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ABSTRACT: A fundamental requirement to predict the native
conformation, address questions of sequence design and
optimization, and gain insights into the folding mechanisms of
proteins lies in the definition of an unbiased reaction coordinate
that reports on the folding state without the need to compare it to
reference values, which might be unavailable for new (designed)
sequences. Here, we introduce such a reaction coordinate, which
does not depend on previous structural knowledge of the native
state but relies solely on the energy partition within the protein:
the spectral gap of the pair nonbonded energy matrix (ENergy
Gap, ENG). This quantity can be simply calculated along unbiased
MD trajectories. We show that upon folding the gap increases
significantly, while its fluctuations are reduced to a minimum. This
is consistently observed for a diverse set of systems and trajectories. Our approach allows one to promptly identify residues that
belong to the folding core as well as residues involved in non-native contacts that need to be disrupted to guide polypeptides to the
folded state. The energy gap and fluctuations criteria are then used to develop an automatic detection system which allows us to
extract and analyze folding transitions from a generic MD trajectory. We speculate that our method can be used to detect
conformational ensembles in dynamic and intrinsically disordered proteins, revealing potential preorganization for binding.

■ INTRODUCTION
The prediction of the native conformation of a protein of known
sequence is one of the most fascinating problems in molecular
biophysics.1−4 In recent years, the evolution of simulation
techniques and computing hardware and the increase in the
sophistication and resolution of experimental methods have
determined a substantial convergence between the mechanistic
details accessible to atomic-level simulations and those
obtainable from experiments.5−9 In this framework, reversible
folding of globular proteins of dimensions up to 100 residues has
come within reach of Molecular Dynamics (MD) simulations,
providing direct access to thermodynamic and kinetic quantities
such as folding rates, free energies, folding enthalpies, heat
capacities, and temperature-jump relaxation profiles.10,11 In
general, all MD studies rely on the previous knowledge of the
native structure of the target protein to define the folded or
unfolded ensembles and the kinetics involved in the transitions
between them.
Despite significant advances and success, this still leaves

important questions open. First, in the absence of information
on the 3D organization of the native state, can we define a simple
and reliable reaction coordinate that permits one to label a
certain conformational ensemble as the most likely native one?
Second, considering folding a particular type of conformational
transition, can we extend the use of this simple descriptor to
identifying functionally relevant conformational changes,

frequently occupied conformations, misfolded states? Can we
obtain a reliable residue-based metrics to highlight the role of
specific sites in determining such phenomena and then use this
information to guide the design of new sequences of artificial
proteins?
Ideally, one would need to develop a blind, automated

method able to deal with the high numbers of structures visited
during a folding simulation while at the same time capable to
classify single snapshots as folded or unfolded. Recently,
machine-learning approaches have proved able to predict the
fold of a protein by relying on the knowledge of sequence
alignments and the proximities between residue pairs in other
proteins of known structures.12−14 On the other hand,
physicochemical approaches have combined simulations with
structural and kinetic analyses to build, e.g., Markov state models
able to reproduce the main traits of folding and conformational
dynamics.15−21
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Overall, a generalized method to analyze folding transitions
on longMD trajectories is required to reduce the dimensionality
of the complex conformational space to its most essential (and
thus treatable) traits by defining an ab initio reaction coordinate
able to monitor the folding reaction and to highlight important
transitions on this reduced dimension landscape.

Furthermore, an ideal reaction coordinate should give a
distinctive signal characteristic of the folded state, even in the
absence of previous structural information on the latter. In this
context, the descriptor could be used both for the prediction of
the native states of new sequences and to identify potential
unfolded/misfolded states.

Figure 1. Summary of the folding detection method illustrated for a trajectory of protein G. (A) (Top) Timeline of the running average of ENG(t)
evaluated along the trajectory: Identified threshold for ENG (see main text) is depicted in blue. (Bottom) Timeline of the running average of the
corresponding SDENG(t) evaluated along the trajectory with threshold in blue. Detected transitions for which ENG lies above its threshold while
SDENG lies below its threshold are highlighted in red in both plots. (B) (Top) For the unfolding−refolding transitions identified as U1 in A, a close up
of the timeline of energy eigenvector components is plotted for each residue. (Bottom) Timeline of the energy eigenvector components during the
unfolding transition identified as U6 in A. (C) Energy eigenvector of the native state of protein G is shown for comparison.

