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A B S T R A C T   

Precipitation frequency analysis based on satellite products is still limited by estimation errors and by the use of 
statistical methods inadequate for these products. However, when it comes to poorly gauged areas of the world, 
satellite products can be a vital source of information. We present here a new method to derive satellite-based 
estimates of extreme precipitation quantiles with long return period in poorly gauged areas. The method re
lies on the identification of relations between statistics of the satellite estimation error and errors in the pa
rameters of a non-asymptotic extreme value distribution. We show an application of the method in three areas 
with diverse climatic conditions in Austria and in the South-eastern Mediterranean, showcasing results for 
different scenarios of rain gauge density. We find that simple linear relations can explain 35–90% of the variance 
in the error of the parameters of the non-asymptotic extreme value distribution. Using these relations, we derive 
estimates of extreme return levels with drastically reduced bias and dispersion with respect to the ones directly 
obtained from the satellite estimates.   

1. Introduction 

Extreme precipitation has severe impacts on society, ecology, and 
economy, as it is the primary cause of natural disasters such as floods 
and landslides, while at the same time replenishing freshwater storages. 
Monitoring and quantifying the probability of occurrence of extreme 
precipitation events is thus crucial for hydraulic structure design, 
weather-related risk forecasting, and water resource management (Katz 
et al., 2002; Mianabadi, 2023). Hydrologists are interested in computing 
extreme return levels, which are high precipitation quantiles corre
sponding to low yearly exceedance probabilities. Usually, the Extreme 
Value Theory (Fischer and Tippet, 1928) represents the basic framework 
for precipitation frequency analyses. Extreme Value Theory approaches 
are based on the observed extremes, either annual maxima or peaks 
exceeding a high threshold. Long and accurate precipitation records are 
thus a fundamental prerequisite (Coles, 2001) and are typically provided 
by rain gauges. However, the Earth is covered by rain gauges in an 
uneven manner (Kidd et al., 2017; Becker et al., 2013), so that such 
needs are often not met (Libertino et al., 2018). In fact, vast portions of 
the globe remain poorly gauged or even ungauged. 

Satellite observations may help us overcoming the limitations related 

to the insufficient rain gauge sampling, as they provide information at 
spatial resolutions of the order of tens of kilometres and have quasi- 
global coverage. The temporal coverage of satellite products is 
currently of the order of 20–30 years (exceeding 40 years in the case of 
climatological datasets), depending on the product, thus allowing us to 
attempt the estimation of extreme precipitation quantiles of interest. 
Despite some promising results (e.g., Gado et al., 2017; Demirdjian 
et al., 2018), precipitation frequency analyses based on satellite records 
are still limited by important knowledge gaps, mainly related to (i) 
estimation errors caused by the indirect nature of satellite retrievals, 
which are enhanced for extremes (Kidd and Levizzani, 2011; Miao et al., 
2015; Prakash et al., 2015), and to (ii) the use of statistical methods 
proven inadequate for the characteristics of satellite products (Marra 
et al., 2019a). 

When we want to carry on precipitation frequency analysis, high 
return period quantiles are typically investigated, despite the shortness 
of the available datasets (Wright et al., 2013). This often leads to 
important uncertainties in the analysis of extremes and derivation of 
high return period quantiles (Papalexiou and Koutsoyiannis, 2013). In 
addition, conditional bias affecting the satellite products (Berne and 
Krajewski, 2013) increases the magnitude of the uncertainty that 
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already affects rain gauges when they are used to validate quantiles 
estimated with statistical approaches based on annual maxima (Pombo 
and de Oliveira, 2015) or peaks over a threshold (Demirdjian et al., 
2018). 

In this work, we make a step forward towards the use of satellite 
products for precipitation frequency analyses. Specifically, we propose a 
method for correcting satellite-based estimates of extreme quantiles 
over poorly gauged areas based on the satellite errors in the estimation 
of the distribution of daily precipitation amounts derived from the 
available gauge information. Hereafter, we use the term “error statistics” 
to refer to the satellite error in the estimation of linear moments of the 
distribution of daily precipitation amounts. This application is made 
possible by resorting to non-asymptotic statistics for extreme value 
analysis. Satellite error statistics are then computed from small amounts 
of rain gauge data and used to adjust extreme quantiles over poorly 
gauged locations. 

2. Data and methods 

We focus here on three study areas with diverse climatic conditions 
and rain gauge densities, and on a state-of-the-art satellite precipitation 
product. The methodology can be directly extended to other regions 
and/or applied to any other satellite precipitation product. 

2.1. Study areas and rain gauge data 

The study areas were selected considering three aspects: (i) avail
ability of relatively long ground-based observation records to be used as 
a benchmark; (ii) independence of the satellite dataset from the gauge 
networks; (iii) possibility to explore different climatic conditions. We 
focused on two rain gauge networks (Fig. 1a): the dense WegenerNet 
network (Fuchsberger et al., 2021b; Fuchsberger et al., 2021a) covering 
the surroundings of Feldbach (Austria); and a sparser network that 
covers two diverse climatic areas in the South-eastern Mediterranean. 
Following the Köppen and Geiger (1936) climatic classification, the 
Austrian network falls into the warm-summer humid continental climate 

Dfb, while the South-eastern Mediterranean network covers three 
different climatic zones: Csa (Warm Mediterranean), BSh (Warm semi- 
arid) and BWh (Warm desert) (see Peel et al., 2007). Since the differ
ences between the last two areas are minor and the rain gauge network is 
here less dense, in this work the BSh and BWh stations were grouped 
together. The stations belonging to the “Mediterranean” (Csa) area were 
labelled as MED, and the ones belonging to the “Arid” or “Semi-Arid” 
(both BSh and BWh) areas, were labelled as ARID. For simplicity MED 
and ARID stations are separated using the 400 mm mean annual pre
cipitation isoline, as it was found to well reproduce the Köppen-Geiger 
classes in this area. 

