From EU Projects to a Family of Model Checkers
From Kandinsky to KandISTI

Maurice H. ter Beek, Stefania Gnesi, and Franco Mazzanti

Formal Methods && Tools lab (FM&&T)
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI)
Consiglio Nazionale delle Ricerche (CNR)
Via G. Moruzzi 1, 56124 Pisa, Italy
{terbeek, gnesi, mazzanti}@isti.cnr.it

Abstract. We describe the development of the KandISTI family of model
checkers from its origins nearly two decades ago until its very recent lat-
est addition. Most progress was made, however, during two integrated
FEuropean projects, AGILE and SENSORIA, in which our FM&&T lab
participated under the scientific coordination of Martin Wirsing. More-
over, the very name of the family of model checkers is partly due to
Martin Wirsing’s passion for art and science.

1 Introduction

We have had the pleasure to work with Martin in two European projects, namely
FP5-IP-IST-2001-32747 AGILE [2] and the FP6-IP-IST-016004 SENSORIA [57].
He coordinated both in an excellent manner.

AGILE created primitives for explicitly addressing mobility in architectural
models. Therefore algebraic models based on graph transformation techniques
were defined for the underlying processes to relate the reconfiguration of the
coordination structure and the mobility of components across the distribution
topology. Moreover, an extension of UML for mobility was developed to make the
architectural primitives available to practitioners, together with tool support.

SENSORIA resolved problems from Service-Oriented Computing (SOC) by
building novel theories, methods, and tools supporting the engineering of soft-
ware systems for service-oriented overlay computers. The results include a com-
prehensive service ontology, new semantically well-defined modeling and pro-
gramming primitives for services, new powerful mathematical analysis and ver-
ification techniques, tools for system behavior and quality of service properties,
and novel model-based transformation and development techniques [57].

Based on our expertise, our involvement in AGILE was mainly to develop
analysis techniques to support compositional verification of properties address-
ing the evolution of computation, coordination and distribution. In SENSORIA,
instead, we developed a logical verification framework for the analysis of func-
tional properties in SOC. In both projects, our work was strongly focused on the
realization of a model-checking framework, as a result of which we now have a
family of model checkers that we will describe in this paper.



This paper is organized as follows. In Sect. 2 we explain the name we gave to
our family of model checkers, after which we briefly describe each family member
in Sect. 3-6. We then sketch their overall structure in Sect. 7, after which we
conclude the paper in Sect. 8.

2 From Kandinsky to KandISTI

In the beginning of 2008, one of the SENSORIA meetings included as social
event a visit to the Lenbachhaus, a museum which preserves one of the richest
collections of Wassily Kandinsky. At that time we were in the middle of the
process of reshaping our family of model checkers by separating the specifica-
tion language dependent details of the underlying ground computational model
from its abstract representation in terms of a so-called Doubly-Labeled Transi-
tion System (L2TS) [33], on which to carry out the analysis. While our ground
computational models (state machines, process algebras) are already a simplified
model of a real system, their correspondence with reality is still very immedi-
ate as they directly reflect the real system structure and behavior. Observing a
model at this level, as explicitly allowed by our model-checking framework, is
like exploring the real system which is being modeled. In some sense, our ground
models are similar to the early paintings of Kandinsky (e.g. Fig. 1(a)) in which
the correspondence of the painting to the reality is immediate. !

(a) Kallmiinz - Gabriele (b) St. George III, 1911 (c) Red Spot II, 1921
Miinter Painting II, 1903

Fig. 1. By Wassily Kandinsky (Stddtische Galerie im Lenbachhaus, Munich, Germany)

In a very short time, however, Kandinsky’s style of painting started to evolve
into a more abstract style and his paintings started to no longer directly reflect
reality in all its details. Instead, the painter chose to communicate just what he
felt was relevant to him (e.g. Fig. 1(b)). Again, this is precisely what we intend

! The depicted thumbnails of Kandinsky paintings are among those observable on
the official website of the Stédtische Galerie im Lenbachhaus in Munich, Germany
(¢f. http://www.lenbachhaus.de/collection/the-blue-rider/), and are
used here for non-commercial and strictly illustrative purposes.



to achieve in our family of model checkers, when we define abstraction rules
which allow to represent the system as an L2TS in which the labels on the states
and edges directly represent just the abstract pieces of information we want to
observe, to be able to express the properties we want to verify. A specific feature
of our framework displays the model precisely at this abstraction level, even if at
this level we are still able to find a correspondence between the abstract L2TS
and the underlying computational model, since each state and each edge can
still be mapped back to a precise system state and system evolution.

In the last series of Kandinsky paintings, the disconnection between the ob-
served reality and the represented images is almost complete (e.g. Fig. 1(c)). His
paintings directly express just the author’s feelings that the observation of real-
ity stimulates. In our framework we have the possibility to apply to our abstract
L2TS a powerful minimization technique, which allows to observe in a graphical
and very concise way the system behavior with respect to the abstract pieces of
information we have selected to observe. In this way the resulting picture loses
its direct connection with the underlying model (it is no longer possible to map
a node to a single system state) and directly communicates most of the system
properties regarding the observed aspects of the system. The intuition on the
correctness of a system can be gained by just observing the representation of its
abstract minimized behavior.