Figure 2. Trp cage folding analysis: (A) energy gap trajectory 3, (B) running standard deviation of energy gap trajectory 3, (C) RMSD to native
structure trajectory 3, and (D) energy gap trajectory 6. Dashed lines indicate the identified transitions. (E) Profiles of the folded energy eigenvector and
of the lambda−energy eigenvector correlation for each transition. (F) Folded state identified in trajectory 3. (G)Misfolded state identified in trajectory
6. Contact between Gln 5 and Asp9 is lacking the native-like backbone interaction.
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To progress along this route, here we build on the hypothesis
that the appropriate folding reaction coordinate resides in the
spectral gap of the (simplified) internal interaction energy
matrix associated with a certain structure/sequence combina-
tion, which we simply call ENergy Gap (ENG). We extract
structures from MD trajectories of protein folding and analyze
their residue−residue pair interactions by building, for a protein
of N residues, the N × Nmatrix (M) of nonbonded interactions
(see Materials and Methods). Through eigenvalue decom-
position we have previously shown that theN components of the
eigenvector associated with the lowest eigenvalue identify
residue pairs behaving as strong, stabilizing interaction centers.
Furthermore, if the separation between the lowest eigenvalue
and the successive one (spectral gap) is larger than the average
separation among all eigenvalues, we hypothesize that the
corresponding state can be defined as one of higher stability, a
property distinctive of native states. This approach is called the
energy decomposition method.22−26

Here, we select the energy matrix spectral gap ENG as the
(time-dependent) parameter that captures the energetic
determinants of the protein necessary to distinguish the native
state from alternative ones. We apply this concept to analyze a
series of micro- to millisecond long folding−unfolding
trajectories of proteins of different lengths and secondary/
tertiary structure contents. We show that structural basins of
native states are characterized by high-energy gaps (ENG)
elevated from the minimum, stable, and with low fluctuations in
time (see Figures 1, 2, 4, and 5). On these bases, we develop an
automated method to identify folding transitions with no prior
knowledge of the native state.
We suggest that our ability to address the folding process at

atomistic resolution with a simple physics-based descriptor can
be important for both fundamental and practical reasons. From
the fundamental point of view, being able to characterize an
ensemble of conformations obtained from MD simulations as
native, independently of any previous knowledge of reference
structures, can further our understanding of the relationship
between protein sequence, structure, and self-organization
mechanisms. From the practical point of view, by increasing
our understanding of the molecular-level origins of 3D structural
organization, we will be able to better engineer novel sequences
with characteristics suitable for specific applications.

■ THEORETICAL BACKGROUND
In this section, we aim to introduce the principal traits of the
native state identification strategy based on the energy
decomposition method. The specific technical details are
reported in Materials and Methods.
The energy decomposition method (EDM) is a pair

decomposition scheme that aims to illuminate how the
stabilization energy is partitioned within the protein.22−25 The
basic assumption of the method is that the stabilization energy is
not evenly distributed within a protein structure; rather, specific
patterns of interacting amino acids will concentrate most of the
energy required to favor a certain 3D arrangement. These
patterns can be exposed by studying the pair-interaction
matrices that recapitulate the nonbonded interaction energies
of proteins in MD simulations. Through eigenvalue decom-
position of the matrices and analysis of their spectra, we can
learn properties of the states visited, such as stabilization hots
pots, effect of mutations, and perturbation of the native
state.26−33 Here, we extend the approach to the analysis of
states alternative to the folded one to include misfolded and

unfolded conformations of a diverse set of proteins. We
therefore focus on the pair interaction energy as well as its
eigenvalue decomposition along extensive MD trajectories.
A relevant quantity in this approach is the energy gap, defined

as

λ
λ

=
Δ
⟨Δ ⟩

−t
t

t
ENG( )

( )
( )

1 2

where the pair energy matrix is calculated at a given time step t;
therefore, its eigenvalue decomposition is time dependent. We
start from the observation that in simplified models of proteins
the gap between the twomost negative eigenvaluesΔλ1−2(t) at a
given time t is significantly larger than the average gap in the
native state than in alternative states ⟨Δλ1−2⟩, a distinctive
property of proteins compared to heteropolymers.34 We extend
this observation to all-atom models by asking whether in a
dynamic structural ensemble, where the protein explores
different alternative conformational states, the stability gap
might increase as the protein resides in or approaches the native
state. In fact, we observe that structural basins of native states are
associated with high spectral energy gaps (ENG), forming
plateaus that are stable in time, and whose values are
characterized by low standard deviations in energy gaps
(SDENG) compared to alternative, unstable states. The basics
of the method are illustrated in Figure 1.
On the basis of these observations, we develop a simple,