As per Austria, 151 rain gauges were selected from the WegenerNet 
portal (Fig. 1b). The detection threshold is 0.11 mm and precipitation 
amounts are made available every day at 12:00 UTC. The overall record 
spans from January 2007 to the end of 2020. No missing values were 
present, due to the application of interpolated estimates. Since some of 
the stations were characterized by the absence of one or more yearly 
record, they were excluded from the analysis, leading to a total of 128 
rain gauges. This resulted in an average gauge density of roughly 0.4 
stations per km2 (about 1 station per 2.5 km2). 

The 408 MED and ARID stations are located more heterogeneously in 
space (Fig. 1c) and cover diverse periods between 1948 and 2018 
(median record length is 56 years), with average gauge densities of 
approximately 0.03 MED stations per km2 (about 1 station per 30 km2) 
and 0.003 ARID stations per km2 (about 1 station per 300 km2). These 
rain gauges record daily precipitation values grater or equal to the 
minimum detection threshold of 0.1 mm every day at 06:00 UTC. 
Available data were already quality controlled and filtered for missing 
values (see details in Marra et al., 2021), so that the additional quality 
check done in this study only consisted in removing years with more 
than 10 % of missing values. 

In all cases satellite data can be considered independent (Austria, no 
gauge is provided for the satellite product adjustment) or almost inde
pendent (MED, ARID, only 8 stations – less than 2 % – are made avail
able for satellite operational adjustment) from the rain gauge networks. 

Fig. 1. (a) Location of the three study areas. (b) The dense WegenerNet network (WegenerNet DataPortal, 2023) in the surroundings of Feldbach (Austria). It consists 
of 151 stations in an area of roughly 300 km2. (c) The 408 South-eastern Mediterranean rain gauges. Orange dots represent the stations in the ARID area, green dots 
those in the MED area. Distinction between the two is done based on a 400 mm mean annual precipitation isoline. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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2.2. Satellite data 

Satellite data were taken from version 6 of the Integrated Multi- 
satellitE Retrievals algorithm (IMERG) of the Global Precipitation 
Measurement (GPM) mission (Huffman et al., 2020) (downloaded from 
NASA GES DISC service, https://gpm.nasa.gov/node/3328, last access 
Dec 2021). IMERG (NASA, IMERGv06) combines precipitation estimates 
from microwave and infrared observations from low-orbiting and 
geosynchronous satellites with those of the Dual-frequency Precipitation 
Radar (DPR) on the GPM core satellite and of rain gauges (Hou et al., 
2014; Huffman et al., 2007). The precipitation estimates cover portions 
of the globe between 90◦ N-S in latitude on a 0.1◦ grid (on the order of 
10 km) and with a temporal resolution of 30 minutes. In this work, the 
IMERG Final Run is used, which contains research-quality multi-satellite 
estimates with quasi-Lagrangian time interpolation, gauge data and 
climatological adjustment, as this represents the ideal version for pre
cipitation frequency analysis. 

Four variables can be identified in the original netCDF files: pre
cipitation estimates with 30-min resolution (in mm h− 1), time step (in 
seconds), latitude and longitude of the centre of each 0.1◦ × 0.1◦ grid 
cell. Each station is associated to the co-located satellite pixel based on 
the minimum distance from the pixel centre. Half-hourly satellite pre
cipitation intensity estimates are converted into daily precipitation ac
cumulations (mm) assuming uniform precipitation rates during the 30- 
min time intervals and considering the recording time of daily precipi
tation in each of the rain gauge networks. 

2.3. Statistical framework 

2.3.1. Ordinary and extreme events 
Non-asymptotic statistics relies on the concept of ordinary events, 

which are all the independent realizations of the examined process (e.g., 
Marani and Ignaccolo, 2015; Zorzetto et al., 2016). For the case of 
precipitation, they are usually considered as rainfall amounts of the 
duration of interest observed during statistically independent rainy pe
riods (Marra et al., 2020). Extremes emerge from finite samples of these 
ordinary events. In this non-asymptotic perspective, extreme value dis
tributions can be derived following ordinary statistics and explicitly 
accounting for (i) the distribution of the ordinary events, and (ii) the 
number of annual occurrences of the ordinary events. 

2.3.2. Metastatistical extreme value (MEV) and simplified MEV (SMEV) 
To study the yearly exceedance probability of extreme precipitation 

events, Marani and Ignaccolo (2015) introduced a new statistical 
method termed Metastatistical Extreme Value (MEV). This method 
avoids the asymptotic assumption of the Extreme Value Theory (Gum
bel, 1958) and derives the distribution of extremes explicitly accounting 
for the yearly number of occurrences of the ordinary events (see also 
Zorzetto et al., 2016). In MEV, the parameter defining the number of 
events and the parameters of the distribution describing the magnitude 
of the ordinary events are considered as random realizations of sto
chastic variables. For the case of daily precipitation, the Weibull dis
tribution (Weibull, 1951) is typically used, following the theoretical 
reasoning by Wilson and Toumi (2005), which showed that the ex
ceedance probability of heavy daily precipitation decreases as a pow
ered exponential, and can thus be described using a two parameter 
Weibull distribution (e.g., Marani and Ignaccolo, 2015; Zorzetto et al., 
2016; Schellander et al., 2019). 

