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Abstract 

Background  Leaf area index (LAI) is a key indicator for the assessment of the canopy’s processes such as net pri-
mary production and evapotranspiration. For this reason, the LAI is often used as a key input parameter in ecosystem 
services’ modeling, which is emerging as a critical tool for steering upcoming urban reforestation strategies. However, 
LAI field measures are extremely time-consuming and require remarkable economic and human resources. In this 
context, spectral indices computed using high-resolution multispectral satellite imagery like Sentinel-2 and Landsat 
8, may represent a feasible and economic solution for estimating the LAI at the city scale. Nonetheless, as far as we 
know, only a few studies have assessed the potential of Sentinel-2 and Landsat 8 data doing so in Mediterranean 
forest ecosystems. To fill such a gap, we assessed the performance of 10 spectral indices derived from Sentinel-2 and 
Landsat 8 data in estimating the LAI, using field measurements collected with the LI-COR LAI 2200c as a reference. We 
hypothesized that Sentinel-2 data, owing to their finer spatial and spectral resolution, perform better in estimating 
vegetation’s structural parameters compared to Landsat 8.

Results  We found that Landsat 8-derived models have, on average, a slightly better performance, with the best 
model (the one based on NDVI) showing an R2 of 0.55 and NRMSE of 14.74%, compared to R2 of 0.52 and NRMSE of 
15.15% showed by the best Sentinel-2 model, which is based on the NBR. All models were affected by spectrum satu-
ration for high LAI values (e.g., above 5).

Conclusion  In Mediterranean ecosystems, Sentinel-2 and Landsat 8 data produce moderately accurate LAI estimates 
during the peak of the growing season. Therefore, the uncertainty introduced using satellite-derived LAI in ecosystem 
services’ assessments should be systematically accounted for.
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Background
The influence of ecosystem services (ESs) on human 
psychophysical well-being is nowadays largely acknowl-
edged (Kosanic and Petzold 2020; Leviston et al. 2018). 
Urban green areas such as urban and peri-urban for-
ests provide space for social interactions (Enssle and 
Kabisch 2020), cleaner air (Manes et  al. 2012, 2014, 
2016; Muresan et  al. 2022; Nardella et  al. 2023), miti-
gation of the extreme summer temperatures (Marando 
et  al. 2019), flood prevention (Farrugia et  al. 2013; 
Sebastiani and Fares 2023), and cultural opportunities 
(Lausi et  al. 2022). Hence, ESs generate a remarkable 
monetary value, estimated at $ 125 trillion/year (Cos-
tanza et  al. 2014) by, among others, preventing hospi-
talization for respiratory diseases, avoiding extreme 
floods in urban areas (Vázquez-González et  al. 2019), 
and reducing the health impact of heatwaves (Sebas-
tiani et  al. 2021a). Indeed, the exposure of citizens to 
greenness is directly associated with positive health 
outcomes (Manes et al. 2012; Orioli et al. 2019).

The EU has recognized the role and value of ESs 
in urban environments. The New EU Forest Strategy 
for 2030 (EC 2020a, b) highlights the need for re- and 
afforestation and tree planting in urban and peri-urban 
areas as a winning strategy to mitigate climate change 
and environmental risks, create job opportunities and 
enhance people’s physical and mental health. For this 
reason, the EU pledged to plant at least 3 billion trees by 
2030 and, in the EU Biodiversity Strategy for 2030 (EC 
2020a; b), has called on cities with at least 20,000 inhab-
itants to develop an ambitious greening strategy, to pro-
vide accessible green spaces for city dwellers and improve 
the connections between existing green areas. The pro-
posed Nature Restoration law (EC 2022) advocates for 
the no-net loss of urban green areas by 2030 as well as 
the enhancement of urban green spaces. The Italian Gov-
ernment is also pushing for planting more trees by allo-
cating 300 million EUR of the National Recovery and 
Resilience Plan (PNRR) for urban forestry interventions 
to be implemented over the next few years. Hence, in the 
upcoming years, properly addressing the creation and 
management of urban and peri-urban green areas, also 
accounting for the ESs’ delivery (Blasi et al. 2017), will be 
critical to establishing social and spatial justice in cities 
(Langemeyer and Connolly 2020).