During the aforementioned visit to the Lenbachhaus, Martin Wirsing did not
fail to notice the reminiscence of the various abstraction levels of our verification
framework to the various approaches to painting through which Kandinsky’s
style has evolved, and we enjoyed together this wonderful matching. This visit
inspired us to name our ISTI verification framework in a way that somehow
reflects and honors Kandinsky’s contribution to the art of painting, and this is
why we have decided to name it KandISTI.

The development of the KandISTI family of model checkers is an ongoing
effort [24,40,17]. The current versions of its family members are freely usable
online via:

http://fmt.isti.cnr.it/kandisti/

On that page you will see the front-end of the family depicted in Fig. 2 and
by clicking on one of its family members the specific tool will open.

In the next four sections, we briefly describe the different computational
models underlying the model-checking tools of KandISTI, after which we will
describe the unique logical verification environment in more detail in Sect. 7.

3 FMC: The Origin of Our On-the-Fly Model-Checking Approach

Experiments at ISTT with on-the-fly model checking began with the FMC model
checker [39] for action-based CTL (ACTL) [32] extended with fixed-point opera-
tors. In FMC, a system is a hierarchical composition (net) of sequential automata
(terms). Terms can be recursively defined using a simple process algebra which
supports features coming from CCS, CSP and LOTOS [36]. Communication and
synchronization among terms is achieved through synchronous operations over



KandISTI 2014

CMC FMC VMC

e
3 Iy
*f);*'éév
it f.l 5 %
A ]

Fig. 2. The front-end of the KandISTI family of model checkers

channels. The parallel operator / Channels / defined in the syntax below allows
the CCS synchronization between two participating networks, requires the CSP-
like synchronization when the participating networks evolve with a communica-
tion action controlled by the specified list of Channels, and lets the participants
proceed in interleaving when executing CSP actions not explicitly controlled.
Moreover, all participants of a communication/synchronization must agree on
the set of values exchanged during the operation.

All this allows to naturally model both binary client-server interactions and
n-ary barrier-like synchronizations. Term definitions can be parametrized, and
communication operations allow value passing. The only supported form of val-
ues are integer numbers, stand-alone identifiers can also be used as values and
behave like special implementation defined integer constants.

Summarizing, the structure of the process algebra accepted by FMC is de-
scribed by the following abstract syntax (where only the case in which term
definitions and communication actions have precisely one parameter is depicted,
but obviously their number can be arbitrary):

System = [Net]
Net ::= T(expr) | Net / Channels/ Net | Net\ channel | Net [ channel/channel]

where [Net] denotes a closed system, i.e. a process that cannot evolve on
actions that rely on input parameters (channel(?variable) as defined below);
T(expr) is a process instantiation from the set of process declarations of the form
T(variable) = Term; and Channels is a list of channel names. Next to the par-
allel operator / Channels / mentioned before, \ channel and [ channel/channel |
denote the classical operators of channel restriction and renaming, respectively.



The structure of Term definitions is described by the following abstract syntax:

Term == nil | T(expr) | Action.Term | Term + Term | [expr < expr] Term
Action ::= channel(arg) | ?channel(arg) | !channel(arg)

arg = expr | Tvariable

expr = variable | integer | identifier | expr £ expr

where € {<, <, =,%#,>,>} is a comparison operator and + € {+,—, x,+} is
an arithmetic operation.

The basic idea underlying the design of FMC is that, given a system state,
the validity of a formula on that state can be evaluated analyzing the transitions
allowed in that state, and analyzing the validity of a subformula in only some
of the next reachable states, recursively. In this way (depending on the formula)
only a fragment of the overall state space might need to be generated and ana-
lyzed in order to produce the correct result. Such model-checking procedures are
also called local, in order to distinguish them from those called global, in which
the whole state space is explored to check the validity of a formula (cf. [27,7]).

For the evaluation of a formula, in order to be able to partially deal also with
infinite-state systems (potentially introduced by the presence of integer values),
a so-called bounded model-checking approach is adopted (cf. [27,7]). The evalua-
tion is started by assuming a certain value as a maximum depth of the evaluation.
If the evaluation of the formula reaches a result within the requested depth, then
the result holds for the whole system; otherwise the maximum depth is increased
and the evaluation is retried (preserving all useful partial results already found).
This approach, initially introduced to address infinite state spaces, can turn out
to be useful also for another reason: by setting a small initial maximum depth
and a small automatic increment of this bound at each re-evaluation failure,
once a result is finally found then we might also have a usable explanation for it.
Note, however, that depending on the structure of the formula (e.g. requesting a
check on all reachable states) and on the structure of the model (e.g. of a too big
size?) no result might be returned by the tool when all the available resources
(e.g. memory) are consumed.