direct, and generally applicable method to identify folding
transitions with no prior knowledge of the native state. The
method is based on analysis of the time evolution of the spectral
energy gap (ENG) and its fluctuations (SDENG) from long
folding equilibrium MD simulations (spanning time scales from
microseconds to milliseconds) to identify the areas of maximal
gap and minimal fluctuations in the lambda criterion as a
distinctive marker of the native state and folding−unfolding
transitions.
The detection system we present here is general as it does not

depend on the system. Moreover, it is fully automated. Given a
MD trajectory and without any knowledge of the native
structure, ENG(t) and SDENG(t) are calculated along the
trajectory evolution and threshold values for both time series are
initialized at the maximum ENG/minimum SDENG value,
respectively. Then by moving the thresholds and counting the
populations above/below them, optimal threshold values to
detect the transitions are found (based on the sigmoidal
behavior of the populations) (see Figure 1 and Supporting
Information Figure S1). After automatically defining the
thresholds, the algorithm yields a list of possible folding
transition intervals that can be further analyzed. Details are
outlined in Materials and Methods.

Analysis of the Transitions and Identification of
Residues Critical for Folding. Calculating the energy
partitioning within a protein structure along a MD trajectory
not only permits one to identify folding transitions but also to
directly monitor energy contributions at a single-residue level
and highlight interactions relevant for folding as well as transient
ones without any prior knowledge of the folded state (Figure
1B), namely, once the folding−unfolding transitions have been
identified by calculating the energy gap (ENG) and its
fluctuations (SDENG), the main essential interactions driving
them can be identified by focusing on theN-dimensional energy
eigenvector associated with the lowest eigenvalue (Figure 1C).
The energy eigenvector22,35 recapitulates the contribution of
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each residue in a protein sequence to the stability of a
conformational state with peaks representing the amino acids
mostly involved in stabilizing interactions. If we focus on the
time evolution of the peaks along the trajectories and specifically
during the conformational transitions, we can highlight those
residues whose energy component changes the most upon
folding, either by increasing or by decreasing their contribution
to the stabilization of the native state. We hypothesize that the
former can be associated with the native contacts driving folding
(folding core). The latter, on the other hand, may be non-native
contacts that need to be disrupted for the protein to reach the
“high-energy gap” (i.e., native) state.
To identify the two subsets, we introduce a correlation

measure based on the Pearson coefficient (p) between two time
series, collected around an identified transition, namely, the time
series of ENG and the time series of each energy eigenvector
component (see Materials and Methods). For every residue we
calculate the metric

= −CDi p2(1 )

This parameter expresses a similarity measure between the two
time series. We suggest that the residues that drive folding−
unfolding can be identified by the high correlation (minimum
CDi value) between their energy component and the ENG.
Non-native contacts, on the other hand, decrease their stability
contribution upon folding; hence, they are likely to be less
correlated and lead to a high d value. In this framework, the
regions of maximal correlation associated with minimal values of
CDi (minimum distance) predict the folding core. The regions
of maximal anticorrelation (maximum distance) correspond to
residues involved in non-native contacts that need to be disrupted
to allow the protein to proceed to the folded ensemble. Such
residues are frustrated in the native state.

■ RESULTS

Applications to Protein Simulations. The strategy
described in the previous paragraphs is applied to the
equilibrium atomistic simulations of different protein systems,
varying in sequence length, secondary structure content, and
tertiary organization. The extent of the simulations ranges from
microseconds to milliseconds.
Here, we first discuss two peptides, Trp-Cage36 and

Chignolin,37 which represent minimal models that had been
experimentally used to gain insight into folding mechanisms of
bigger proteins. Next, we set out to use our approach to identify
and characterize the native states of a small protein with a mixed
alpha−beta fold, BBA,38 and of larger proteins, including the all-
α-helical A3D protein,39 the all-beta WW domain,40 and finally
the mixed alpha−beta Protein G.41

Trp Cage. Trp cage (NLYIQWLKDG GPSSGRPPPS) is a
20-residue polypeptide which was shown by NMR and other
biophysical techniques to fold into a short α-helix from residues
2 to 8, a 310-helix from residues 11−14, and a C-terminal poly
proline II helix to pack against the central tryptophan.36 We
simulated its folding starting from a fully extended conformation
using multiple independent MD replicas (see Materials and
Methods for details). Figure 2A reports the time-dependent
evolution of the RMSD of structures visited during one
representative trajectory with respect to the native structure.
In general, after visiting structures with high RMSD, the peptide
collapses to the folded state, which is then populated for most of
the time.
It is immediately seen that both the energy gap (ENG) and

the standard deviations of the energy gap (SDENG) mirror the
evolution of RMSD (Figure 2B and 2C). In the folded states
(low RMSD), the protein is characterized by a larger gap
between the first (most negative) eigenvalue and all others