In this framework, the leaf area index (LAI), defined as 
the one-sided green leaf area per unit ground area (Rob-
inson and Lundholm 2012), is a key indicator for the 
assessment of canopies processes such as net primary 
production and evapotranspiration (Bréda 2008). As 
such, the LAI is often used as a key input parameter for 
modeling regulating ESs such as air pollutants removal 
(Nowak et  al. 1998; Manes et  al. 2016; Sebastiani et  al. 

2021b), mitigation of the urban heat island effect (Xiao 
et al. 2018), and water runoff (Tesemma et al. 2015).

LAI field measures are extremely time-consuming and 
require remarkable economic and human resources; con-
sequently, these are generally carried out for small areas 
such as tree lines, urban parks, or small forest patches. 
A multitude of studies used satellite-derived products, 
which are in several cases delivered for free and in near-
real-time (Fuster et  al. 2020; Jiang et  al. 2010; Manes 
et al. 1997a; Viña et al. 2011), for the estimation of LAI. 
Currently, several satellite-derived LAI products such as 
MODIS and Copernicus Global Land Service have been 
consistently validated all around the world for different 
periods of the year, showing appreciable accuracies (Fus-
ter et al. 2020; Serbin et al. 2013; Yan et al. 2016). How-
ever, the spatial resolution of those products is included 
between 500 and 300 m and may not be suitable for stud-
ies at the fine scale, e.g., at the city level, therefore provid-
ing a limited contribution to upcoming urban planning 
strategies.

In this context, spectral indices (SIs) computed using 
high-resolution multispectral satellite imagery like Senti-
nel-2 and Landsat-8, may represent a feasible, economic 
solution for estimating the LAI at a finer scale (Dong 
et al. 2020; Meyer et al. 2019). Nonetheless, as far as we 
know, only a few studies have assessed the potential of 
Sentinel-2 and Landsat 8 data in estimating the LAI in 
Mediterranean forest ecosystems (Chrysafis et al. 2020).

In this study, we compared the performance of Senti-
nel-2 and Landsat 8 data in estimating the LAI. Specifi-
cally, we expected Sentinel-2 data to be more accurate 
and precise, as they come up with a better spatial and 
spectral resolution. Accordingly, we tested the perfor-
mance of 10 SIs derived from Sentinel-2 and Landsat 8 
data in predicting the LAI. We used field measurements 
collected with the LI-COR LAI 2200c as a reference and 
performed a linear regression between the field-meas-
ured LAI and each one of the SIs.

Methods
Study area
The Presidential Estate of Castelporziano (PECp) is a 
State natural reserve of 6,000 hectares almost entirely 
covered by natural forests (Conte et al. 2022; Manes et al. 
2021); it is located about 20 km southwest of the center of 
Rome (Central Italy), laying along the coast (Fig. 1). The 
climate is Mediterranean, with average monthly summer 
and winter temperatures reaching 25  °C and 6–12  °C, 
respectively; mean annual precipitation is 740 mm, with 
a marked period of summer aridity (Manes et al. 1997b; 
Seufert et al. 1997).

The PECp hosts a remarkable functional and structural 
biodiversity, with forest stands of different functional 
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groups (FGs) of vegetation including evergreen broad-
leaves (e.g., Quercus ilex, Quercus suber dominant), 
deciduous broadleaves (Q. frainetto, Q. cerris dominant), 
conifers (Pinus pinea plantations) and Mediterranean 
maquis (Manes et  al. 1997b). The PECp is also a hot-
spot of faunal biodiversity, hosting more than 2900 ani-
mal species (Castracani et al. 2010), including about 300 
macroinvertebrates’ taxa (Bazzanti 2015). For this reason, 
it falls within the Natura2000 network (site IT6030084) 
as both a Special Protection Area and a Special Area of 
Conservation.

Drought stress assessment
The study area is usually subject to prolonged drought 
periods in summer when high temperatures and low pre-
cipitations occur; however, the vegetation is well-adapted 
to such conditions, as it developed multiple adaptative 
strategies for controlling the water loss (Manes et  al. 
1997c, d).

A prolonged or extremely intense summer drought 
might alter the plant’s ecophysiological processes such 
as transpiration and photosynthesis (Hoff and Rambal 

2003; Galmés et al. 2007). Drought would hence lower 
the leaves’ water and chlorophyll content, which heav-
ily shapes the canopy’s reflectance detected by remote 
sensors and, consequently, vegetation SIs (Deshayes 
et  al. 2006). Moreover, drought-tolerant species are 
characterized by low specific leaf area, which affects 
the extension of the leaves’ surface (Waring et al. 1991) 
and, consequently, their light-blocking effect. For this 
reason, drought may also affect the field measurement 
of LAI.