The logic initially supported by FMC is an action-based branching-time logic
inspired by ACTL and enriched with weak until operators, box and diamond
operators and fixed-point operators. The fragment of this logic without fixed-
point operators allows verifications with a complexity which is linear with respect
to the size of the model and the size of the formula. With the integrations of
the other tools of the family this logic has been over the time extended with the
new features introduced for the support of state properties and data correlations
among actions.

So far, FMC has been used mainly in didactic contexts for the experimenta-
tion of various modeling and verification techniques. Its main limit for heavier
industrial use is the lack of support for more structured data types (e.g. lists,
sets, maps, vectors).

2 The current limit for an exhaustive verification is a statespace of millions of states.



4 UMC: Support for State/Event-Based Models and Logics

As an attempt to reduce the gap between software engineers and theoreticians,
the very same model-checking approach that was adopted for FMC has sub-
sequently been applied to a computational model directly inspired by UML
statecharts (c¢f. http://www.uml.org). This prompted the switching to an
action- and state-based logic, that would allow to express in a natural way not
only properties of evolution steps (i.e. related to the executed actions) but also
internal properties of states (e.g. related to the values of object attributes). The
result of this process has been the UMC model checker and its associated UCTL
logic [14].

The initial part of the design, development, and experimentation of the ap-
proach has been carried out in the context of the AGILE project. The purpose of
the project was the development of an architectural approach in which mobility
aspects could be modeled explicitly. The project proposed extensions of UML to
support mobile and distributed system design, including linguistic extensions of
the UML diagrammatic notations, extensions of the Unified Process and a pro-
totype for simulating and analyzing the dynamic behavior of designs of mobile
and distributed systems.

According to the UML paradigm, a dynamic system is seen as a set of evolv-
ing and communicating objects, where objects are class instances. The set of
objects and classes which constitute a system can be described in UML by a
structure diagram, while the dynamic behavior of the objects can be described
by associating a statechart diagram to their classes. Each object of the system
will therefore behave like a state machine; it will have a set of local attributes,
an event pool collecting the events that need to be processed, and a current
progress status. The progress status of a state machine is given by the set of
currently active states of the statechart diagram.

In UMC a system is described as a set of communicating UML-like state
machines. The structure of a state machine in UMC is defined by a Class decla-
ration, which has the following general structure:

class <name> is
Signals:
<list of asynchronous signals managed by the class’ objects>
Operations:
<list of synchronous call ops managed by the class’ objects>
Vars:
<list of local vars belonging to the class’ objects state>
Behavior:
<list of rules defining state evolutions of the class’ objects>
end <name>

The Behavior part of a class definition describes the possible evolutions of
the system. This part contains a list of transition rules which have the following
generic form:



<Source> —==> <Target> {<EventTrigger>[<Guard> ] /<Actions> }

Each rule intuitively states that when the system is in state Source, the specified
EventTrigger is available and the Guard is satisfied, then all Actions of the
transition are executed and the system state passes from Source to Target.

In UMC, the actual structure of the system is defined by a set of active
object instantiations. A full UMC model is defined by a sequence of Class and
Object declarations and by a final definition of a set of Abstraction rules. The
overall behavior of a system is in fact formalized as an abstract L2TS and the
Abstraction rules allow to define what we want to see as labels of the states and
edges of the L2TS.

This approach to model the abstract system behavior as an L2TS, showing
only the essential information for the verification of system properties, proved to
be a winning idea. Hence it was applied also to the other tools of the family, thus
allowing the development of a common logical verification layer for our family of
model checkers, which consequently became independent from the details of the
particular specification language and computational model of the various tools.

The logic initially supported by UMC was just an extension of the logic sup-
ported by FMC with the possibility of using state predicates and pure CTL-like
operators. As we will see in the next section over time this logic has been ex-
tended with the new features introduced for the support of parametric formulas
allowing to express data correlations among actions.

The development and the experience gained with UMC has also helped in
clarifying the overall purpose for the development of our verification framework.
The main purpose of our tools is not just the final validation step of a completed
architectural design, but rather a formal support during all steps of the incre-
mental design phase (i.e. when ongoing designs are still likely to be incomplete
and, with a high probability, contain mistakes). Indeed, the UMC framework has
evolved having in mind the requirements of a system designer as end user: (s)he
intends to take advantage of formal approaches to achieve an early validation of
the system requirements and an early detection of design errors. Therefore, the
main goals of the development of UMC have been:

1. The possibility to manually explore a system’s evolutions and to generate a
summary of its behavior in terms of minimal abstract traces.

2. The possibility to investigate abstract system properties by using a branching-
time temporal logic supported by an on-the-fly model checker.

3. The possibility to obtain a clear explanation of the model-checking results
in terms of possible evolutions of the selected computational model.