Figure 3. Chignolin folding analysis: (A) energy gap trajectory 6, (B) running standard deviation of energy gap trajectory 6, (C) RMSD to native
structure trajectory 6, and (D) energy gap trajectory 3. Dashed lines indicate the identified transitions. (E) Profiles of the folded energy eigenvector and
of the lambda−energy eigenvector correlation for each transition. (F−H) Snapshots of folded and unfolded structures extracted from the trajectories.
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compared to alternative states together with minimal fluctua-
tions for that state.
If the native structure were unknown, the classification of

conformations using the ENG and SDENG criteria would have
efficiently permitted to identify an optimal guess for the folded
state.
Independent replicas (Figure 2, simulations labeled 1 and 6)

show collapses to other metastable non-native states charac-
terized by high-energy gap ENG values. Importantly, analysis of
ENG evolution shows that the gap is generally lower for these
non-native cases compared to those where correct folding is
observed (see Figure 2A vs Figure 2D).
The ENG−eigenvector correlation distance profiles CDi

(calculated for each trajectory) are calculated to detect residues
contributing to or opposing the transition. Here, they further
highlight the differences between folding and misfolding
trajectories. In the case of the former, it appears that the
contribution of single residues to stabilize the native state is
consistently replicated in different trajectories (trajectories 3, 4,
and 7 in Figure 2E). They show residues Gln5 and Asp9 as the
main drivers of folding to the native state (see Figure 2F). In the
case of the latter (such as trajectory 6), the correlation distance
profiles highlight different sets of residues as drivers of the
transitions to the non-native structures and, in particular, Asp9
interacting with Gly15 and Arg16 in different simulations. This
suggests that trajectory 6 visits an intermediate that is also
observed in simulations of Trp Cage carried out by others42 and
that the ENG is able to detect such intermediate.
Chignolin. Chignolin (GYDPETGTWG) is a decapeptide

designed to fold into a beta-hairpin, as shown by CD
spectroscopy and NMR analysis at 300 K.37 The same
simulation protocol as used for Trp cage was used to
characterize the folding of Chignolin. Application of the ENG

and SDENG criteria correctly identifies the folded states along
the trajectories (Figure 3A−C).
Analysis of the profiles of correlation CDi between ENG and

the energy eigenvector for each folding transition and the
comparison with the profile of the energy eigenvector of the
native structure highlights that a subset of residues is
consistently relevant to drive folding to the experimentally
determined structure (Figure 3A and 3D).
In this picture, the initial bending of the loop around Pro is

stabilized by the interaction between Asp3 and Thr6, which then
promotes folding via a zip-up mechanism. These two residues
appear as the maximally correlated spots in the CDi profile for
the majority of the transitions. In a short beta-hairpin, the
organization of turn interactions is conceivably the most
determinant factor for preorganizing the rest of the sequence
in the strands to establish the ordered interactions between the
beta sheets. Interestingly, Figure 3G shows an alternative
mechanism observed in trajectory 3 (Figure 3D and 3E) and
involving residues 8, 9, and 10 as folding drivers and 3 and 6 as
anticorrelated residues, forming non-native contacts, in contrast
with the other cases. This is due to a misfolding event preceding
the proper folding transition at 0.1 μs, forming a helix turn
involving 3 and 6, which needs to be disrupted to reach the
native state (Figure 3G and 3H).
The preliminary investigations carried out on model systems

support the viability of our strategy. It is tempting to state that
the results described above are particularly relevant as small
peptide systems in general tend to populate numerous
alternative conformations whose (real) energy differences are
small and difficult to quantitate using normal force-field
energies. Yet, the criteria we introduced as reaction coordinates
to detect folding-related conformational transitions prove able
to efficiently identify native states.