Therefore, it is crucial to account for the eventual 
drought stress that may have occurred during the field 
campaign, as it might provide a valuable key for properly 
interpreting the results.

For this reason, we provide insight into any possible 
drought stress by:

i)	 Comparing the historical (1981–2020) and the 
annual (2021) Walter–Lieth diagrams, derived by 
elaborating the climatological records of the PECp in 
the Climatol package implemented in Rstudio (Gui-
jarro 2019).

Fig. 1  Land use and land cover map of the PECp, derived from the supervised classification of Sentinel-2 data
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ii)	 Computing the Normalized Difference Moisture 
Index (NDMI) derived from Sentinel-2 data for the 
months of June, July, and August 2021. NDMI uses 
NIR and SWIR bands and varies according to the 
moisture levels of vegetation; values above 0.2 indi-
cate low water stress for high canopy areas (EOS data 
analytics 2022).

Field campaign for the LAI measurement
The field campaign was conducted in the first week of July 
2021 for 5 consecutive days. We used LI-COR LAI-2200c 
Plant Canopy Analyzer to perform non-destructive LAI 
measures. The instrument is equipped with a fisheye lens 
and detects light interception in five concentric sky sec-
tors (Cutini et al. 1998); LAI is computed by comparing 
the diffuse radiation underneath the canopy to measures 
taken in large clearings with no light-blocking objects 
(Breda 2003; Danner et al. 2015).

Following the recommendations by LI-COR, we used 
the single sensor, scattering correction procedure, which 
is required for direct sunlight conditions. Measures were 
taken with a 270° cap, which allowed for removing the 
light-blocking effect of the operator and other objects 
(i.e., branches); each measure was georeferenced with the 
built-in GPS. Raw data were then transferred and elabo-
rated in FV220, the dedicated software freely delivered 
by LI-COR. In post-processing, for each measure, we 
excluded rings with inconsistent values, which may be 
caused by factors such as light blocking by branches and 
slope. According to the LAI 2200c user manual (LI-COR 
Biosciences 2013), we excluded measures with an HDOP 
(Horizontal Dilution of Precision, a measure indicating 
the precision of the GPS positioning) higher than 5, to 
minimize the effect of positioning errors.

We did not account for the vegetation under the meas-
uring height, which has been hypothesized to influ-
ence the field LAI measurement (Meyer et  al. 2019); in 
fact, the forests’ understory was sparse, and never dense 
enough to hinder the walk below the canopy.

Besides drought stress, biotic stress was also critical 
for the field campaign. In fact, since 2018, pine stands of 
the PECp have been infested by Toumeyella parvicornis, 
a pest known for causing a reduction in shoot develop-
ment, yellowing and desiccation of the needles, and lack 
of vegetative renewal (Di Sora et  al. 2022). For the sake 
of representativeness, we purposely avoided stands that 
showed visible yellowing and desiccation of the needles; 
however, it is noteworthy that, according to the unpub-
lished data of the PECp, two pine stands (the upper right 
and the central, please refer to Fig. 2) were likely infested 
by T. parvicornis from 2020 onwards.

We collected 193 LAI measures (Fig.  2) divided as 
follows for the different FGs of vegetation: deciduous 
broadleaves (88 measures), evergreen broadleaves (53 
measures), and conifers (52 measures). Measures were 
taken at a distance of at least 10 m from each other; each 
measure was made by four readings, spaced about 1  m 
along a linear transect.

Satellite data acquisition and processing
We used Sentinel-2 and Landsat 8 data, which have a 
spatial resolution included between 10 and 30 m, to com-
pute several SIs (Table 1), that were subsequently used as 
predictors for the estimation of the field-measured LAI. 
SIs are somehow related to the chlorophyll content of 
vegetation and are therefore widely used to evaluate its 
health conditions (Peng and Gitelson 2011); plus, these 
can be easily retrieved in multitemporal series over large 
areas, with minimum economic effort.