In AGILE, planes landing and taking off from airports and transporting other
mobile objects, namely passengers, were considered as an example of mobile
objects. In a simplified scenario, departing passengers check in and board the
plane, during the flight they might consume a meal, and after the plane has
arrived at the destination airport, they deplane and claim their luggage. The



complete dynamic behavior of the objects of classes Passenger, Airport and
Plane was modeled in UMC in the form of statechart diagrams and subsequently
a number of logical properties were verified [2].

The experimentation with UMC has continued also in the context of the
SENSORIA project, where it was used to model and verify an asynchronous
version of the SOAP communication protocol. In the same project, UMC has
been used for the modeling of an automotive scenario, for the support of the
SRML modeling language, and for the conflict detection of policies in a scenario
from SENSORIA’s Finance case study [15, 1,20, §].

More recently, UMC was successfully applied, in the context of the regional
project PAR-FAS-2007-2013 TRACE-IT (Train Control Enhancement via In-
formation Technology), to the development of a model-checking-based design
methodology for deadlock-free train scheduling [52, 51].

5 CMC: Parametrized Logic Formulas for Expressing Data
Correlations Among Actions

A third application of our on-the-fly model-checking approach has been to the
process algebra COWS [44, 56], developed in the context of the SENSORIA
project. This project developed a novel comprehensive approach to the engineer-
ing of software systems for SOC. Foundational theories, techniques and methods
were fully integrated in a pragmatic software engineering approach that focused
on global services that are context-adaptive, personalizable, and which may re-
quire hard and soft constraints on resources and performance. Moreover, the
fact that services have to be deployed on different, possibly interoperating global
computers to provide novel and reusable service-oriented overlay computers was
taken into account.

The Calculus for Orchestration of Web Services (COWS) is a modeling nota-
tion for all relevant phases of the life cycle of service-oriented applications, among
which service publication, discovery, and orchestration, as well as Service-Level
Agreement (SLA) negotiation. Besides service interactions and compositions, im-
portant aspects like fault and compensation handling can be modeled in COWS.
Extensions moreover allow timed activities, constraints and stochastic reasoning.
Application to the SENSORIA case studies [8] has demonstrated the feasibility
of modeling service-oriented applications with the specific mechanisms and prim-
itives of COWS [35].

Experimentation in this direction led to the development of the CMC model
checker for COWS terms and the definition of the SocL logic [24, 35]. It is too
complex to explain in detail all the features and characteristics of the COWS
specification language. Here we only mention that COWS is a process-algebraic
language that allows recursive processes which can also be parallel process (unlike
FMC, which does not not allow parallelism inside recursion). Process synchro-
nization and communication occurs through input/output actions which have
the form p.o! < args > and p.o? < params > where p denotes a communica-
tion partner and o an operation request. Recursion is achieved through a ‘bang’



operator (*P) meaning P|P|P|---. The language supports also the definition of
protected contexts ({P}), delimited contexts ([k] P) and kill operations (kill(k)).

This kind of systems require a logic that allows to express the correlation
between dynamically generated values appearing inside actions at different times.
The reason for this is that such correlation values then allow, e.g., to relate the
responses of a service to their specific request, or to handle the concept of a
session involving a long sequence of interactions among the interacting partners.
A typical example property that one would like to express in this context is that
whenever a process performs a request operation to a partner p, providing some
identification data id, in all cases the partner will reply with a response operation
with the same identification data. In CMC that property can be expressed by
the parametric formula:

AG [request(p, $id)] AF response(p, %oid) true

CMC has been successfully used to model and analyze service-oriented sce-
narios from the SENSORIA project’s Automotive and Finance case studies and
to its Bowling Robot case study [19, 15, 20, 14, 21, 8, 35].

6 VMUC: Behavioral Variability Analysis for Product Families

The final and most recent extension of the modeling and verification framework
that we will describe in this paper is a tool, called the Variability Model Checker
(VMC |25, 16, 23]), which was specifically developed for the specification and
verification of so-called product families or product lines.

Software Product Line Engineering (SPLE) [30, 55] is by now an established
field of software-intensive system development which propagates the systematic
reuse of assets or features in an attempt to lower production costs and time-
to-market and to increase overall efficiency. SPLE thus aims to develop, in a
cost effective way, a variety of software-intensive products that share an overall
reference model, i.e. that together form a product family. Usually, commonality
and variability are defined in terms of so-called features, and managing variability
is about identifying variation points in a common family design and deciding
which combinations of features are to be considered valid products. There is by
now a large body of literature on the computer-aided analysis of feature models
to extract valid products and to detect anomalies, i.e. undesirable properties
such as superfluous or—worse—contradictory variability information (e.g. so-
called false optional or dead features) [26].

Until a few years ago, these analyses however did not take any behavior into
account, even though software products are often large and complex, and many
are used in safety-critical applications in the avionics, railways, or automotive
industries. The importance of specifying and verifying also behavioral variability
was first recognized in the context of UML [43, 58]. Shortly after, in [37], Modal
Transition Systems (MTSs) were recognized as a promising formal method for
describing in a compact way the possible operational behavior of the products in



a product family. An MTS [3] is a Labeled Transition System (LTS) distinguish-
ing between ‘admissible’ may and ‘necessary’ must transitions. By definition,
every must transition is also a may transition.

