (Pasquarella et al., 2016), (Pettorelli et al., 2018). This
limits the scalability (e.g., different scales from national to global)
of the model.

(2) it is largely dependent on the GEE platform. Therefore, enhancing
flexibility can be valuable allowing access to different data sources
and different processing platforms.

(3) Finally, it translates EO data into useful information. However, it
does not provide any knowledge. Having a possibility to create
some knowledge would be valuable.

Consequently, to tackle these issues, it is interesting to develop
workflows to address the need for trusted sources of data, essential
variables and information to monitor the progresses made on en-
vironmental conditions towards policy targets (Lehmann et al., 2019b).

To facilitate access and integration of scientific models and their
outputs, it has been decided to use a Model Web approach (Nativi et al.,
2013) suggesting four architectural and policy principals for im-
plementation (Mazzetti et al., 2016):

(1) Open Access: notably to support the documentation, publication,
and sharing of models and algorithms.

(2) Low entry barrier: reduce entry barriers for both resources’ providers
and users.

(3) Service-driven approach: in particular, models and algorithms access
are provided by online services to enhance machine-to-machine
interoperability.

(4) Scalability: facilitates the use of increasingly large volume and
variety of data –i.e. Big Data requirements.

In addition, and closely related to these principles, an important
pattern to be applied is the separation of concerns –i.e. separating a
computing process into distinct sections, so that each section addresses
a separate concern. By adopting the principles and the implementation
pattern, the software components (along with their services) dealing
with Data, Information, and Knowledge scopes were separated carrying
out three sub-systems that generate, respectively: the sub-indicators,
the SDG composed indicator, and the online services to access results
together with the visualization tools to explore them as maps and
graphs (Fig. 2).

Applying the separation-of-concern pattern brought a set of bene-
fits, including: (a) the Trends.Earth model is now published as a Model

Web service; (b) presently, the sub-indicators can be generated by using
different data sources and processing platforms; (c) scalability and
flexibility of the entire value-chain was improved, introducing, for ex-
ample, the possibility to parallelize the model execution and address
important challenges raised by Big Data. This implementation scheme
allows users to compute each sub-indicator separately in a spatially
explicit manner under the form of raster maps that is than integrated
into a final indicator map, producing at the same time a table with
results reporting areas potentially improved, stable or degraded over
the area of interest. This enables the use of different data sources, such
as the Copernicus Open Access Hub (previously known as Sentinels
Scientific Data Hub) and/or the Copernicus data and Information
Access Services (DIAS), the Global Earth Observation System of Systems
(GEOSS), or national data infrastructures such as Data Cubes (European
Commission, 2018; Craglia et al., 2017; Asmaryan et al., 2019; Giuliani
et al., 2017c) (Fig. 3).

The value-chain is composed of three business processes, which are
described in the next sub-sections.

2.2.1. Data - sub-indicators generation
Following Trends.Earth methodology (Gonzalez-Roglich et al.,

2019) to compute the three sub-indicators, in accordance with UNCCD
best practice guidance document (UNCCD, 2017b), a series of Python
scripts were written. They were designed to be sufficiently generic to be
executed (with some limited adaptation) on different processing plat-
forms and using different data sources. Currently, they can be used on:
(1) Google Earth Engine using MODIS and AVHRR data (this is the
native mode of Trends.Earth); (2) Earth Observation Data Cube using
Landsat, to enable higher spatial and temporal resolution (Giuliani
et al., 2019a) ; (3) the Copernicus DIAS platforms (European
Commission, 2018) (e.g., ONDA, Creodias, Sobloo) to demonstrate the
use of European data and computing resources; and finally (4) the
Global Earth Observation System of Systems (GEOSS) (Provenzale and
Nativi, 2017), to provide access to datasets that can be directly used as
sub-indicators.