Figure 4. Folding−unfolding analysis of BBA: (A) RMSD to native structure, (B) energy gap, and (C) running standard deviation of energy gap; (D)
average correlation distance between the energy eigenvector of each residue and the energy gap parameter, calculated over the ensemble of observed
transitions. (E) Native state structure highlighting residues that have a high correlation (van der Waals and blue sticks) or a high anticorrelation (red
sticks and cartoon) with the energy gap during folding−unfolding transitions.
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On this basis, we next moved on to extend our approach to
long time scale simulations of bigger realistic protein systems.
The trajectories were obtained from D. E. Shaw research and
refer to the systems described in ref 11.
BBA. BBA is a short sequence designed to mimic the second

zinc finger of Zif268 and autonomously fold into a ββα structure

without metal binding. NMR data show that the sequence
reported here, 1FME.pdb, populates the desired structure, albeit
with minimal stability.38 BBA represents thus a challenging
system for our approach. The evolution of the RMSD to the
native structure shows that a large fraction of unfolded
conformations is present and folding events are sparse and

Figure 5. Folding−unfolding analysis of A3D: (A) RMSD to the native structure, (B) energy gap, and (C) running standard deviation of the energy
gap; (D) average correlation distance between the energy eigenvector of each residue and the energy gap parameter, calculated over the ensemble of
observed transitions. (E) Native state structure highlighting residues that have a high correlation (van der Waals and blue sticks) or a high
anticorrelation (red sticks and cartoon) with the energy gap during folding−unfolding transitions.

Figure 6. Folding−unfolding analysis ofWWdomain: (A) RMSD to native structure, (B) energy gap, and (C) running standard deviation of the energy
gap; (D) average correlation distance between the energy eigenvector of each residue and the energy gap parameter, calculated over the ensemble of
observed transitions. (E) Native state structure highlighting residues that have a high correlation (van der Waals and blue sticks) or a high
anticorrelation (red sticks and cartoon) with the energy gap during folding−unfolding transitions.
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short lived in time (Figure 4A). The ENG parameter captures
themarginal stability of the system, showing relatively small gaps
compared to other systems. Interestingly, the SDENG profile
shows minimal fluctuations in correspondence to the minimum
RMSD regions (Figure 4B and 4C).
Distance correlation CDi identifies the region between 16 and

20, in the α helix, as the folding core (Figure 4D). 1H NMR
experiments indicate that the α-helix is clearly defined in the
structure bundle, supporting the hypothesis that this region
concentrates themaximal amount of stabilization energy. Amino
acids around position 7 appear to be anticorrelated with lambda:
experimental optimization of the structure indeed showed that
mutations at this region significantly impact on the fold stability,
modulating formation of the type I′ turn necessary to favor the
correct organization of the beta-hairpin.38

A3D. Alpha3D is a designed, fast folding, 3-helix bundle
protein. Folding events can be proficiently identified applying
the integrated ENG and SDENG criteria (Figure 5 A−C).39
Investigation of the distance correlation parameter indicates that
the folding core entails mainly the regions around residues 40
and 60. These regions include hydrophilic/charged amino acids
(Ser40, Glu41, Arg64, Asp65, and Glu66), whose introduction
has proven beneficial to favor the folding to the three-helix
bundle geometry, and two hydrophobic residues (Leu42 and
Leu67), whose burying from solvent can stabilize the helical
structures. Interestingly, the graph shows that most of the
residues in the sequence play a limited role in the stabilization of
the native fold. Their interactions are thus mostly local,
consistent with the observation by Lindorff-Larsen et al. that
local elements of secondary structures form early on the folding
pathway.11 The lack of strong interactions in the core of A3D is
mirrored by the dynamic and variable packing observed in the
folding transition state ensemble observed via experiments and
calculations.43 The correlation distance analysis reported in

Figure 5D, indicating a high fraction of residues that are
anticorrelated to the spectral gap increase, is consistent with the
high level of frustration reported for this protein by Clementi
and co-workers.44

WW Domain. WW domains are three-stranded beta-sheet
domains that are widely diffuse as interaction motifs in
proteins.40 The time evolution of the RMSD from the reference
native structure shows multiple reversible folding events, which
are aptly captured by both the ENG and the SDENG analyses
(Figure 6A−C). Correlation CDi profile shows 4 well-defined
minima, scattered all along the sequence. The residues that most
strongly correlate to the increase in the energy gap and
stabilization of the folded state are those defining the central
hydrophobic core (Figure 6D). The diffuse participation to the
increase of the energy gap favoring the native state is consistent
with the low levels of frustration (also compared to A3D)
reported by Clementi and co-workers. Residue 30 is less
correlated, suggesting that it might have significant interactions
also in the unfolded state and be less critical for folding.44,45