In recent years, many variants and extensions of MTSs have been studied in
order to elaborate a suitable formal modeling structure to describe (behavioral)
variability [34,45,46,4-6]. This has resulted in a growing interest in modeling
behavioral variability in general, which has led to the application of a number of
formal methods different from MTSs but still with a transition system seman-
tics [42,54, 41,47, 53,22, 29, 10-12, 48, 28|. As a consequence, behavioral analysis
techniques like model checking have become available for the verification of (tem-
poral) logic properties of product families.

VMC accepts the specification of an MTS in process-algebraic terms, together
with an optional set of additional variability constraints. VMC then allows to
perform the following two kinds of behavioral variability analyses on a given
family of products:

1. A logic property expressed in a variability-aware version of ACTL (v-ACTL)
can directly be verified against the MTS modeling the product family behav-
ior, relying on the fact that under certain syntactic conditions the validity
of the property over the MTS guarantees the validity of the same property
for all products of the family.

2. The actual set of valid product behavior can explicitly be generated and the
resulting LTSs can be verified against the same logic property (expressed in
ACTL). This is surely less efficient than direct MTS verification but allows
to precisely identify the set of features whose interactions may cause the
original property to fail over the whole family.

The process algebra used by VMC to specify the MTS modeling of the behav-
ior of a product family is derived from the one of FMC by removing CCS-like
synchronizations and adding to the actions the notion of variability. In fact,
in VMC, communication/synchronization actions can accept an additional pa-
rameter (may) which expresses the property that the action is not necessarily
present in all derivable products of the family. The synchronization semantics
is also updated by taking this parameter into consideration, in the sense that
the result of the synchronization of an optional action with a mandatory action
results in an optional action [3].

In more detail, the structure of the process algebra accepted by VMC is de-
scribed by the following abstract syntax:

System = [ Net|
Net ::= T(expr) | Net / Labels/ Net

where [ Net| denotes again a closed system, T'(expr) is a process instantiation

from the set of process declarations of the form T'(variable) = Term, and Labels
is a list of action names.



The structure of Term definitions is described by the following abstract syntax:

Term == nil | T(expr) | Action.Term | Term + Term | [expr < expr] Term
Action = a(arg) | a(may, arg)

arg = expr | Tvariable

expr = wvariable | integer | expr £ expr

where > is a comparison operator and =+ is an arithmetic operation.

In VMC, the abstract model associated to this variability-oriented process
algebra is an LTS in which edges are labeled with sets of labels, and where the
additional may label is added to the optional edges to specify their possible
absence in some of the family’s products.

The logic v-ACTL is built over a subset of ACTL, but enriched with the
deontic operators AF#, EF#, ()#, and [|# (cf. [18,23] for details). These op-
erators are actually implemented in VMC by a translation into plain ACTL.
For example, the formula (a)# true, which means that there exists a mandatory
evolution from the current state which satisfies action a, can be encoded in plain
ACTL as {(a and not may) true. Similarly, EF# ¢ can be encoded in plain ACTL
as E[true {not may} U ¢] (where ¢ is a subformula).

We are currently experimenting with VMC in the context of the European
FP7-ICT-600708 project QUANTICOL [9] (¢f. http://www.quanticol.eu).
So far the case studies taken into consideration (a bike-sharing system and a cof-
fee machine [13,18]) are relatively small and more effort is needed to evaluate
the approach on problems of a more realistic size.

7 The Overall Structure of the Model Checkers

In the previous sections, we have seen four different specification languages for
the four model checkers that are part of KandISTI. While their computational
models are rather different, ranging from statecharts to various kind of process
algebras, the evolution of the framework over time has led to the development
of a unique common temporal logic and verification engine, which encompasses
and integrates the various specific logics initially associated to the specific tools:
ACTL for FMC, UCTL for UMC, SocL for CMC and v-ACTL for VMC.

This had become feasible by splitting the statespace generation problem
(which depends on the underlying computational model), from the L2TS analy-
sis problem, and by the introduction of an explicit abstraction mechanism which
allows to specify which details of the model should be observable as labels on
the states and transitions of the L2TS.

Another essential characteristic of our family of tools, which has been pre-
served since its origins, is the so-called on-the-fly structure of the model-checking
algorithm: the L2TS corresponding to the model is generated on-demand, fol-
lowing the incremental needs of the logical verification engine. Given a state of
an L2TS, the validity of a logic formula on that state is evaluated by analyzing



the transitions allowed in that state, and by analyzing the validity of the nec-
essary subformulae possibly in some of the necessary next reachable states, all
this recursively.