The sub-indicators are using a set of Essential Climate Variables
(e.g., NDVI, Soil moisture, Precipitation, evapotranspiration, land
cover) and are computed as follows:

Land productivity measures land’s biological productive capacity, an
important resource supporting many human activities (United Nations
Statistical Division, 2018). To assess land productivity, remotely-sensed
proxies are commonly used to derive information on Net Primary
Production (NPP) (Paruelo et al., 2016). Different methods or datasets
can be used to estimate land productivity such as the Land Productivity
Dynamics using phenological metrics derived from time-series of ve-
getation index (Ivits and Cherlet, 2013). Alternatively, the Normalized
Difference Vegetation Index (NDVI) annual mean time-series can be
used to determine three measures of change (Pettorelli et al., 2005):
productivity trajectory (i.e., rate of change in primary production over
time), state (i.e., detection of changes in primary productivity as com-
pared to a baseline period) and performance (i.e., local productivity
relative to other areas that share a similar landcover type over the
dedicated region) (Gonzalez-Roglich et al., 2019), (Easdale et al.,
2019). These measures are then aggregated in a 3-class (improvement;
stable; degradation) land productivity sub-indicator.

Land Cover changes are assessed using land cover data over a given
area for defined baseline and target years. To enable consistent and
accurate comparison, Trends.Earth relies on the European Space
Agency (ESA) Climate Change Initiative (CCI) (http://cci.esa.int) Land
Cover data (https://www.esa-landcover-cci.org) (Plummer et al.,
2017). Following UNCCD guidance, land cover data should be classified
in 7-classes (forest, grassland – including shrub and sparsely vegetated
areas, cropland, wetland, artificial area, bare land and water). Then a
land cover transition analysis is applied to evaluate whether a given
pixel remains in the same land cover type or has changed. The resulting
map is a 3-class (improvement; stable; degradation) land cover change
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sub-indicator.
Carbon Stocks, above and below ground cannot be generated using

satellite EO data and it is particularly difficult to assess for different
reasons (e.g., spatial variability of soils, lack of consistent time-series
data) (Stumpf et al., 2018). Consequently, Soil Organic Carbon (SOC)
changes estimation is used as a proxy combining land cover and SOC
data. A SOC reference value is defined using the SoilGrids carbon stocks
at 250m resolution (Hengl et al., 2017). The 7-class land cover map
used for the second sub-indicator is also used to evaluate the changes in
carbon stocks for the reporting period using conversion factors for
changes in land use. Then finally the SOC changes are computed be-
tween baseline and target/reporting period. Areas that show SOC loss of
10 % or more are considered as degraded, while areas experiencing a
gain of 10 % or more are showing improved conditions.

Once computed, the sub-indicators serve has inputs (e.g., custom
datasets) in the Trends.Earth model exposed in the VLab, to generate
the SDG15.3.1 indicator.

2.2.2. From information to SDG indicator calculation
Recently, there has been a growing interest for informed decision-

making processes supporting international agreements and policy

targets at various scales. The assessment of objectives as well as the
definition of achievable actions, and last but not least, the commu-
nication of such actions to the general public require the support of an
evidence-based decision-making process at different levels.
Consequently, policy-makers are increasingly requesting scientists to
provide the required knowledge to establish effective decision-making
process based on scientific evidence (Nativi et al., 2019), (Lehmann
et al., 2019b).

To answer these questions, scientists need to develop scientific
workflows generating the necessary knowledge that decision-makers
need. A scientific workflow is a well-documented process for generating
knowledge from observation/simulation data and scientific models. It
can be as simple as a single scientific model using predefined datasets,
or as complex as an integration of models working on multiple datasets.
Therefore, to develop scientific workflows, scientists need to handle
various resources such as datasets (e.g., satellite, in-situ), programming
languages (e.g., Python, R), algorithms or modelling tools.

The Virtual Laboratory Platform (VLab), inspired by the GEO Model
Web vision (Santoro et al., 2016), (Santoro et al., 2019), is aiming to
support the needs of scientists and modelers, facilitating the generation
of knowledge for evidence-based decision-making. It allows:

Fig. 2. Products and services generated by the proposed workflow.

Fig. 3. The proposed value-chain process.
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• Harmonized discovery of and access to heterogeneous resources
(e.g. data) from different systems

• Publication of scientific workflows connecting data and models

• Execution of scientific workflows based on data, essential variables
and models developed with different programming languages and
simulation frameworks

• Publication of workflow results

All the functionalities are made available through Application
Programming Interfaces (APIs) enabling distributed systems integration
and end-user’s applications development.