The MEV method with the Weibull model has already been used to 
derive extreme return levels from satellite precipitation products with 
encouraging results, due to a reduced estimation variance (Zorzetto and 
Marani, 2019; Hu et al., 2020; Zorzetto and Marani, 2020). However, 
systematic biases were sometimes reported (Wang et al., 2020; Miniussi 
and Marra, 2021; Poschlod, 2021). These biases were found to be related 
to the inexact assumption of having all the ordinary events described by 
a Weibull distribution (see Marra et al. (2018) and following literature). 

Indeed, the results by Wilson and Toumi (2005) are asymptotic and only 
the tail of the ordinary events distribution is expected to be described by 
a two-parameter Weibull. In fact, this Weibull tail model was recently 
confirmed to well represent extremes globally when proper left- 
censoring thresholds are used (Marra et al., 2023). 

Following Marra et al. (2020), the ordinary events’ tail can be 
defined as the portion of ordinary events that share the statistical 
properties with the annual maxima. The above-mentioned bias can thus 
be reduced by left-censoring the ordinary events, as described in Marra 
et al. (2020). In this study, we use two-parameter Weibull distributions 
to describe the tail of the daily precipitation ordinary events. Identifi
cation of these ‘tails’ is described in detail below. However, due to the 
limited proportion of yearly ordinary events that belong to the Weibull 
tails (Marra et al., 2023), estimation of the parameters on a yearly basis 
as required by MEV could lead to uncertain estimates of the precipita
tion quantiles. 

The Simplified MEV (SMEV) framework proposed by Marra et al. 
(2019b) allows to overcome this practical problem. In SMEV, the inter- 
annual variability is neglected, and the Weibull tail parameters are 
estimated based on the entire data record. This provides a much larger 
data sample. When an identical distribution of the wet days is assumed, 
the SMEV formulation for daily precipitation becomes (Marra et al., 
2019b): 

GSMEV(x) = [F(x; ϑ, λ) ]n (1)  

where n is the mean number of wet days per year and F the cumulative 
distribution function describing their tail, that is the two-parameter 
Weibull distribution characterized by the shape and scale parameters, 
respectively ϑ and λ: 

F(x; ϑ, λ) = 1 − exp
[
−
(x

λ

)ϑ ]
(2)  

2.4. Precipitation frequency analysis 

2.4.1. Identification of the ordinary events 
To derive extreme quantiles from ground-based and satellite data 

using the SMEV non-asymptotic framework, one needs to define the 
ordinary events. Here, we assume independence of the wet days, as 
previously done in many studies focusing on extreme precipitation (e.g., 
see the global study by Marra et al. 2023, and note that Papalexiou 2022 
shows that even hourly precipitation has only moderate autocorrela
tion). We define as “wet” all the days in which at least ω mm of pre
cipitation are reported. Since satellite precipitation products show large 
variability in their sensitivity (e.g., Kidd and Levizzani, 2011; Sun et al., 
2018; Levizzani et al., 2020a; Levizzani et al., 2020b), we optimize the 
definition of ω for the satellite product in each study area. To do so, we 
examine the number of wet days identified by IMERG and the rain 
gauges for different ω. In Austria, the number of wet days is well rep
resented by IMERG already for ω = 0.1 mm day− 1, while a larger 
threshold (ω = 1 mm day− 1) is needed in MED and ARID areas. 
Following these observations, we use ω = 0.1 mm day− 1 in Austria and 
ω = 1 mm day− 1 in the MED and ARID areas. These values are in line 
with previous studies based on similar statistical approaches for the 
definition of ordinary events (Zorzetto et al., 2016; Marra et al., 2019b). 
In generic applications, one can select the most appropriate value based 
on the available rain gauge observations. 

2.4.2. Tail of the ordinary events’ distribution 
Next, the tail of the ordinary events’ distribution must be identified. 

This is the portion of ordinary events from which annual maxima are 
sampled and for which our assumption of Weibull tails holds. To this 
end, we apply the test devised by Marra et al. (2020). The test, described 
in detail in Marra et al. (2023), ensures that the used assumption is not 
contradicted by the available observations. The test examines several 
left-censoring thresholds and compares the observed annual maxima 
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with synthetic maxima drawn from ordinary events belonging to the 
corresponding Weibull distribution in a Montecarlo framework. A 
threshold t∗ is “optimal” when the observed annual maxima are likely 
samples from ordinary events with a Weibull tail ∀t ≥ t*. This implies 
that any threshold t ≥ t* will lead to indistinguishable estimates of the 
parameters. We apply the test to the rain gauge data generating 1000 
Montecarlo iterations and using ptest = 0.2. This means that we reject 
our model when more than 20 % of the annual maxima lie outside of the 
80 % confidence interval of the Montecarlo samples. The codes for the 
test are publicly available in Marra (2022); here we use a version of the 
code translated to R. 

2.4.3. Estimation of return levels with SMEV 
Parameters of the Weibull distribution λ and ϑ are computed by left- 

censoring the ordinary events not belonging to the above defined tail 
and using a least squares regression in Weibull-transformed coordinates 
(Marani and Ignaccolo, 2015; codes available in Marra, 2020). Return 
levels q associated with return periods T = 2, 5, 10 and 50 years are 
computed inverting the SMEV cumulative distribution function in Eq. 
(1): 

q = λ
[
− ln

(
1 − p1

n

) ]1
ϑ (3)  

where p is the desired yearly non-exceedance probability 
(
p = 1 − 1

T
)
. 