Indeed, each tool consists of two separate, but interacting, components: a
tool-specific L2TS generator engine and a common logical verification engine.
The L2TS generator engine is again structured in two logical components: a
ground evolutions generator, strictly based on the operational semantics of the
language, and an abstraction mechanism which allows to associate abstract ob-
servable events to system evolutions and abstract atomic propositions to the
system states. The verification engine is the component which actually tries to
evaluate a logic formula following the on-the-fly approach, and is described in
more detail in [14, 35].

The L2TS generator engine maintains an archive of already generated system
states in order to avoid unnecesary duplications in the computation of the pos-
sibile evolutions of states. The logical verification engine maintains an archive
of logical computation fragments; this is not only useful to avoid unnecessary
duplications in the evaluation of subformulae, but also necessary to deal with
the recursion in the evaluation of a formula arising from the presence of loops in
the models. The overall structure of the framework is shown in Fig. 3.

KandISTI
ACTL/UCTL / Socl / vACTL| Web User Interface

logical computation engine

|

cgi seripts, html code
[ vMC model eonfigurations management

on-the-fly ( CMC model configurations management I
logical verifier [ FMC model configurations
abstract L2TS

UMC mode! configurations management .
exporter and minimizer

ground/abstract

on-the-fly 0 L&TS to LTS encoder
Configurations
D8

Computations DB -— LTS generator
external external

graph
. visualizers

ground/abstract
interactive

L2TS explorer and —
proof / counter-example visualizer -, minimized LTS to L2TS
generation extractor and visualizer

Fig. 3. The architecture of the KandISTI framework

— minimizers

All the model checkers of our family are constituted by a command-line
version of the tool written in Ada, which can be easily compiled for the Windows,
Linux, Solaris and Mac OS X platforms. These core executables are wrapped
with CGI scripts handled by a web server, facilitating an html-oriented GUI
and integration with graph drawing tools. It is beyond the scope of this paper
to give detailed descriptions of the model-checking algorithms and architecture
that underly our family of model checkers. Instead, we refer the interested reader
to [24, 40,14, 35] for more details.



8 Discussion and Conclusions

In this paper, we have provided an overview of the KandISTI family of model-
checking tools, currently consisting of FMC, UMC, CMC and VMC. We have
briefly presented their different kind of underlying computational models and
their different contributions to the development of a general purpose action- and
state-based branching-time temporal modal logic (with special purpose dialects
for each of the KandISTT variants).

The differences between the described input models stem from the specific
field of application for which they were developed. In the end, however, each
of them is interpreted over an L2TS, which permits to use the same logical
verification engine for all, even though the specific logic associated to each of the
input models again has certain features that are specifically tailored towards the
application field for which they were developed.

FMC’s input model of automata networks was defined as an attempt to inte-
grate the communication and synchronization mechanisms from CCS, CSP and
LOTOS in a single process-algebra, thus allowing both multi-way synchroniza-
tion and value-passing.

UMC’s input model of UML-like state machines was inspired by the UML
paradigm of dynamic systems seen as sets of evolving and communicating ob-
jects, where objects are class instances. In UML, the set of objects and classes
constituting a system are described by a structure diagram, while the objects’
dynamic behaviour is described by associating a statechart diagram to their
classes. As a result, each system object behaves like a state machine, with a set
of local attributes, an event pool collecting the events to be processed, and the
currently active states of the state diagram.

CMC’s input model COWS was influenced by WS-BPEL principles for Web
service orchestration, thus supporting the correlation of different actions and the
management of long-running transactions. The pure process-algebraic specifica-
tion in COWS terms needs to be accompanied with a set of abstractions that
define the action semantics and state predicates.

VMC’s input model of process-algebraic interpretations of MTSs, possibly
enriched with variability constraints known from SPLE, was developed to study
the feasibility of using MTSs to describe (and consequently analyze) in a compact
way the possible operational behaviour of products from a product family.

The KandISTT model checkers are continuously being improved. This ranges
from more efficient generation of the computational models to a more user-
friendly web interface. An overall goal for the future is to experiment with in-
dustrial case studies of increasing size. In order to fulfill this aim, richer input
models are needed, in particular allowing more advanced data types (e.g. tuples,
sets, lists, etc., currently only supported by UMC), thus requiring more complex
computational models. The addition of some kind of global data space shared
among the concurrent objects/agents might moreover be a useful extension to
more easily support also the underlying models of other verification frameworks,
like Spin or SMV.



Future work that is specifically related to VMC concerns studying the specific
fragment of v-ACTL that is guaranteed to be preserved by product refinement.
This would allow built-in user notification in all cases in which a model-checking
result is guaranteed to be preserved from family to product level.

As already hinted at in Section 4, the main lesson learned by the use of our
framework is the usefulness of an easy-to-use formal framework for the early
analysis of initial system designs, i.e. the usefulness of formal methods in the
earliest stages of system design, when the first architectural/algorithmic ideas
are being prototyped and debugged. This is a very different application of formal
methods with respect to their classical use in the final validation/verification
steps, when the system is already supposed to be (hopefully) free of errors. In
the former case, it is important to be able to rely on formal frameworks which
simplify and make the task of modeling and debugging a system (which with a
high probability is expected to contain errors) easy, while in the latter case the
emphasis can be put on the power to deal with extremely large state spaces in
a very efficient way.