The typical VLab users are:

• Modelers who have developed a scientific model or a full scientific
workflow for generating knowledge, and who would like to make it
discoverable and runnable by other users.

• Application developers who would like to build desktop and mobile
apps for end-users (e.g. decision-makers) on top of available VLab
workflows.

• Scientists or policymakers who want to access knowledge through the
VLab enabled applications

In order to publish the Trends.Earth model on VLab, the Python
source code available on GitHub was utilized (https://github.com/
ConservationInternational/trends.earth). The code implements a plugin
for the QGIS desktop application. After installation, the plugin calcu-
lates Land Degradation Indicator utilizing user-provided sub-indicators.
If no sub-indicator is available, it is possible to define and launch GEE
(Google Earth Engine) scripts for the calculation of the sub-indicators.

The publication of Trends.Earth on VLab focused on the possibility
to calculate Land Degradation Indicator from existing sub-indicator
datasets. Essentially, this task required only a slight modification to
Python code of Trends.Earth to cope with the need to run the plugin
without the user interface.

2.2.3. From knowledge to visualization and representation
Model outputs are then published using GeoServer (https://

geoserver.org), an open source web server designed to publish geos-
patial data using widely adopted standards (e.g., Web Map Service
(WMS), Web Coverage Service WCS)) advanced by the Open Geospatial
Consortium (OGC) (Giuliani et al., 2011). It allows users to share, ac-
cess, and use data in an interoperable and standardized way, facilitating
data access, exchange, and integration.

Results are then organized in a Dashboard environment that allows
users visualizing and exploring model outputs in a concise and

comprehensible way. Dashboards are currently gaining a lot of interest
as a tool for facilitating users’ interaction with complex sets of data and
information (van Ginkel Kees et al., 2018) and can potentially help
decision-makers or practitioners to better understand an issue (Fegraus
et al., 2012).

To create a dashboard, MapStore (https://mapstore.geo-solutions.
it) was selected because it is an open source web-based application
conceived to produce, manage and securely share maps, mashups, and
dashboards using resources published following OGC standards. It
provides users with common standard geoportal functionalities (e.g.,
map visualization, data discovery, spatial analysis) allowing users to
find, view and query geospatial data and integrate multiple data
sources into a single map. In addition, it allows the creation of dash-
boards using widgets such as maps, statistical charts, tables, and text
boxes.

3. Results

In order to validate the technical feasibility, identify the possible
issues and determine the potential of such an approach for generating
knowledge using EO data to monitor land degradation at various scales,
a proof-of-concept workflow has been developed. To enhance the
scalability and flexibility of Trends.Earth to use various EO data sources
and processing capabilities for generating the SDG 15.3.1 indicator at
different spatial scale and resolutions. It enables also the use of com-
ponents for model execution and orchestration (e.g., Virtual
Laboratory), knowledge management (e.g., Knowledge Base), and vi-
sualization (e.g., Dashboard). To demonstrate the scalability and flex-
ibility of the proposed approach, four different use case have been
implemented:

(1) Global model using the Google Earth Engine and MODIS data
(Fig. 4),

(2) European model using Copernicus DIAS platforms with Sentinel-2
data,

(3) National model using the Swiss Data Cube with Landsat data,
(4) Generic model using the GEOSS platform to access relevant data

sources that can be used as sub-indicators.

The main output of these models is pixel-based over the entire
landscape showing areas that are considered either degraded, stable or
improved according to the SDG15.3.1 indicator. This output can be
then aggregated at various administrative levels including the national
level. Furthermore, all this information is integrated into a dashboard
providing a consistent and comprehensible one-(web)page document

Fig. 4. Global Model of Land Degradation for SDG15.3.1 showing degraded (red), stable (yellow), improved (green) or no data (black) areas (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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allowing examination of the issue. This is exemplified by the following
example (Fig. 5):

This dashboard enables dynamically exploring the pixel-based map
as well as aggregated indicators at national and sub-national levels.
Maps, graph, table, and counters are synchronized and dynamically
updated according to the zoom level. It allows visualizing only the in-
formation on countries that are visible in the current zoom level.
Additionally, some text is provided to explain the issue of land de-
gradation and how the indicator is calculated. The dashboard ag-
gregates and provides a possible interpretation of the generated in-
formation: i.e. the current status and the temporal changes of the land
degradation index. Providing context to the calculated information, the
process generates knowledge.