2.5. Correction of satellite-based return levels 

The idea behind our approach is that using non-asymptotic statistics 
it is possible to establish quantitative relations linking satellite estima
tion errors (i.e., errors affecting the statistics of the ordinary events 
which depend on the retrieval setup of a given product) to the errors in 
the estimated parameters of the ordinary events distribution, and then, 
through the SMEV equation above, the quantiles. Moreover, our idea 
relies on the assumption that these relations are region-specific and 
depend on the regional characteristics of the satellite estimation errors 
and on the local climate. Since estimation errors of satellite precipitation 
products are often provided by evaluation studies (e.g., Chen et al., 
2020; Maggioni et al., 2021) or can be quantified using the entire set of 
ordinary events from data records much shorter than the ones required 
for extreme value analyses, the above-mentioned relations could be 
derived in well-sampled regions and then used to correct satellite-based 
estimates of extreme quantiles over climatologically similar regions 
where few or short-recording gauges are available. 

2.5.1. Relations between satellite estimation errors and errors in the SMEV 
parameters 

Correcting the parameter n of the SMEV framework is rather trivial, 
because it accounts for the average yearly number of wet days. The 
multiplicative error (bias) in the average number of wet days can be 
computed as: 

biasn = nIMERG/nstations (4)  

This is usually a basic information made available by studies evaluating 
the accuracy of satellite-based precipitation products all over the globe 
(e.g., Smith et al., 2006; Liu et al., 2019; Müller and Thomson, 2013). 

The problem is thus reduced to the identification of relations be
tween the errors in the satellite precipitation estimates and the errors in 
the estimated parameters of the intensity distribution. L-moments 
(Hosking, 1990) can be estimated robustly from limited data and 
represent a widely used tool in the statistical hydrology community 
(Vogel and Fennessey, 1993). We propose to use relations linking errors 
in the L-moments of the ordinary events to errors in the scale and shape 
parameters of the Weibull distribution describing their tail in the SMEV 
framework of Eqs. (1) and (2). Each relation is estimated once for each 
given area, leading to 5 parameters per area. It is important to point out 

that these relations are in principle non trivial, because the L-moments 
are computed from the entire set of ordinary events (i.e., all the wet 
days), while the parameters of the Weibull distribution only describe a 
small fraction of these events, in our case only the largest 10 % or 25 % 
of the values defined as wet in a proper manner depending on the area 
(see below), which is not necessarily known when gauge data avail
ability is poor because the above described test requires the availability 
of many years of data. 

We expect the scale parameter to be closely related to the first L- 
moment (l1, i.e., the mean, whose error statistics is also typically pro
vided in validation studies), due to the defining property of scale pa
rameters in distributions with no location parameter, such as the two- 
parameter Weibull: F(x; λ,ϑ) = F

( x
λ;1, ϑ

)
. The relations linking multi

plicative errors (bias) in the scale parameter 

biasλ = λIMERG/λstations (5)  

to multiplicative errors (bias) in the estimated mean (l1) 

biasl1 = lIMERG
1 /lstations

1 (6)  

should thus be linear and with intercept equal to 0 and slope equal to 1. 
However, we expect deviations from this relation, since, as mentioned 
above, the model parameters λ and ϑ are computed from the distribution 
tail. For simplicity, we look for general linear relations in the form 

biasλ = aλ + bλ⋅biasl1 (7)  

The shape parameter is closely related to the third L-moment ratio (i.e., 
the L-skewness τ3). Indeed, τ3 can be obtained combining the two L- 
moments l3 and l2, which for the case of a two-parameter Weibull dis
tribution can be written as (Akram and Hayat, 2014; Goda et al., 2011): 

τ3 =
l3

l2
=

1 − 3
2

1
ϑ
+ 2

3
1
ϑ

1 − 1
2

1
ϑ

(8)  

We can see that the L-skewness τ3 only depends on the shape parameter 
ϑ, and vice versa. Errors in its estimation are thus expected to be directly 
related to errors in the estimation of ϑ. We look for relations linking the 
error in the parameters of the Weibull distribution describing the tail of 
the ordinary events 

εϑ = ϑIMERG − ϑstations (9)  

with the errors in the L-moments computed from all the ordinary events 

ετ3 = τIMERG
3 − τstations

3 (10)  

Again, L-skewness is computed from all the data and the shape param
eter from the tail only, but given the properties of the L-skewness as a 
descriptor of the distribution tail, it is reasonable to expect a relatively 
strong relation between the L-skewness and our shape parameter. As a 
first approximation, we look for linear relations in the form: 

εϑ = aϑ + bϑ⋅ετ3 (11)  

2.5.2. Correction of SMEV model parameters and return levels 
The correction of n is based on information about the median satel

lite error in representing the number of wet days in the region of interest, 
as in Eq. (4). Indeed, since the median is less affected by the presence of 
outliers caused by biased data, it is better suited for such kind of cor
rections, especially for areas with few wet days (e.g., in our case, the 
Southern Mediterranean areas). The correction of the SMEV-Weibull 
parameters derived from satellite observations over a region of inter
est is done using the linear relations derived above and exploiting in
formation on the satellite error statistics from the available station data, 
as follows: 

1. The satellite error statistics biasl1 and ετ3 are computed from Eqs. 
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(6) and (8) using the available rain gauge data (e.g., short-recording 
gauges, nearby gauges, etc) and the representative satellite pixels; 