Protein G. Finally, we apply our strategy to the study of
Protein G,41 a mixed alpha−beta protein, whose folding has
been widely investigated by mutational, biophysical, and
structural approaches. Figure 7A−C shows a striking correlation
between the evolution of the protein RMSD and the time
evolution of the ENG and SDENG reaction coordinates.
Specifically, in terms of energy gap, a strong separation between
energy states appears in correspondence of the folded states,
paralleled by very low fluctuations.
Analysis of the correlation distances in correspondence of the

various transition events sampled during the simulations
highlights which residues are key to stabilize native (native-
like) conformations on the folding funnel. The amino acids
determining folding to the correct native structure are mostly
located in the N-terminal stretch at positions 1−6 and in the C-

Figure 7. Folding−unfolding analysis of protein G: (A) RMSD to native structure, (B) energy gap, and (C) running standard deviation of energy gap;
(D) average correlation distance between the energy eigenvector of each residue and the energy gap parameter, calculated over the ensemble of
observed transitions. (E) Native state structure highlighting residues that have a high correlation (van der Waals and atom-named colored sticks) or a
high anticorrelation (red sticks and cartoon) with the energy gap during folding−unfolding transitions.
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terminal region at positions 42−52. Experimental studies have
shown that intramolecular interactions involving the second
beta hairpin give a strong stabilizing contribution of electrostatic
origin to the folded state. Packing of the second beta hairpin
against the N-terminal sequence determines further stabilization
of the native state,46 Figure 7D and 7E.
Consistent with these observations, beta-hairpin 2 has been

previously observed to be able to fold in isolation, representing
an independent folding unit (foldon). In contrast, the distance
correlation indicates that the α-helical region, turn 1, and the
first beta hairpin appear to be anticorrelated with the energetic
descriptors, indicating that they may be involved in interactions
that oppose correct folding. Such interactions need to be
disrupted and reshaped to evolve toward the native state.
Experimentally, the correct formation of turn 1 has been defined
as one of the requirements for folding to the native state.46

■ DISCUSSION
Proteins and enzymes oversee all mechanical and chemical
processes within cells. In recent years, the emergence of
advanced genome manipulation techniques47 and the advent
of directed evolution methods have spurred the development of
new proteins with unprecedented properties as materials or
enzymes that are capable of carrying out non-natural reactions in
mild conditions, providing attractive alternatives to the use of
solid-phase or homogeneous chemical catalysts.48−51

Functions are determined by the proteins’ three-dimensional
shapes and conformational dynamics, which are ultimately
defined by amino acid sequences. The diversity of protein
structures revealed by crystallography, NMR, and more recently
CryoEM has made the definition of simple rules connecting
sequence to structure a highly challenging task. Computational
approaches of very different nature have been applied to solve
the folding problem, ranging from a statistics-based method, to
sequence-coevolutionary analysis, to knowledge-based poten-
tials. Very recently, breakthrough results have been obtained by
applying deep-learning techniques.12 In this context, the
improvements in force-field quality and the progress in software
and hardware for molecular dynamics simulations have made it
possible to study the process of protein folding on real systems in
realistic time scales at atomic resolution.
In this paper, we have built on the latter observation to

develop a simple, physics-based approach that permits one to
detect the native states of proteins. The approach we have
presented requires no previous knowledge of the 3D structure of
the protein under exam or of proteins with similar amino acid
sequences that can be used as starting points for modeling.
By analyzing the spectral energy gap characteristics of the

various structures visited by a sequence in its dynamic evolution
between folded and unfolded states, we observe that native
basins are associated with high spectral energy gaps (ENG)
coupled to low values of standard deviations (SDENG) of
energy fluctuations. This represents a consistently conserved
property of native states compared to alternative ones. In the
paper, this criterion was verified for a number of peptides and
proteins of variable length and secondary structure content. If
the method were to be applied to systems of unknown 3D
structure, the candidate structures with the highest probability of
representing the native state would naturally be those complying
with the two above-mentioned criteria. The problem would be
then reduced to how extensive the MD simulation would be and
to the quality of the force field. As force fields, simulation
software, and hardware (GPUs, CPUs, ARM architectures...) are

constantly improving, it is tempting to suggest that the problem
of exploring conformational landscapes will be largely alleviated.
The increase in the energy gap ENG is reminiscent of the

notion of connectivity in graph theory. Indeed, the ENG defined
here, calculated from the decomposition of the pair-interaction
energy matrix, is conceptually similar to the spectral gap of the
Kirchoff or Laplacian matrix calculated from the contact matrix
of the protein (see the calculation method and data in the
Supporting Information and in Figure S2). In the eigenvalue
decomposition of the Kirchoff matrix, while the first eigenvalue
is always zero, the second one reports on the connectivity of the
graph. The corresponding eigenvector can be used to separate
connected subgraphs: in other words, the components with
equal signs define subgraphs, or cores, that are highly internally
connected and mutually less connected with other subgraphs.52