We believe that KandISTI can successfully match the needs of agile for-
mal designers (which constitute its natural set of target users) while still not
disregarding the issues introduced by the problems of the possible state space
explosions.

Acknowledgements

Major progress on KandISTI was made during almost a decade of EU projects
under the inspiring coordination of Martin Wirsing. We would like to take this
opportunity to thank him for the work we did together.

The three paintings by Wassily Kandinsky that are part of the collection of
the Stddtische Galerie im Lenbachhaus in Munich, Germany, and whose images
are used here for non-commercial strictly illustrative purposes, have entered the
public domain in the EU on January 1st, 2015 (70 years post mortem auctoris,
imposed by Article 1 of EU Directive 93/98/EEC as repealed and replaced by
EU Directive 2006/116/EC).

References

1. J. Abreu, F. Mazzanti, J. L. Fiadeiro, and S. Gnesi. A Model-Checking Approach
for Service Component Architectures. In FMOODS’09, volume 5522 of LNCS,
pages 219-224. Springer, 2009.

2. L. F. Andrade et al. AGILE: Software Architectures for Mobility. In WADT,
volume 2755 of LNCS, pages 1-33. Springer, 2003.

3. A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. 20 Years of
Modal and Mixed Specifications. Bulletin of the EATCS, 95:94-129, 2008.

4. P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. A Model-Checking Tool for
Families of Services. In FMOODS, volume 6722 of LNCS, pages 44-58. Springer,
2011.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. Formal Description of

Variability in Product Families. In SPLC, pages 130-139. IEEE, 2011.

P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. A Compositional Framework
to Derive Product Line Behavioural Descriptions. In [49], pages 146-161.

C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

M. H. ter Beek. Sensoria Results Applied to the Case Studies. In [57], pages
655-677.

M. H. ter Beek, L. Bortolussi, V. Ciancia, S. Gnesi, J. Hillston, D. Latella, and
M. Massink. A Quantitative Approach to the Design and Analysis of Collective
Adaptive Systems for Smart Cities. ERCIM News: Smart Cities, 98:32, July 2014.
M. H. ter Beek and E. P. de Vink. Software Product Line Analysis with mCRL2.
In [38], pages 78-85.

M. H. ter Beek and E. P. de Vink. Towards Modular Verification of Software
Product Lines with mCRL2. In [50], pages 368-385.

M. H. ter Beek and E. P. de Vink. Using mCRL2 for the analysis of software
product lines. In FormaliSE, pages 31-37. IEEE, 2014.

M. H. ter Beek, A. Fantechi, and S. Gnesi. Challenges in Modelling and Analyzing
Quantitative Aspects of Bike-Sharing Systems. In [50], pages 351-367.

M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. A state/event-based
model-checking approach for the analysis of abstract system properties. Science of
Computer Programming, 76(2):119-135, 2011.

M. H. ter Beek, S. Gnesi, N. Koch, and F. Mazzanti. Formal verification of an
automotive scenario in service-oriented computing. In ICSE, pages 613-622. ACM,
2008.

M. H. ter Beek, S. Gnesi, and F. Mazzanti. VMC: A Tool for the Analysis of
Variability in Software Product Lines. ERCIM News: Mobile Computing, 93:50—
51, January 2013.

M. H. ter Beek, S. Gnesi, and F. Mazzanti. KandISTI: A Family of Model Checkers
for the Analysis of Software Designs. FRCIM News: Software Quality, 99:31-32,
October 2014.

M. H. ter Beek, S. Gnesi, and F. Mazzanti. Model Checking Value-Passing Modal
Specifications. In PSI; LNCS. Springer, 2014. To appear.

M. H. ter Beek, S. Gnesi, F. Mazzanti, and C. Moiso. Formal Modelling and
Verification of an Asynchronous Extension of SOAP. In ECOWS, pages 287-296.
IEEE, 2006.

M. H. ter Beek, S. Gnesi, C. Montangero, and L. Semini. Detecting policy conflicts
by model checking UML state machines. In ICFI, pages 59-74. I0S Press, 2009.
M. H. ter Beek, A. Lapadula, M. Loreti, and C. Palasciano. Analysing Robot
Movement Using the Sensoria Methods. In [57], pages 678-697.

M. H. ter Beek, A. Lluch-Lafuente, and M. Petrocchi. Combining declarative and
procedural views in the specification and analysis of product families. In SPLC;
volume 2, pages 10-17. ACM, 2013.

M. H. ter Beek and F. Mazzanti. VMC: Recent Advances and Challenges Ahead.
In [38], pages 70-77.

M. H. ter Beek, F. Mazzanti, and S. Gnesi. CMC-UMC: a framework for the
verification of abstract service-oriented properties. In SAC, pages 2111-2117. ACM,
2009.