2. The linear relations in Eqs. (7) and (11) are used to compute the 
errors in the SMEV parameters biasλ and εϑ from the satellite error sta
tistics at point 1; 

3. The corrected parameters n*, λ* and ϑ* are computed inverting 
Eqs. (5) and (9): 
⎧
⎨

⎩

n* = nIMERG/median(biasn
)

λ* = λ/biasλ = λ /(aλ + bλ⋅biasl1 )

ϑ* = ϑ − εϑ = ϑ − (aϑ + bϑ⋅ετ3

)
(12) 

4 The adjusted return levels q* corresponding to the yearly non- 
exceedance probability p are then computed from the corrected pa
rameters at point 3 using Eq. (3): 

q* = λ*
[
− ln

(
1 − p

1
n*

) ] 1
ϑ* (13)  

The sensitivity of the resulting return levels to the uncertainty in the 
linear relations between L-moments and parameters (not addressed in 
this study) can be quantified using error propagation. To this end, we 
report in Appendix A the analytical derivation of the propagation of the 
error from the SMEV parameters to the resulting return levels using 
Taylor series to the second order. It should be noted that the proposed 
procedure implicitly corrects possible biases due to the scale mismatch 
between the satellite pixel (areal estimate) and the rain gauge (point), 
such as the ones that are handled analytically in the method by Zorzetto 
and Marani (2019). The obtained return levels are thus to be considered 
representative of the point scale. Thus, this method is not appropriate for 
studies interested in the analysis of precipitation extremes at large 
spatial scales. 

2.5.3. Validation of the estimated return levels 
The effectiveness of the applied corrections is first evaluated by 

comparing the new corrected satellite distribution parameters (n*, ϑ*, 
λ*) to the original parameters of all the available rain gauges. After
wards, the accuracy of the proposed approach is quantified using a 
leave-out cross validation. Each study area is treated independently, and 
different scenarios of available rain gauge densities are explored. The 
experiment is repeated 100 times for each area and density to derive 
proper statistics of the performance of the method. 

For each iteration, a set of calibration stations is randomly selected to 
match the desired density: the error statistics are computed from the 
calibration stations (Eqs. 5, 6, 9, 10), and the linear relations between 

satellite error statistics and errors on the SMEV parameters (Eqs. 7, 11) 
are derived; the average error on the number of wet days is computed 
(Eq. 4). The remaining stations are used for validation: local error sta
tistics are computed (Eqs. 6, 10); adjusted parameters are computed (Eq. 
12) and the corresponding return levels are derived (Eq. 13). The 
adjusted return levels are then compared with the ones directly derived 
from the co-located stations, that serve here as a reference. Finally, we 
produce boxplots of the multiplicative bias in the estimated return levels 
and we compute the Fractional Standard Error (FSE) of the estimated 
parameters and return levels for each study area and rain gauge density. 
The FSE is the root mean square error normalized over the average 
reference value, and is computed as 

FSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑

i
(si − gi)

2
√

1
N

∑
igi

(14)  

where gi = 1⋯N are the original rain gauge estimates and si = 1⋯N the 
satellite original or adjusted estimates. 

Given the different extent and gauge availability characterizing the 
study areas, diverse sets of densities were explored in the three areas. 
For Austria, we studied cases related to 1 station per 5, 10, 25 and 50 
km2; while for MED stations, densities of 1 station per 50, 70, 100 and 
200 km2 were considered. For the ARID area, we studied calibration 
densities of 1 station per 400, 600 and 1000 km2. 

3. Results and discussion 

3.1. Distributions tails 

Following the definitions in section 2, we identified the tail of the 
ordinary events distribution using the method described in section 2.4.2. 
We report in Fig. 2 the results of the test, which revealed the portion of 
the ordinary events from which annual maxima are likely sampled. As 
per Austria, most of the stations showed that annual maxima are likely 
samples from Weibull tails describing the largest 25 % to 10 % of the 
ordinary events. In only less than 20 % of the stations a threshold higher 
than 0.9 was necessary. Given the specificity of the test against alternate 
hypotheses (Marra et al., 2023), we can safely use a left-censoring 
threshold of 0.9 for this area, meaning that the Weibull tail of the dis
tribution is here identified as the highest 10 % of the ordinary events. 
This threshold is consistent with previous studies based in areas with 
similar climates, such as Germany (Miniussi and Marra, 2021), and with 
global results which showed that Northern Europe tends to require 

Fig. 2. Optimal left-censoring thresholds identified for MED (green), ARID (orange) and Austria (purple) stations: each bin in the x-axis represents the lowest 
threshold for which the assumption of having annual maxima sampled from Weibull tails could not be rejected for any threshold equal or larger. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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higher left-censoring thresholds (Marra et al., 2023). 
For the South-eastern Mediterranean, the assumption of Weibull tails 

is not rejected for much lower thresholds. Specifically, 87 % of the 408 
analysed stations required left-censoring thresholds lower than 0.75, 
meaning that here annual maxima are likely samples from Weibull tails 
that can be described using 25 % of the ordinary events or more. This 
agrees with previous studies in the same region (Marra et al., 2019b). 

The need for different thresholds in the two regions can be associated 
with the differences in local climatology. As opposed to Austria, in 
which precipitation events are often associated with stratiform pro
cesses, in the South-Mediterranean precipitation is mostly associated to 
convective processes that more likely satisfy the assumptions of the 

thermodynamic analyses by Wilson and Toumi (2005) and that were 
previously found to be more likely associated with stretched exponential 
tails (e.g., Berg et al., 2013). Fig. 3 shows the cumulative distribution 
function of the ordinary events for three stations located in the three 
regions (Austria, MED, ARID). The figure shows how the Weibull tail 
model is appropriate for all the three cases. 