Through the dashboard, users access the knowledge on land de-
gradation status directly provided by the value of the index. They also
access further knowledge through the generation of aggregated indices
and through visual analysis of spatial distribution through the visua-
lized maps.

All the generated information and knowledge are exposed with
well-recognized interfaces such as OGC standards for efficient dis-
covery, access and use. This makes data Findable, Accessible,
Interoperable and Reusable (FAIR) (Stall et al., 2019), (Wilkinson et al.,
2016) and greatly facilitate the sharing of data, information and
knowledge and contributing to major initiative like GEOSS. One of the
objectives of the Group on Earth Observation (GEO) is to provide full
and open access to EO data, information and knowledge required to
address unprecedented social, economic and environmental challenges
(Anderson et al., 2017). GEO is an intergovernmental organization
aiming to improve and coordinate global EO systems and promote
broad, open data sharing. The GEO community is building GEOSS to
improve observing systems integration and data sharing by inter-
connecting existing infrastructures using widely accepted standards
(Giuliani et al., 2016). The GEOSS portal (https://www.geoportal.org)
is the single web-based discovery and access point of EO resources from
various providers all over the world through GEOSS. It is aiming not

only to facilitate data and information accessibility but also help users
to generate and discover knowledge. To demonstrate the facilitated
access and integration of the model and outputs and the separation of
concerns proposed by the Model Web approach, the different compo-
nents of the workflow have been integrated into the GEOSS platform.
The following use scenarios have been defined:

1 An end-user wants to know what the situation of land degradation in
Europe is.

2 In the GEOSS portal and a for “Land degradation” is performed.
3 The user obtains a number of resources that matches his search
criteria.

4 Under the Knowledge tab, a description about the SDG15.3.1 in-
dicator is provided (Fig. 6). The user can then navigate deeper into
the knowledge.

5 The user discovers that four models are available: Global, European,
National, and Generic.

6 By selecting the European model, he finds that there are some data
available for visualization and download (Fig. 7) and an external
link to the dashboard previously mentioned.

7 He can discover three resource layers that can be loaded on the map:
indicators at national level; sub-national level, or at the pixel level
(1 km resolution). He selects the national data and his able to vi-
sualize it (Fig. 8).

8 He realizes that there is a Service associated to this model. The
GEOSS Platform associates the model to the actual processing ser-
vices that enable its computation, which the user can access and run
in a user-friendly way. In particular, he can inspect the process
workflow and search and select data as input to the service. In ad-
dition, he/she has the capability to choose a Cloud computing
platform of preference among the available (these include all the
DIAS Platforms and Amazon Web Services).

9 The user can now start the computation on the selected infra-
structure and wait for the results (Fig. 9).

Fig. 5. SDG15.3.1 dashboard at European scale (https://geoessential.unepgrid.ch/mapstore/#/dashboard/4).
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Fig. 6. Knowledge discovery in the GEOSS platform (https://www.geoportal.org).

Fig. 7. Details on the European model with links to data download, visualization and dashboard.
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The GEOSS Platform, version Data and Knowledge, is a next step in
the implementation of a result-oriented GEOSS responding to the user
need to access not only Earth Observation data but as well knowledge
and services, in support of scientific research as well as of decision and
policy making processes.

4. Discussion

The proposed approach is, to the knowledge of the authors, the first
attempts to provide a scalable and flexible framework to monitor land
degradation at different geographical scales in compliance with the
SDG15.3.1 indicator UN guidance and generate knowledge using EO
data to support SDGs. The proposed implementation was developed as a
proof-of-concept. Initial results indicate that using the DIKW model has
helped building a consistent and coherent data value chain to assess
land degradation. The implementation was successful and demon-
strated benefits, limitations and needs for further developments to
consolidate the approach.