A Sentinel-2 image, acquired on the 4th of July 2021 
was downloaded from the Copernicus Open Access Hub. 
Sentinel-2 images are made of 13 spectral bands, includ-
ing 3 bands known as the red-edge bands (Clevers and 
Gitelson 2013); the red edge is a spectral region between 
red and near-infrared, in which the reflectance curve of 
vegetation rapidly changes, shifting from high absorption 
to high reflectance (Sun et al. 2020). Because of that, Sen-
tinel-2 red-edge bands are massively used for vegetation 
monitoring. Except for band 1, which has a spatial resolu-
tion of 60  m, Sentinel-2 bands have a spatial resolution 
of 10–20 m. We used a 2A-level product, which provides 
Bottom-of-Atmosphere (BOA) reflectance and is system-
atically generated over Europe. Elaborations were con-
ducted using the Sentinel Application Platform (SNAP) 
software, freely delivered by the European Space Agency; 
to compute the SIs, we used both the biophysical pro-
cessor and the band calculator (Djamai and Fernandes 
2018; Louis et al. 2016). In this study, we computed four 
Sentinel-2 derived indices (Table 1), which are LAI, Nor-
malized Difference Vegetation Index (NDVI), Normalize 
Difference Water Index (NDWI), and Normalize Burned 
Ration (NBR). All the Sentinel-2-derived SIs have a spa-
tial resolution of 10 m except for the NBR, which has a 
spatial resolution of 20 m. In addition, to fully exploit the 
potential of Sentinel-2 data, the following simple band 
ratios (SRs) were computed: SR56 (band 5/ band 6); SR57 
(band 5/ band 7); SR67 (band 6/ band 7). Band 5, 6 and 7 
(spatial resolution of 20 m for each one) were chosen as 
these fall in the so-called red edge region.

A Level 1 Landsat 8 image, acquired on the 8th of July 
2021, was downloaded from the USGS website. The pro-
cessing operations, including conversion to reflectance 
and atmospheric correction, were executed using the 
Semi-Automatic Classification Plugin (Congedo 2016) 
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implemented in QGIS. We computed 3 spectral indices 
(Table 1), which are, NDVI, NBR, and NDWI; the Land-
sat 8-derived SIs have a spatial resolution of 30 m.

Statistical analysis
First, we calculated Spearman’s correlation coefficient 
and the associated p-value between the field-measured 
LAI and the selected spectral indices, to provide a pre-
liminary quantification of their degree of association.

Then, we performed a single linear regression to build 
predictive models, using each of the SIs as a predictor for 
the field-measured LAI.

Descriptive statistics of the field-measured and esti-
mated LAI were computed, to provide a comprehensive 
overview of the canopy’s condition at the measurement’s 
time.

The performance of each model was assessed by com-
puting the root mean square error (RMSE), that is, a 
metric for estimating how the estimated LAI values are 
concentrated around the best-fitting line. The RMSE was 
calculated using the following equation:

Fig. 2  Sampling points of the field campaign for LAI measurement. The background image is a false-color infrared derived from Sentinel-2 data

Table 1  Overview of the spectral indices considered for the 
present work

Platform Index Formula Spatial 
resolution 
(m)

Sentinel-2 LAI SNAP biophysical 
processor

10

NDVI B8−B4

B8+B4
10

NDWI B3−B8

B3+B8
10

NBR B8a−B12

B8a+B12
20

SR56 B5

B6
20

SR57 B5

B7
20

SR67 B6

B7
20

Landsat 8 NDVI B4−B5

B4+B5
30

NDWI B3−B5

B3+B5
30

NBR B5−B7

B5+B7
30
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where  yi is the observed value,  ŷi the predicted value, 
and n is the number of observations.

RMSE was computed using the leave-one-out-cross-
validation (LOOCV) technique, using the caret pack-
age implemented in RStudio (Kuhn et  al. 2022). This 
approach is frequently used with small input datasets 
(Wong 2015), and consists of training the model on all 
observations except one, which is used to test the set. 
This procedure is repeated for all observations; to esti-
mate the overall predictive performance of the model, the 
predictive scores for each of the test sets are eventually 
summed (Gronau and Wagenmakers 2019).

We also computed the Normalized RMSE (NRMSE), 
applying the following equation:

where ymax and ymin are the maximum and minimum 
field-measured LAI values, respectively.