In our work, we observe that upon folding the spectral gap is
correlated to the ENG energy gap and signals a sudden increase
of connectivity (see Supporting Information). In light of the
similar structure of the Kirchoff matrix and of the pair energy
matrix, it is fair to hypothesize that residues involved in high-
energy interactions stabilizing the native state are also
responsible for increasing the connectivity53 and the establish-
ment of patterns of higher connectivity is related to formation of
stable subdomains.
In general, protein folding is an ensemble of conformational

transitions.2 This observation opens up several possible new
avenues for future development. On one hand, one could in
principle apply the ENG and SDENG criteria to the character-
ization of complex functionally oriented structural changes in
large/multidomain proteins involving local unfolding events and
metastable states. On the other hand, once the folding core and
folding mechanisms have been identified for a globular protein,
knowledge of which residues are correlated or anticorrelated to
folding can be used to target the evolution of mutants (with site-
directed or directed evolution methods) to regions that should
not negatively impact the ability of the sequence to populate the
native and functional conformational ensemble.
Finally, our method can expectedly be used to detect

conformational ensembles in dynamic and intrinsically dis-
ordered proteins, shedding light on their stability and
preorganization for binding to receptors for function.

■ MATERIALS AND METHODS
Molecular Dynamics Simulations. Simulations for TRP-

Cage36 and Chignolin37 were started from a completely
extended conformation. The sequence and the reference folded
conformation were taken from the PDB database code 1L2Y for
TRP-Cage and 1UAO for Chignolin.
TRP-Cage and Chignolin were modeled and simulated via

Molecular Dynamics (MD) using the AMBER 16 suite of
programs54 with the TIP3P water model,55 an octahedral water
box containing 39 768 atoms (TRP-Cage, 304 protein atoms)
and 15 395 atoms (Chignolin, 138 protein atoms) and CUDA
implementation for GPUs. Each simulation started with an
unrestrained minimization consisting of 1000 steps of steepest
descent followed by 1000 steps of conjugate gradient
minimization. The minimized systems were then equilibrated
at 300 K for 5 ns using Langevin coupling with gamma equal to 1
ps−1. After this step, the relaxed systems were simulated in the
NPT ensemble at 1 atm using Berendsen coupling algorithms.56

The full particle-mesh Ewald method was used for electro-
statics.57 The SHAKE algorithm was used to constrain all
covalent bonds involving hydrogen atoms.58 A 2 fs time step and
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a 10 Å cutoff were used for truncation of the van der Waals
nonbonded interactions. Each production run has a different
simulation time, ranging from 280 to 630 ns, but the same
simulation temperature: 300 K, see summary in Table S1.
Trajectory frames were saved every 5 ps, and the striding for the
energy analysis was 25 ps. Six replicas for Chignolin and 7 for
TRP-Cage were produced.
The folding simulations for proteins ProteinG, WW Domain,

BBA, and A3D were provided by the D.E. Shaw Research
group.11 We used a frame every 400 ps for all to the analyses
done on these data sets.
The structural properties, such as RMSD, were calculated

with AMBER. VMD was used for visualization.59

Energy Calculations. Before any energy calculation, the
selected snapshots were minimized for 500 steps of steepest
descent followed by 500 steps of conjugate gradient. The energy
calculation was then performed using the energy decomposition
method, EDM, developed in our group.22,34,60

EDM is based on the calculation of the interaction matrixMij,
which is determined by evaluating the inter-residue, nonbonded
interaction energies (consisting of the van der Waals and
Coulombic terms) between residue pairs in a given protein
conformation. The underlying assumption about excluding the
intraresidue couplings in the calculation is that they do not
significantly depend on the protein tertiary conformation, while
the inter-residue coupling energy is modulated by the structure.
The shielding effect on the electrostatic interactions due to
solvent is taken into account by adding a GBSA term to the
energy decomposition scheme.61