Concerning the evidenced benefits, the approach has proven the
scalability (e.g., models at different geographical scales), flexibility
(e.g., different data sources, spatial and temporal resolutions, proces-
sing platforms) and reproducibility and exhaustivity (compared to na-
tional statistics). This enables more effective and efficient analysis of
EO data of various spatial and temporal dimensions. In particular, the
implemented workflow can be executed every year, creating a time-
series of land degradation information, and consequently creating the
basis of land monitoring service. The long-term monitoring capability
provided by Landsat and Copernicus programs is an additional benefit

capturing the evolution of LD since 1972 and envisioning a continuous
monitoring for the next 20 years. The implemented solution has also
demonstrated the potential of building data value chains following the
DIKW model and provides a solution for supporting decisions and
policy makers to obtain the required knowledge. This is a fundamental
pre-requisite to efficiently embed science into decision-making and
avoid the dissemination of fake information in a post-truth world.
Openness and transparency are essential to support more open and
reproducible science (Giuliani et al., 2019b). Finally, having the model
output disaggregated at the pixel-level can be a good complement to
traditional national statistics. Indeed, usually SDG indicators are mon-
itored from an economic perspective and are reported to the UN at the
country level meaning that users obtain one value per country. How-
ever, from a sustainable development perspective, including environ-
mental and societal aspects, it is necessary to have more spatial in-
formation. Indeed, without disaggregated indicators it is not possible to
capture spatial and temporal dynamics of environmental changes
(Anderson et al., 2017), (CEOS, 2018). The proposed solution can help
users exploring those dimensions and answering questions such as: How
many? Where? When? that are essential to support efficient and ef-
fective land management. These identified benefits illustrate, more
generally, how EO data play an insightful role in monitoring SDGs and
can complement official statistics provided by countries. In particular, it
shows the importance of focusing on Tier 2 applications because they
have accepted methodologies whereas Tier 3 likely needs more fun-
damental research before looking into EO opportunities.

The current implementation has some limitations since it was de-
veloped as a proof-of-concept, and is not yet readily usable for decision-

Fig. 8. SDG15.3.1 indicator at national level visualized in the GEOSS platform (https://www.geoportal.org).
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making. In terms of input data for the Trends.Earth model, currently it
is not possible to benefit from Sentinel-2 data because the time-series is
not sufficiently long for consistent analysis. Only Landsat can provide
an acceptable time-series to obtain reliable results. However, data fu-
sion approaches can enable defining harmonized Landsat and Sentinel-
2 surface reflectance time-series (Claverie et al., 2018). Another lim-
itation lays in the validation of the model outputs. Currently, depending
on the spatial scale, methodologies are often restricted to visual com-
parison to identify areas that are known to be degraded. When possible,
results obtained with the Trends.Earth model can be also compared
with authoritative data sources.

In terms of perspective, the emergence of continental scale data
cubes such as Digital Earth Africa (DEA – http://digitalearthafrica.org)
allows envisioning the possibility to develop high resolution land de-
gradation models at the regional scale using the proposed solution.
Indeed, the African continent is one of the regions in the World that is
severely affected by land degradation, and therefore providing timely
information and knowledge on degraded land and their evolution is
vital for ensuring the provision of ecosystem services (Wolff et al.,
2018). Land Cover Change and Carbon Stocks indicators can be im-
proved using newly available models and enhanced dataset. The EO
Data for Ecosystem Monitoring (EODESM) model facilitates regular
classification according to the Food and Agricultural Organization –
Land Cover Classification System (FAO – LCCS) and also includes
change detection and the production of maps revealing causes and
consequences (Lucas et al., 2018), (Lucas and Mitchell, 2017). Con-
cerning the Carbon Stocks sub-indicator, the SoilGrids database is
subject to large differences in estimates (Tifafi et al., 2018). Conse-
quently, we should consider using the Global Soil Organic Database that
may provide improved information to generate this sub-indicator. Fi-
nally, one of the great challenges of land degradation is the range of
models and datasets available and the possible bias to present different

perspectives of degradation. Harmonizing models’ outputs and datasets
is therefore of primary importance. The proposed approach can be seen
as an initial step towards this objective giving the possibility to use
different data sources and possibly different models using the VLab. The
system can be also extended to link climate models, planning data and
the sub-indicators to derive a probability of future degradation and
ultimately operate as an early-warning system.