Results and discussion
Figure  3 shows the historical (1981–2020) and annual 
(2021) Walter–Lieth (Bagnouls 1953; Reader et al. 1974) 
diagram for the PECp. The summer drought of 2021 
was longer and more intense compared to the usual, as 

(1)RMSE =

n
i=1 yi − ŷi

2

n
,

(2)NRMSE =
RMSE

ymax − ymin

× 100,

it lasted from May to October. Even though such a pro-
longed drought period has likely affected the vegeta-
tion’s condition in the long run, no visible sign of drought 
stress such as defoliation or leaves yellowing was found 
on trees at the measurement time. Evergreen broad-
leaves of the PECp have already proved to be extremely 
tolerant to water stress by adopting a “water saving strat-
egy” (Anselmi et  al. 2004; Manes et  al. 1997a), whereas 
P. pinea stands are generally more sensitive (Manes 
et  al. 1997c). It is also noteworthy that the NDMI did 
not drop drastically in July for both deciduous and ever-
green broadleaves, whereas it was very low for conifers 
throughout the summer (Table  2). Therefore, we can 
exclude that deciduous and evergreen broadleaf were 
affected by drought stress at the measurement time, 
whereas conifers were somehow in a water shortage. We 
argue that this may be due to the atypically abundant pre-
cipitation, that occurred during March and April, which 

Fig. 3  Walter–Lieth diagram of the Presidential estate of Castelporziano for the period 1981–2020 (left) and for the year 2021 (right). Months are 
indicated by the letters at the bottom of the diagram. Temperature (°C) is represented on the left axis; precipitation (mm) is on the right axis. The 
blue blocks at the bottom of the graph indicate the probable frost months, when absolute monthly minimum temperatures are equal to or lower 
than 0

Table 2  NDMI for each functional group (FG) of vegetation 
during the summer of 2021

FG Date

June 14 July 7 August 18

Deciduous broadleaves 0.31 0.28 0.23

Evergreen broadleaves 0.36 0.33 0.27

Conifers 0.04 0.03 − 0.12
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contributed to keeping acceptable levels of soil moisture 
during the first week of July.

Regarding the T. parvicornis infestation suffered by 
pine stands, despite the absence of marked visible signs 
on the sampled stands, it has likely affected SIs computa-
tion. In theory, it should be lowered by the detrimental 
effect of the pest, which reduces the pigment content of 
leaves, thus altering the canopy’s reflectance. However, 
it is impossible to account for such an impact without 
a proper experimental design, and it might be better 
addressed in a dedicated study.

The boxplot for the field-measured LAI values is shown 
in Fig. 4A. Deciduous broadleaves and evergreen broad-
leaves display high median LAI values, between 4.5 and 
4.9, whereas conifers’ median LAI value is significantly 
lower, attested at 2.3. As expected, in all cases (Fig. 4B–K) 
the estimated LAI follows a similar pattern compared to 
the measured one, with conifers displaying lower LAI 
than deciduous and evergreen broadleaves. Interestingly, 
despite comparable median values, the interquartile 
range (IQR) of the estimated LAI is systematically lower 
than the one of the measured LAI, indicating that the 
values’ distribution is more centered around the median. 
This happens for all the considered SIs and in each one 

of the FGs. The lower dispersion of the estimated LAI 
could be attributed to the pixel size: indeed, whereas a 
spot field measure ensures that the resulting LAI is fully 
attributable to one or a few trees, a window ranging from 
10 m × 10 m to 30 m × 30 m might include several trees, 
which likely flatten the resulting LAI around a well-rep-
resentative value.

Table  3 shows Spearman’s correlation coefficient 
between the measured LAI and the selected SIs. The 
absolute correlation value ranges from 0.54 to 0.65, indi-
cating a quite strong association between the considered 
variables; a high level of significance is reached. Interest-
ingly, spectral indices are also strongly correlated with 
each other (Fig. 5), with correlation coefficients exceeding 
the absolute value of 0.5 in almost all cases. The Landsat 
8-derived NDWI and the SRs are the only indices with 
a strong negative correlation with other indices (Fig. 5). 
Such a strong association is not surprising, as Sentinel-2 
data are specifically designed to provide data continuity 
to the Landsat 8 mission (ESA 2023).

All models show comparable performances, with R2 
included between 0.46 and 0.55 and NRMSE ranging 
from 14.74% to 18.01%. Overall, our results are quite fol-
lowing what was found by Meyer et al. (2019), who found 

Fig. 4  Boxplot of the field-measured LAI and SI-predicted LAI for each functional group of vegetation. IQR on top of each group represents the 
interquartile range. The asterisks represent the outliers
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that Sentinel-2 and Landsat 8 had comparable perfor-
mances in predicting the actual LAI values over boreal 
forests in Germany.