3.2. Satellite estimation of SMEV parameters and return levels 

Austrian stations showed a high variability in the number of yearly 
ordinary events, with values ranging roughly from 150 to 230. Satellite 
estimates, on the contrary, showed very little dispersion with a mean 
value centred near 171 days. This is because only 8 satellite pixels cover 
all the 128 stations. Satellite underestimation of the n parameter was 
observed for most of the stations. The tipping buckets of the stations 
collect rain below their detectable threshold, but they tip when the 
volume of such buckets is full, thus precipitation under the threshold 
happened in the previous day is recorded as daily values in the next 
ones; on the other hand, satellite products capture back-scattered radi
ation corresponding to precipitation signals greater or equal to their 
detection threshold, ending up in recording less daily events. This sug
gests that the estimation errors are more likely to be due to the satellite 
product. MED stations showed overall a compensation between the es
timates of n from IMERG and stations, in fact the median value for the 
satellite is nearly equal to 42, and 39 for the rain gauges. This was not 
the case of ARID stations, since greater noise was detected and a ten
dency to IMERG underestimation was caught: in fact, the median value 
for the satellite estimates amounts to 31 mean rainy days compared to 
the 40 of the stations. The variability in these two areas is strictly related 
to the high intrinsic noise in precipitation detection due to the presence 
of Mediterranean coastal regions, Dead Sea and deserts in the satellite 
pixels. Furthermore, climatic conditions are such that precipitation 
events are typically due to convective processes, which could involve 
just one or few stations during a single event. This last feature becomes 
more relevant for the ARID stations, since the very few precipitation 
phenomena in these places are almost entirely convective (Sharon, 
1972). 

Shape parameter estimates were characterized by overall satellite 
overestimation for the Austrian dataset, thus leading to an underesti
mation of extreme quantiles, mainly for the lowest ones (2, 5 and 10 year 
return period), while a greater compensation was observed for longer 

Fig. 3. Tail of the distribution of the ordinary events for three random stations 
in the Austria (purple), MED (green) and ARID (orange) regions. Dots show the 
empirical non-exceedance probability of the ordinary events: coloured dots for 
the events above the left-censoring threshold, black dots for the events below. 
Solid lines show the Weibull distributions describing the tails estimated as 
described in Section 2.4.3. Shaded areas show the 90% sampling confidence 
interval of ordinary events sampled from the estimated distributions. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Linear relations between satellite error statistics and error in the SMEV parameters for the MED (green), ARID (orange), and Austria (purple) areas. (a) 
Relations between the multiplicative error in the mean daily precipitation biasl1 , and in the SMEV scale parameter biasλ. (b) Relations between the errors in the L- 
skewness ετ3 and errors in the SMEV shape parameter εϑ. In both panels, dashed lines represent the linear regressions and the shaded areas the 90% confidence 
intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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return periods. Both the MED and the ARID areas showed clear IMERG 
underestimation of the shape parameter. Scale estimates showed a non- 
negligible portion of stations characterized by overestimation. Anyway, 
a general overestimation affects all the computed quantiles due to the 
combination of two effects: 1) the impact of the underestimation of the 
shape parameter is stronger than the one of the scale; 2) the shape 
parameter weighs more than the scale in determining extreme return 
levels. The last aspect derives from the fact that the shape parameter 
appears as root index in the quantile inversion formula, while the scale is 
a simple multiplicative factor. This is corroborated by Appendix A. 
These analyses helped us assessing the absence of a proper correlation 
between satellite and ground-based estimates of the model parameters. 

3.3. Relations between satellite estimation errors and errors in the SMEV 
parameters 

We found robust relations between the multiplicative error in the 
first L-moment biasl1 (Eq. 6) and the corresponding multiplicative error 
in the estimation of the scale parameter biasλ (Eq. 5). Similarly, we re
ported an important inverse correlation between the additive error in 
the L-skewness ετ3 (Eq. 10) and the corresponding additive error in the 
shape parameter ευ (Eq. 9). In Fig. 4, the dashed lines represent the 
linear relations linking the error in the SMEV parameters to the error 
statistics in the L-moments of the observations for the three climatic 
areas. The grey shading highlights the 90 % confidence interval in these 
relations. The figure also reports the coefficient of determination r2. As 
expected, we reported a rather strong correlation between biasl1 and 
biasλ, with about 90 % of the variance in biasλ explained by biasl1 in the 
MED and ARID areas, respectively (r2 = 0.89; r2 = 0.92), and about 75 % 

Fig. 5. (a-c) Scatterplots of the adjusted mean number of yearly ordinary events (n) for the three climatic areas, where the 1:1 line (solid black) is plotted to better 
detect the cases of satellite over-/under-estimation of the parameters compared to the stations. Along the x axis, the rain gauge values are reported, while satellite- 
based estimates after correction are shown in the y axis. Please note that the y- and x-axis limits of the AUSTRIA n parameter scatterplot are different from the ones 
for the MED and ARID areas. (d-f) Scatterplots of the adjusted shape parameter for the three climatic areas. (g-i) Scatterplots of the adjusted scale parameter for the 
three climatic areas. 
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in Austria (r2 = 0.75). The relations between ευ and ετ3 are generally 
weaker, but still retain an appreciable explanatory power, with 60 % of 
explained variance over Austria and about 49 % and 36 % in MED and 
ARID areas, respectively (r2 = 0.36; r2 = 0.49). These relationships can 
be used to adjust the satellite quantile estimates with respect to the rain 
gauges. 