To stop land degradation progression, it is important to improve
capacities at national level to map their degraded lands and support
effective assessment mechanisms. The proposed approach can con-
tribute in such capacity development efforts. This can at the same time
ensure national ownership while retaining the flexibility for countries
to use their national data. To enhance national capacities to process,
interpret and validate geospatial data and information on land de-
gradation, the Group on Earth Observations (GEO) as launched in 2017
an initiative on Land Degradation Neutrality (https://www.earthob-
servations.org/activity.php?id=149). This initiative is aiming at sup-
porting countries with readily available EO datasets and capacity de-
velopment, together with EO tools and platforms to assist countries to
efficiently and effectively monitor and report on SDG indicator 15.3.1
as well as sustaining the development of international standards,
methodologies and protocols for land degradation monitoring. The
presented approach can contribute to the objectives of this initiative.

To improve understanding and knowledge on drivers and impacts of
land degradation, the results of the models should be related to socio-
economic and other environmental data. This can possibly further help
decision-makers to identify the most adapted response. The developed
solution is contributing to the SDG indicators framework. However, it
can also contribute to other policy framework such as the Aichi targets
(Petrou et al., 2015). The flexibility provided by the implemented fra-
mework can therefore also facilitate contributions to multiple mon-
itoring programs.

Fig. 9. Trends.Earth model exposed in the VLab (https://vlab.geodab.org) and accessible/executable through the GEOSS platform (https://www.geoportal.org).
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The discussed solution applies a co-designed and co-creation (i.e.
collaborative) approach. In particular, the development starts from a
clear policy need and coordinates the products and services offered by
many to address such a need. Contributions are connected according to
a well-defined and loosely coupled value chain in three main value-
adding stages: (1) information generation from data; (2) knowledge-
generation from information, and (3) actionable knowledge provision
to users. The presented solution can be seen as a possible template for
other collaborative efforts, addressing policy implementation (e.g. SDG
indicators generation), at various scales. It can help bringing together
different organizations to address national or regional policy needs and
then contribute to global assessment. From a governance perspective,
organization such as GEO and the linked Regional GEOs can help
connecting and facilitating the utilization of existing developments for
ICT and EO cross-fertilization. Finally, from a scientific perspective, the
proposed approach enhances reproducible science demonstrating the
benefits of open data, open source applications and algorithms, and the
use of FAIR data principles (Stall et al., 2019), (Wilkinson et al., 2016).

5. Conclusions

Land degradation is an important issue and land should be carefully
managed to reduce climate change, biodiversity loss, while at the same
time ensuring food security and sufficient provision of ecosystem ser-
vices. To achieve the objective of a stable functioning of the ecosystem,
it is critical to produce reliable knowledge on measurable targets, at
various scales and across disciplines, in order to efficiently support
evidence-based policymaking.

The proposed solution extends the Trends.Earth model to make it
more flexible and scalable (e.g., various data and processing platforms)
for building efficient data value chains following the Data-Information-
Knowledge-Wisdom framework in order to support effective decision-
making processes and informs about the limits of our planet. The initial
implementation has demonstrated that it is technically feasible to im-
plement a scalable and flexible approach to help monitoring land de-
gradation, in accordance to the UN SDG framework, and at various
geographical scales. It strengthens capacities to use EO data and can
complement existing reporting and statistical systems by making in-
formation more comprehensive and comparable. From a technical
perspective, the introduction of a model execution and orchestration
engine (e.g., VLab) together with a visualization tool (e.g. dashboard)
can support the generation of effective knowledge. Finally, from a sci-
entific perspective, the presented approach is a step towards more open
and reproducible science. This is essential to adequately embed science
into the decision-making process.
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