Among Sentinel-2 models, the NDWI and NBR-
derived ones are the best performing, with R2 above 
0.50 and NRMSE at around 15%. As for SRs, SR56 and 
SR57 show moderate performances, comparable to other 
S-2-derived indices. Similar findings were reported by 
Meyer et al. (2019), who also found that red-edge indices 
do not outperform other indices in estimating the field-
measured LAI. SR67 has instead a markedly worse per-
formance compared to all the other SIs. This is quite far 
from what we expected, as red-edge bands are notorious 
for being extremely sensitive to vegetation’s health status 
(Sun et al. 2020).

Landsat 8-derived models perform consistently better 
than Sentinel-2-derived ones, with R2 attested between 
0.52 and 0.55, and NRMSE between 14.74% and 15.15%. 
Overall, 10-m resolution models are systematically out-
performed by coarser ones. Therefore, more in-depth 
studies aimed at understanding the mechanisms under-
pinning such findings are required. The results are sum-
marized in Fig. 6 and Table 4.

Table 3  Spearman’s correlation coefficients (and p-value) 
between the field-measured LAI e and the selected spectral 
indices

The asterisk represents a high level of significance, with p-value lower than 0.05

Index Spearman

S-2 LAI 0.604*

S-2 NDVI 0.595*

S-2 NBR 0.595*

S-2 NDWI 0.601*

S-2 SR56 − 0.589*

S-2 SR57 − 0.596*

S2 SR67 − 0.541*

L8 NDVI 0.654*

L8 NBR 0.607*

L8 NDWI − 0.634*

Fig. 5  Pairwise correlation matrix between the selected SIs
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As stated by previous studies (Brown et al. 2021; Filip-
poni 2021; Pasqualotto et  al. 2019), we also observed 
a general underestimation of the satellite-derived LAI 
compared to the field-measured one for high-measured 
LAI values, e.g., above 5 (Fig. 6). We argue that may be 
due to the methodological approaches for in  situ and 
remote LAI estimation. Indeed, LI-COR LAI-2200 is 
affected by the presence of all light-blocking objects 
including branches and dead wood, which contribute to 
the computation of the LAI. As for remote-sensed spec-
tral indices, these are instead computed based on the 
solar radiation reflected and absorbed by pigments of 

the mesophyll and are therefore exclusively related to the 
photosynthetic portion of the canopy. Plus, as observed 
in previous studies (Tesfaye and Awoke 2021; Zhou et al. 
2017) SIs incur spectrum saturation, that is, they do not 
increase once that vegetation’s reflectance overcomes a 
certain threshold. Saturation is more evident for areas 
with very dense vegetation, during the peak of the grow-
ing season (Gao 2000; Todd et  al. 1998). We argue that 
this is also the case in our study: indeed, in both Senti-
nel-2 and Landsat 8-derived models, the estimated LAI 
reaches its limit at around 5, whereas field-measured LAI 
is on several occasions well above 6.

Therefore, according to our findings, the Sentinel-2 and 
Landsat 8 data are essentially equivalent in estimating 
the LAI. Landsat 8 performs slightly better; however, its 
coarser spatial resolution (30  m, compared to Sentinel’s 
10  m or 20  m) may not be suitable for some elements 
of the urban green infrastructure such as isolated street 
trees or tree lines, which in turn may have a critical role 
in upcoming urban reforestation strategies.

Hopefully, this study will raise the attention of scien-
tists and policymakers working in the field of urban and 
peri-urban reforestation, as well as those working on ESs 
modeling. Even though high-resolution multispectral 
satellite imagery is widely used when it comes to assess-
ing vegetation’s structural parameters, processes, and 
ESs delivery (García-Pardo et  al. 2022), one must take 
into account that (1) Sentinel-2 and Landsat 8 LAI esti-
mates may have moderate accuracy and precision, and 
(2) at the peak of the vegetative growth, SIs saturation is 

Fig. 6  Scatter plot of measured (x-axis) vs estimated (y-axis) LAI. The solid line is the 1:1 line, which represents the ideal fit. The dashed line is the 
actual regression line