3.4. Validation of the corrected satellite return levels 

Finally, we carried out corrections of satellite-based extreme quan
tile estimates exploiting relations such as the ones identified above. 

Scatterplots of the satellite parameters (n*, ϑ*, λ*) adjusted using 
relations obtained considering all the available rain gauges versus the 
corresponding rain gauge values are reported in Fig. 5. As expected, n* 

values do not show a specific relation, since it was adjusted simply using 
the median error (see above in section 2.5.2). Conversely, the adjusted 
shape (ϑ*) and scale (λ*) parameters show a clear direct correlation with 
the rain gauge values. 

We then quantified the accuracy of the proposed method using a 

leave-out approach. New relations were derived for each iteration of the 
leave-out procedure using the calibration rain gauges and were then 
evaluated in the adjustment of satellite estimates over the validation 
rain gauges. Figs. 6–8 show the distribution of bias in the SMEV pa
rameters and in the estimated return levels obtained over the three areas 
for different densities. The boxplots show the results across the valida
tion stations for 100 sampling iterations. In all cases, the median bias is 1 
or very close to 1 (dashed purple line), despite the biases in the pa
rameters and return levels directly estimated from the satellite are 
sometimes large. 

For the case of Austria (Fig. 6), one can see how the tendency to 
overestimate the scale parameter of the satellite estimates (nearly 1.2 
times higher than the rain gauge estimates) was compensating the 
overestimation of the shape parameter (median bias about 5 %) leading 
to estimates of the 50-year return levels bias lower than 5 % and a 
standard error lower than 5 % (Table 1). This is caused by the 
compensation of the errors (see Appendix A). The corrected parameters 
are almost unbiased in their median and show a much smaller disper
sion. This translates into a more accurate estimation of return levels that 

Fig. 6. Boxplots showing the bias in the estimated parameters (a) and return levels (b) for the Austria study case. The white boxes represent the bias in the non- 
adjusted estimates, while the coloured boxes report the bias in the estimates adjusted with varying densities of the calibration stations. 

Fig. 7. Same as in Fig. 6 for the MED area. Please note that the y-axis limits are different from the ones in Fig. 6.  
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can now be estimated with biases mostly lower than 5 % (and always 
lower than 15 %), even for relatively sparse densities of 1 station per 50 
km2. Dispersion of the estimates is nearly symmetric, with little under
estimation prevalence of median values, especially for higher calibration 
densities. It is important to note that these results are obtained using 
relatively short rain gauge records (14 years), which well mimic situa
tions with recently deployed dense raingauge networks. The small 
dispersion in the estimates also indirectly supports the use of non- 
asymptotic methods for these purposes (e.g., Zorzetto et al., 2016). 

Corrections in the MED area (Fig. 7) proved to be highly accurate as 
well, despite the lower density of stations and the higher climate vari
ability of the area. Median values of the corrected parameters are almost 
unbiased (laying near the exact match line and the dispersion) for all the 

SMEV parameters. Here, the impact of the proposed correction is dra
matic, as the large bias in the estimated return levels (about 40 % 
overestimation in the 50-year return levels, in median) is adjusted and 
the dispersion largely reduced. Taking the 50-year return levels, the FSE 
of the least dense validation precedure (1/200 km2) is 7.1 %, while the 
FSE for the orignal not corrected quantile is equal to 52 % (Table 1). It is 
interesting to note how the large dispersion in the estimation of the 
average yearly number of wet days does not impact the estimated return 
levels. This is related to the rather low sensitivity of return levels to this 
parameter (see Appendix A). 

The most difficult case study is the ARID one, due to the lower 
density of stations, the larger climatic variability, and the less explan
atory power of the linear relations between the satellite error statistics 
and the errors in the SMEV parameters (see above). Despite this, the 
proposed corrections are reasonably accurate also in this case (Fig. 8). 
This is true especially for the shape and scale parameters, which show a 
good match of the median value and an improved dispersion. The 
average number of wet days, originally characterized by satellite un
derestimation due to the low number of stations and the high noise of 
the satellite data in the area, is drastically reduced. Overall, the pro
posed correction reduces the bias to values generally within 10–15 % 
even for return levels as high as 50-years and for rain gauge densities as 
low as 1 station per 1000 km2, with a reduction in the FSE from 44 % of 
the original satellite estimates to about 22 % of the adjusted estimates. 
Interestingly, the accuracy of the adjusted estimates depends only 
weakly on the rain gauge density. This means that the proposed 
adjustment method is robust in presence of sparse networks, such as the 
ones available in poorly gauged regions. 

The residual dispersion is related to different factors: i) the use of 
linear relations, which leads to inevitable approximations, ii) the use of 
relatively short records (14 years for the Austria rain gauge network, 20 
years for IMERG), which entails stochastic uncertainties related to nat
ural variabiliy both in our estimates and in the reference. It is difficult to 
contrast the results of our method with other approaches in literature. In 
fact, previous studies (e.g., Pombo and de Oliveira, 2015; Demirdjian 
et al., 2018) worked with traditional extreme value methods and derived 
empirical corrections for the annual maxima or peaks over threshold and 
their distribution without the possibility to connect those to satellite 
estimation error statistics. Conversely, the method proposed by Marra 
et al. (2022) for radar estimates, also based on non-asympotic ap
proaches, relies on the interpolation of empirical correction factors for 
the parameters. As such it requires a rather high-density of rain gauges 
and does not allow to transfer information across similar regions. 

