
  

I. EXTENDED ABSTRACT 
Context-aware systems unobtrusively assist people by 
predicting their needs. This prediction is often based on 
context information acquired from the environment. To this 
purpose we envision an assisted living supportive (also called 
Ambient assisting living AAL) scenario in which various 
embedded device (like sensors, actuators, display, and 
wireless medical devices) either operate independently or are 
coordinated under the local intelligence node. AAL is 
currently seen as the next evolution step in the information 
society. Thereby the computing science is being widened from 
stationary systems to ubiquitous, smart, and human-centric 
systems. In other words all systems are intelligent computer 
systems, which are not invasively embedded in the human 
environments, with the goal to improve the lifestyle based on 
the individual human needs. The first efforts to introduce 
context-awareness have been related to the localization of 
users [1], [2], [3], [4] and up to now localization is still one of 
the main building blocks of AAL architectures. The general 
solution based on Global Positioning System (GPS) is 
unfortunately available only in outdoor environments. In AAL 
scenario a viable solution to localization of users exploits 
wireless sensor networks. Sensor network-based solutions can 
estimate the (unknown) location of mobile sensors (placed on 
the users) with respect to a set of fixed sensor (called 
anchors), whose position is known, by using two different 
approaches, range-based or range-free localization schemes. 
The former is defined by protocols that use absolute point-to-
point distance estimates for calculating location. The latter 
make no assumption about the availability or validity of such 
information. 
The choice between these two localization approaches depend 
on the behaviour, requirements of protocols using location 
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information, and on the wished error granularities. 
Acknowledging that the range-free solutions have a coarse 
accuracy, this technique in our AAL scenario, where the 
location precision is one of the main requirements, is 
inappropriate. Instead, a range-based localization solution may 
be appropriate in relation to the required location precision 
because it exploits measurements of physical quantities related 
to signals traveling between the mobile sensors and anchors. 
Radio signal measurements are typically the received signal 
strength indicator (RSSI), the angle of arrival (AOA), the time 
of arrival (TOA), and the time difference of arrival (TDOA). 
Recently, radio location based on a combination of AOA and 
TDOA techniques have been proposed, that guarantee a high-
accuracy location but it requires a specific and complex 
hardware. In order to obtained a non-invasive system, our goal 
is to use health and patient sensors monitoring deployed in 
AAL scenario, and not a specific localization hardware like 
AOA and TOA techniques required. Because of RSSI does 
not require a special or a sophisticated hardware, but rather it 
has become a standard feature in most wireless devices, RSSI-
based localization techniques are the best choice in AAL 
scenario. Moreover RSSI-based localization techniques do not 
have a significant impact on local power consumption, sensor 
size and thus cost. It is for these reasons that these techniques 
have received considerable research interest [5], [6], [7]. 
In [5] the authors suggest that algorithms that estimate 
distances between two wireless devices based on their 
reciprocal RSSI are unable to capture the myriad of effects on 
signal propagation in an indoor environment. Nevertheless, in 
[6] the authors have shown that despite the reputation of RSSI 
as a coarse method to estimate range, it can achieve an 
accuracy of about 2-3 meters RMS in a testbed experiment. 
Fading outliers can still impair the RSSI relative location 
system, implying the need for a robust estimator. A method to 
improve the quality of localization exploiting a number of 
RSSI measurements averaged in a time window to counteract 
interference and fading has been proposed in [7]. 
The main RSSI-based location approaches are based on 
fingerprint and on signal propagation modeling techniques. 
The fingerprint schemes also referred to as pattern recognition 
or pattern matching techniques, exploit the RSSI at the mobile 
sensors as a function of the mobile position during an off-line 
phase. Each mobile position is then identified by a set of 
RSSI. During the on-line phase the mobile location estimation 
is performed by matching the actual signature of the RSSI 
with the entries stored in a database available at the anchors. 
The database entries are usually collected on a grid of possible 
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mobile positions within the area of interest, wherein the grid 
spacing must be always chosen as a tradeoff between 
performance and time required to fix the mobile location. The 
main drawback of this method is the extensive and accurate 
measurements, during the off-line phase, require to create the 
database. So, this procedure is very time expensive, as it 
requires human intervention, which is a practical barrier to its 
wider adoption. 
The latter technique consists on developed a large-scale path 
loss model that accounts both free-space and loss due to 
obstructions in computing the RSSI in a given mobile 
position. As well as for the fingerprint technique also for this 
technique is required an off-line phase. During this phase also 
called a priori calibration the RSSI values are collected for a 
given mobile positions and used to develop a path loss model. 
In indoor environment such as AAL scenario the path loss 
model also take into account parameters such as the wall 
attenuation factor (WAF) and floor attenuation factors (FAF) 
to model the effect of walls and floors on the radio waves. 
Unfortunately, RSSI is environment dependent, moreover in 
indoor environments, the wireless channel is very noisy and 
the radio frequency signal can suffer from reflection, 
diffraction and multipath effect, which makes the signal 
strength a complex function of distance. To overcome these 
problems, wireless location systems use a priori calibration of 
the propagation model. The calibration works in two phases: 
the training phase and the estimation phase. In the training 
phase it is measured the RSSI at a grid of points in the area of 
interest, and in the estimation phase this information is used to 
estimate the propagation model parameters. Clearly, the 
accuracy of the calibration procedure depends on the number 
of points in the grid and to the number of measures taken per 
point. It is also clear that even this RSSI-based location 
approach need to human intervention and is time expensive. 
In this paper we propose a novel localization algorithm that 
selects and weights the RSSI measures according to their 
strength, and it uses an automatic training that only exploits 
information from the anchors, without requiring human 
operators. 
We assume a localization model comprising a set of anchors 
A = {a1, a2, . . . , an}, a mobile and a localization server L. 
The anchors have well known position on the map, identified 
by the pair (xi, yi). Our localization model consists of two 
phases: the training phase and the localization phase. In the 
training phase each anchors transmit a broadcast beacon with 
theirs identifier to the other anchors, measuring the RSSI. 
These values are exploited by the localization server to 
estimate the propagation model parameters. In the localization 
phase each anchor periodically emits a beacon packet 
containing its identifier. The mobile node, which needs to be 
localized by the system, receives the beacons from the 
anchors, computes the corresponding Received Signal 
Strength Indicator (RSSI), and sends to the localization server 
the pair <RSSI, anchor id>. The localization server 
accumulates all the pairs and using the three anchors with a 
greater RSSI, estimates the distances between mobile and 
anchors exploiting a suitable propagation model. Using these 
distances as a radius of a circle, the algorithm estimates the 
intersection points between them. Given the set of the 

intersection points, the location of a mobile node is calculated 
by choosing the three anchors with a greater RSSI, and by 
biasing the location estimate towards the “nearby” anchors. 
Figure 1 shows the Cumulative Distribution Function obtained 
by using our localization algorithm in a testbed based on IEEE 
802.15.4 devices. We obtained a better results with respect the 
RADAR [9], DALS [10] and the Bulusu [8] algorithm that 
obtains a 75th percentile location error under 5 m, the 87th 
percentile location error of about 9 m, and the 90th percentile 
location error within 3 m, respectively. Our localization 
performance are similar to that of MoteTrack system [11] that 
achieves a 50th percentile and 80th percentile location-tracking 
accuracy of 0.9 and 1.6 m respectively, but our algorithm does 
not require the expensive training phase of MoteTrack.  
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Fig. 1.Cumulative Distribution Function of the localization error. 