For a protein ofN residues at time step t of the trajectory, this
calculation yields an N × N matrix of pair couplingsMij(t) such
that the total inter-residue nonbonded energy of the protein E(t)
is given by the (half) sum over the matrix entries. The spectral
analysis for this N × N matrix gives N eigenvectors and N
eigenvalues
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From the eigenvalues it is possible to calculate the (time-
dependent) energy gap (ENG) as follows
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The values of ENG, calculated for each selected time frame, as
well as the corresponding eigenvectors from the spectral analysis
were saved and analyzed as explained in the next section.
Structure minimization and GBSA energy calculation of the

interaction matrix were carried out in parallel using the
gnuparallel solution (https://zenodo.org/record/1146014);
the MKL Intel libraries are used for spectral analysis on the
energy matrix.
Data Analysis: Application of the ENG Criterion. As

shown in the main text, the RMSD relative to the native state
appears to be correlated to the ENG profile. Moreover, the
fluctuations of ENG in the native state are relatively lower than
in the unfolded state. From this point of view, the folded state is
characterized as the state with the maximum ENG and with the
minimum deviation around the mean standard deviation of
energy gap (SDENG).
We used these two criteria to set up a general, automatic

detection method to extract from a MD trajectory possible

folding transitions without any previous knowledge of the native
state.
The algorithm uses two time series as input, namely, ENG(t)

and the energy eigenvector. On the basis of solely this
information, it predicts the putative folded conformations, the
F ⇔ U transitions, and the residues mostly involved in the
native-like interactions associated with folding.
The code was built within the statistical environment R

adding two nonstandard packages: TTR for the running
averages (RA) for statistical values (mean and standard
deviation) and TSclust to compute dissimilarities based on the
estimated Pearson’s correlation of two given time series.
The algorithm relies on defining suitable thresholds in an

automatic fashion and then selecting the folding transitions
based on those thresholds. It can be separated in 3 parts: (1)
choice of the running average window size, (2) choice of the
threshold for mean and standard deviation, and (3) correlation
calculation. They are detailed as follows.

(I) A running average (RA) step is introduced to smooth the
profile of the ENG time series (see Figures 1−3, panels B
and E, solid black line). The same window size is used to
calculate the standard deviation SDENG profile. The
window size should be large enough to reduce the noise
but at the same time preserve the important transitions.
Selection of the optimal window size is carried out by
progressively increasing the window from a starting size
(1% total number of frames) by amounts of 0.5%. At each
window size, we keep track of the minimum for SDENG
and the maximum of average ENG. The two resulting
ENG and SDENG curves, as functions of the window size,
reach a plateau value at some point, which is selected as
the optimal window size.

(II) The ENG(t) and SDENG(t) curves are calculated over
the running window. The second step in the algorithm
consists of finding the thresholds TENG and TSDENG of
ENG and SDENG, respectively, such that the protein is
predicted to be folded when ENG is above TENG and at
the same time SDENG is belowTSDENG. The threshold on
the standard deviation in particular allows us to
distinguish between fluctuations due the protein breath-
ing motion or unproductive transitions and the proper
folding (F)−unfolding (U) transitions we are looking for.
In order to find the thresholds, first, we extract from the
ENG and SDENG profiles the global maximum ENGmax
for ENG, the global minimum standard deviation
SDENGmin for SDENG, and the SD at ENGmax
(Msd). Then we count the number of conformations
that have ENG between (ENGmax, ENGmax− n×Msd)
and the number of conformation that have SDENG
between (SDENGmin, SDENGmin + n ×Msd), where n
is a % from 1 to 100. In that manner, we find our
thresholds inside the uncertainty of the ENGmax. The
curves drawn by these equations show a sigmoidal
behavior, and the two thresholds are chosen in the
proximity of the main inflection point.

(III) Once the folding−unfolding transitions have been
identified, the algorithm proceeds with the analysis.
Within each transition, covering an interval of twice the
running average window, we focus on the changes in the
components of the energy eigenvector during time (an
example can be seen in Figure 1 B). The time series of
each component can be compared to the ENG time series
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on the same interval to evaluate correlation. We calculate
a correlation distance based on the Pearson’s correlation
between the two time series

Correlation Distancei = ρ= { − }CD 2(1 )i i where ρi

denotes the Pearson’s correlation between lambda and the
single component of the eigenvector Vi(t) during the time step

ρ =

=
∑ − ⟨ ⟩ − ⟨ ⟩ × Δ

∑ − ⟨ ⟩ × ∑ − ⟨ ⟩
=
+Δ

=
+Δ

=
+Δ

V
V

t t V t V t t

t t V t V t

cov(ENG, )
var(ENG)var( )

(ENG( ) ENG( ) )( ( ) ( ) ))

(ENG( ) ENG( ) ) ( ( ) ( ) )

i
i

i

i t
t t

i i

i t
t t

i t
t t

i i

This results in a residue-based profile that contains information
on the residues maximally correlated and anticorrelated with the
folding transition.
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