M. H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A Tool for Product Variability
Analysis. In FM, volume 7436 of LNCS, pages 450-454. Springer, 2012.

D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature
Models 20 Years Later: a Literature Review. Information Systems, 35(6), 2010.



27.

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Formal se-
mantics, modular specification, and symbolic verification of product-line behaviour.
Science of Computer Programming, 80(B):416-439, 2014.

A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin.
Featured Transition Systems: Foundations for Verifying Variability-Intensive Sys-
tems and Their Application to LTL Model Checking. IEEE Transactions on Soft-
ware Engineering, 39(8):1069-1089, 2013.

P. C. Clements and L. M. Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2002.

R. De Nicola, editor. ESOP, volume 4421 of LNCS. Springer, 2007.

R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Tran-
sition Systems. In Semantics of Systems of Concurrent Processes, volume 469 of
LNCS, pages 407-419. Springer, 1990.

R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation.
Journal of the ACM, 42(2):458-487, 1995.

A. Fantechi and S. Gnesi. A behavioural model for product families. In ESEC/FSE,
pages 521-524. ACM, 2007.

A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A
logical verification methodology for service-oriented computing. ACM Transactions
on Software Engineering and Methodology, 21(3):16, 2012.

C. Fidge. A Comparative Introduction to CSP, CCS and LOTOS. Technical Report
93-24, Software Verification Research Centre, University of Queensland, January
1994.

D. Fischbein, S. Uchitel, and V. A. Braberman. A foundation for behavioural
conformance in software product line architectures. In ROSATEA, pages 39-48.
ACM, 2006.

S. Gnesi, A. Fantechi, M. H. ter Beek, G. Botterweck, and M. Becker, editors. Pro-
ceedings of the 18th International Software Product Line Conference (SPLC’14),
volume 2. ACM, 2014.

S. Gnesi and F. Mazzanti. On the Fly Verification of Networks of Automata. In
PDPTA, pages 1040-1046. CSREA Press, 1999.

S. Gnesi and F. Mazzanti. An Abstract, on the Fly Framework for the Verification
of Service-Oriented Systems. In [57], pages 390-407.

S. Gnesi and M. Petrocchi. Towards an executable algebra for product lines. In
SPLC, volume 2, pages 66—-73. ACM, 2012.

A. Gruler, M. Leucker, and K. Scheidemann. Modeling and Model Checking Soft-
ware Product Lines. In FMOODS, volume 5051 of LNCS, pages 113-131. Springer,
2008.

. Haugen and K. Stglen. STAIRS: Steps to Analyze Interactions with Refinement
Semantics. In UML, volume 2863 of LNCS, pages 388-402. Springer, 2003.

A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web
Services. In [31], pages 33-47.

K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O Automata for Interface
and Product Line Theories. In [31], pages 64-79.

K. Lauenroth, K. Pohl, and S. Téhning. Model Checking of Domain Artifacts in
Product Line Engineering. In ASE, pages 269-280. IEEE, 2009.

M. Leucker and D. Thoma. A Formal Approach to Software Product Families. In
[49], pages 131-145.

M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck. DeltaCCS: A Core Calculus
for Behavioral Change. In [50], pages 320-335.



49. T. Margaria and B. Steffen, editors. ISoLA, volume 7609 of LNCS. Springer, 2012.

50. T. Margaria and B. Steffen, editors. ISoLA, volume 8802 of LNCS. Springer, 2014.

51. F. Mazzanti, G. O. Spagnolo, S. Della Longa, and A. Ferrari. Deadlock Avoidance
in Train Scheduling: a Model Checking Approach. In FMICS, volume 8718 of
LNCS, pages 109-123. Springer, 2014.

52. F. Mazzanti, G. O. Spagnolo, and A. Ferrari. Designing a Deadlock-Free Train
Scheduler: A Model Checking Approach. In NFM, volume 8430 of LNCS, pages
264-269. Springer, 2014.

53. J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane. Compositional Verifi-
cation of Software Product Lines. In IFM, volume 7940 of LNCS, pages 109-123.
Springer, 2013.

54. R. Muschevici, J. Proenga, and D. Clarke. Modular Modelling of Software Product
Lines with Feature Nets. In SEFM, volume 7041 of LNCS, pages 318-333. Springer,
2011.

55. K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

56. R. Pugliese and F. Tiezzi. A Calculus for Orchestration of Web Services. Journal
of Applied Logic, 10(1):2-31, 2012.

57. M. Wirsing and M. M. Holzl, editors. Rigorous Software Engineering for Service-
Oriented Systems: Results of the SENSORIA Project on Software Engineering for
Service-Oriented Computing, volume 6582 of LNCS. Springer, 2011.

58. T. Ziadi and J.-M. Jézéquel. Software Product Line Engineering with the UML:
Deriving Products. In Software Product Lines: Research Issues in Engineering and
Management, pages 557—-588. Springer, 2006.