Table 4  R-squared (R2), root mean square error (RMSE), 
normalized root mean square error (NRMSE), mean absolute error 
(MAE), and the equation describing the relation

In the latter, y is the estimated LAI, and x is the considered VI

VI R2 RMSE NRMSE (%) MAE Equation

S-2 LAI 0.49 0.94 15.80 0.79 y = 1.917 + 1.005x

S-2 NDVI 0.49 0.94 15.75 0.78 y = − 2.034 + 8.474x

S-2 NBR 0.52 0.90 15.15 0.70 y = 0.448 + 6.895x

S-2 NDWI 0.50 0.92 15.48 0.72 y = 0.940 + 6.260x

S-2 SR56 0.49 0.94 15.77 0.77 y = 7.714 − 8.861x

S-2 SR57 0.49 0.93 15.65 0.78 y = 7.174 − 9.176x

S-2 SR67 0.34 1.07 18.01 0.89 y = 19.110 − 18.440x

L8 NDVI 0.55 0.88 14.74 0.70 y = 1.564 + 8.281x

L8 NBR 0.53 0.90 15.15 0.70 y = − 2.157 + 9.945x

L8 NDWI 0.52 0.91 15.15 0.72 y = 2.219 − 8.492x
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likely to occur for densely vegetated areas. In such condi-
tions, satellite-derived LAI estimates, and consequently, 
ESs estimates, are susceptible to a certain degree of 
underestimation.

Our study presents some general limitations that 
should be properly identified and addressed in upcoming 
works. It was entirely conducted during the early sum-
mer of 2021; therefore, a multi-seasonal assessment of 
the relationship between satellite-derived spectral indices 
and the field-measured LAI is needed to provide more 
comprehensive results. Indeed, factors such as phenol-
ogy, cold stress, and soil moisture are likely to deeply 
influence such a relation.

Spectrum saturation, especially when it comes to esti-
mating the LAI, is a well-known limitation (Wang et al. 
2022), which also affected our study.

The use of LI-COR LAI 2200c also shows some con-
siderable flaws. For example, LI-COR LAI 2200c relies 
on several assumptions (e.g., leaves do not transmit nor 
reflect incident radiation; leaves are randomly distrib-
uted; leaves show a random azimuthal distribution) 
which are rarely concurrently satisfied by any canopy 
(Danner et  al. 2015). Besides such assumptions, the 
quality of measures is also influenced by factors such 
as the evenness of sky lighting and camera positioning 
(Lenz et al. 1997; Jonckheere et al. 2004), which we con-
trolled by (1) making measures during cloud-free days; 
(2) exposing the camera parallel to the ground, and (3) 
applying the scattering correction implemented in the 
FV2200 software.

Despite the marked forest management (e.g., thinning 
and removal of dead wood), the PECp can still be con-
sidered a natural forest, due to its remarkable size and 
presence of autochthonous species; therefore, our results 
might not apply to small parks, which often also host 
alien species.

Lastly, even though the forest’s understory was very 
sparse, its impact should be accounted for in both direct 
LAI measurements and remote sensing-based estimates 
(George et al. 2021).

Conclusions
In this study, we tested the performance of two widely 
used high-resolution multispectral sensors, that is, Sen-
tinel-2 and Landsat 8, in estimating the summer leaf area 
index in a Mediterranean peri-urban forest. To do so, we 
performed a single linear regression between 10 spectral 
indices and 193 field LAI measurements, collected for 
different functional groups of vegetation.

We found that Landsat 8-derived models have, on 
average, a slightly better performance, with the best 
model (the one based on NDVI) showing an R2 of 

0.55 and NRMSE of 14.74%, compared to R2 of 0.52 
and NRMSE of 15.15% showed by the best Sentinel-2 
model, which is based on the NBR. However, both 
sensors showed moderate performances in estimating 
the LAI. In general, 30-m and 20-m resolution mod-
els outperformed the 10-m resolution ones. All models 
were affected by spectrum saturation: as a result, we 
do not recommend estimating high LAI values (above 
5) using a remote sensing-based approach.

It is noteworthy that the satellite-derived LAI is often 
used as a key input parameter for assessing numerous 
ESs, which in turn play a pivotal role in the enhance-
ment of human health and well-being and are rising as 
a key feature steering new urban forestation strategies 
(Manes et  al. 2016). Therefore, the uncertainty intro-
duced using satellite-derived LAI in such estimates 
should be accounted for.
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