Fig. 8. Same as in Fig. 6 for the ARID area. Please note that the y-axis limits are different from the ones in Figs. 6 and 7.  

Table 1 
Fractional Standard Error (FSE, See Eq. (14) of the estimated parameters and 
return levels for each of the three climatic areas. Non-adjusted (original) and 
adjusted (for different calibration station densities) values are obtained 
considering the original station values as truth and the estimated satellite values 
as the prediction.  

AUSTRIA 2 yr 
RP 

5 yr 
RP 

10 yr 
RP 

50 yr 
RP 

Shape Scale n 

Original  7.8 %  7.5 %  7.4 %  7.4 %  6.6 %  2.5 %  1.5 % 
1/50 km2  3.5 %  3.9 %  4.1 %  4.8 %  3.1 %  5.8 %  1.1 % 
1/25 km2  2.9 %  3.2 %  3.6 %  4.3 %  2.9 %  5.4 %  1.0 % 
1/10 km2  2.4 %  2.8 %  3.1 %  3.7 %  2.7 %  5.0 %  9.7 % 
1/5 km2  2.3 %  2.6 %  2.9 %  3.6 %  2.7 %  5.0 %  9.5 %  

MED 2 yr RP 5 yr RP 10 yr 
RP 

50 yr 
RP 

Shape Scale n 

Original 34% 40% 44% 52% 21% 27% 27% 
1/200 

km2 
9.1% 7.7% 7.3% 7.1% 5.7% 10% 25% 

1/100 
km2 

8.9% 7.4% 7.0% 6.8% 5.7% 10% 25% 

1/70 km2 8.9% 7.5% 7.0% 6.8% 5.7% 10% 25% 
1/50 km2 8.9% 7.4% 6.9% 6.7% 5.8% 10% 25%  

ARID 2 yr 
RP 

5 yr 
RP 

10 yr 
RP 

50 yr 
RP 

Shape Scale n 

Original 49% 46% 45% 44% 17% 48% 50% 
1/1000 

km2 
23% 22% 22% 22% 7.4% 12% 49% 

1/600 km2 23% 22% 22% 22% 7.4% 11% 50% 
1/400 km2 23% 22% 21% 21% 7.0% 10% 50%  
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4. Conclusions 

We propose a new method to derive accurate extreme daily precip
itation return levels from satellite data in poorly gauged regions. The 
method relies on the idea that satellite estimation errors, which can be 
derived from poor gauge information, can be used to correct the pa
rameters of a non-asymptotic extreme value distribution. To do so, we 
use the SMEV non-asymptotic statistical framework, and we derive 
linear relations between errors in the satellite estimation of the L-mo
ments of the ordinary events distribution and errors in the SMEV pa
rameters. These relations can be obtained from poor rain gauge coverage 
or from regions with similar climate and satellite estimation error 
characteristics and with available rain gauge information. Compared to 
previous studies in which the estimates of extremes (e.g., annual max
ima or their distribution) were corrected, we work in the parameter 
space of the ordinary events distribution, under the assumption that 
these are related rather directly to satellite estimation errors. 

In Austria, 75 % of the variance in the SMEV-Weibull scale parameter 
bias is explained by the bias in the first L-moment, that is the mean daily 
precipitation amount of the wet days. This value increases to approxi
mately 90 % for the Southern MED and ARID areas. As much as 35 % 
(ARID), 40 % (MED) and 60 % (Austria) of the variance in the SMEV- 
Weibull shape parameter error is explained by errors in the third L- 
moment ratio (i.e., the L-skewness). 

These approximate relations allow us to develop a method to correct 
the satellite estimates of daily precipitation return levels related to 2, 5, 
10 and 50 years return periods. The corrections prove to be highly ac
curate for each of the three climatic areas, removing the median biases 
and drastically reducing the dispersion, as indicated by the Fractional 
Standard Error, although the three areas were characterised by diverse 
satellite estimation errors. The accuracy of the method is rather inde
pendent of the available rain gauge density. This indicates that the 

proposed approach could help adjusting satellite estimates of extreme 
precipitation return levels in regions of the globe characterized by poor 
rain gauge coverage. 
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Appendix A. Propagation of the error from the SMEV parameters to the return levels 

We provide here an analytical derivation of the error propagation from the parameters of the SMEV formulation to the estimated quantiles (Eq. 
(3)). Applying a second order Taylor series expansion, the error on the quantiles δq can be written as: 

δq =

(
∂q
∂λ

)

δλ +
(
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∂ϑ

)
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(
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(A1)  

where δλ, δϑ, δn are the errors on the estimated scale and shape parameters and on the average number of wet days, respectively. Because of the 
approximation, this expansion is well suited for small errors, while greater deviations are expected for larger errors. Specifically, the first derivatives of 
Eq. (3) can be written as follows: 
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where the last one is simplified to a more treatable expression in the limit p→1, that is the case of extreme quantiles. 
Again, considering the limit p→1, we find that the second order contributions of the scale parameter is null, and the one of n can be neglected: 
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Thus, the only second order term which influences the series expansion is 

dq2|ϑ
q

=
ln
[(

q
λ

)ϑ ]{
2θ + ln

[(
q
λ

)ϑ ]}

ϑ4 δϑ2 (A7)  

Overall, defining y = ln
[( q

λ

)ϑ ] the error on the estimated quantiles in presence of small errors in the parameters can be written as: 

δq
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