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a b s t r a c t

We obtain equilibration rates for a one-dimensional nonlocal Fokker–Planck equa-
tion with time-dependent diffusion coefficient and drift, modeling the relaxation
of a large swarm of robots, feeling each other in terms of their distance, towards
the steady profile characterized by uniform spreading over a finite interval of the
line. The result follows by combining entropy methods for quantifying the decay
of the solution towards its quasi-stationary distribution, with the properties of the
quasi-stationary profile.
©2023 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The main aim of this work is to study the large-time behavior of the probability density function f(x, t),
olution of the one-dimensional nonlocal Fokker–Planck equation

∂tf(x, t) = ∂x [(x − x̃0(t))f(x, t) + ∂x(κ(x, t)f(x, t))] , (1.1)

here the initial probability density function f0(x) ∈ L1(R) ∩ L∞(R) is such that∫
R
(1 + x2 + log f0(x)) f0(x) dx < +∞.

n Eq. (1.1), for a given x0 ∈ R, and λ, µ > 0 such that λ + µ = 1,

x̃0(t) = λx0 + µu(t), (1.2)

nd, for any time t ≥ 0, the mean value of f(x, t) is given by

u(t) =
∫
R

xf(x, t) dx. (1.3)

∗ Corresponding author.
E-mail addresses: ferdinando.auricchio@unipv.it (F. Auricchio), giuseppe.toscani@unipv.it (G. Toscani),

attia.zanella@unipv.it (M. Zanella).
ttps://doi.org/10.1016/j.aml.2023.108746
893-9659/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:
/creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.aml.2023.108746
https://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2023.108746&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ferdinando.auricchio@unipv.it
mailto:giuseppe.toscani@unipv.it
mailto:mattia.zanella@unipv.it
https://doi.org/10.1016/j.aml.2023.108746
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


F. Auricchio, G. Toscani and M. Zanella Applied Mathematics Letters 145 (2023) 108746

g

E
o
r
i
m
m
T

o
o
a
a
t
e
e

e
d
d

2

w

e
w

a
w

I

q
i

w
T
t

In (1.1) the continuous variable diffusion coefficient κ(x, t), uniformly bounded from below and above, is
iven by

κ(x, t) = κ(x − x̃0(t)) =

⎧⎨⎩σ2 + δ2

2 − 1
2 |x − x̃0(t)|2 |x − x̃0(t)| < δ

σ2 |x − x̃0(t)| ≥ δ.
(1.4)

q. (1.1) is intended to describe the action of a large swarm of moving agents, capable to spread uniformly
ver the surface of a target domain D = [x0−δ, x0+δ] ⊂ R, see [1], while the presence of the mean value u(t) is
elated to a suitable communication between them and the coefficient σ2 > 0 represents possible disturbances
n the motion. This simple task can be interpreted as the deposition of a single layer in standard additive
anufacturing processes [2–5], a topic included in the analysis of self-organizing features of mathematical
odels for large systems in social and life sciences [6–10], often described by kinetic-type equations [11–14].
he problem to determine asymptotic behavior of the system is a classical task [15–17].
Concerning the Fokker–Planck equation (1.1), the simpler case µ = 0 λ = 1, corresponding to absence

f communication between particles, has been treated in [1], where it was noticed that the target action
f the swarm can be achieved by different choices of the Fokker–Planck type equations, corresponding to
lternative strategies. If µ = 0 in Eq. (1.1), particles move subject to the simultaneous presence of the drift
nd diffusion operators, and, still under the action of the drift operator, they start to randomly explore the
arget domain D adapting their diffusion to the distance from the center x0 of the domain, as soon as they
nters in it. In this case, it has been shown in [1] that the solution to the resulting Fokker–Planck type
quation (1.1) converges in time towards the steady profile with a polynomial rate.

In this paper we extend the analysis of [1] to the case in which particles of the swarm are not
qually informed about the target to reach, but they sense the entire swarm in terms of their relative
istance showing that the solution to the Fokker–Planck equation still converges in time to the right target
istribution but at a lower polynomial rate.

. Fokker–Planck models in swarm manufacturing

We consider a system of N ≫ 1 particles interacting between them and with a target domain D ⊂ R,
hich for simplicity is assumed to be an interval centered in x0 with length 2δ > 0.
Each particle senses the direction of motion towards the center of D and, once in D, it starts to randomly

xplore the target domain. At variance with [1] each particle modifies its position also through interactions
ith the other particles of the swarm.
Let f(x, t) dx be the probability of finding a particle in the elementary volume dx around the point x ∈ R

t time t ≥ 0. The evolution in time of the density f(x, t) can be furnished by a Fokker–Planck-type equation
ith constant diffusion and discontinuous and time-dependent drift

∂tf(x, t) = ∂x

[
B[f ](x, t)1Dc(x)f(x, t) + σ2∂xf(x, t)

]
. (2.5)

n (2.5) the constant σ2 > 0 characterizes the speed of diffusion of the particles, and

B[f ](x, t) = λ(x − x0) + µ

∫
R

P (x, y)(x − y)f(y, t)dy, (2.6)

uantifies the attractiveness of the domain D in presence of interactions among particles. Finally, we
ndicated with Dc = R \ D the complement of D and 1A(x) the indicator function of the domain A ⊆ R.

In (2.6) λ, µ are nonnegative constants such that λ + µ = 1 and P (x, ·) ≥ 0 is an interaction function
eighting the influence on a particle in x of all the other particles in terms of their distance from x.
herefore, particles move subject to the simultaneous presence of drift and diffusion unless they are in the
arget domain D where only the diffusion operator survives.
2
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In what follows we consider P ≡ 1, namely the simplified situation characterized by a uniform interaction
rate. In this case, the drift term (2.6) is expressed in terms of the mean value (1.3)

B[f ](x, t) = x − λx0 − µu(t) = x − x̃0(t). (2.7)

Hence, the presence of a uniform interaction between particles can be translated in mathematical terms by
saying that the center x̃0(t) of the interval of attraction of length 2δ, as defined in (1.2), is now moving with
time. To avoid the presence of a discontinuous drift, in [1] we noticed that the same target dynamics (the
same steady profile) could be obtained by resorting to the Fokker–Planck type equation (1.1), characterized
by a continuous drift and a variable continuous diffusion κ(x, t), as given by (1.4).

To clarify why it is more convenient to resorting to formulation (1.1), it is enough to compute the evolution
of the mean value u(t) of the solution to both Fokker–Planck equations. As far as the formulation (2.5) is
concerned, one easily obtains

d u(t)
dt

= −
∫
R

B[f ](x, t)1Dc(x)f(x, t)dx

= −λ

∫
Dc

(x − x0)f(x, t)dx − µ

∫
Dc

∫
R
(x − y)f(y, t)f(x, t)dydx.

t is immediate to conclude that, even if µ = 0 the evolution of the mean value is not explicitly computable
n reason of the presence of the discontinuous drift. On the contrary, the mean value of the solution to Eq.
1.1) solves

d u(t)
dt

= −
∫
R
(x − x̃0(t))f(x, t)dx = −λ(u(t) − x0),

nd
u(t) − x0 = (u(0) − x0)e−λ t. (2.8)

urthermore, if initially bounded, the second order moment of the solution to Eq. (1.1) remains bounded.
ndeed, if κ̄ = maxx∈R,t≥0 κ(x, t),

d

dt

∫
R

x2 f(x, t) dx = 2
∫
R

κ(x, t)f(x, t)dx − 2
∫
R
(x2 − x̃0x)f(x, t)dx

≤ 2κ̄ + 2u(t)x̃0(t) − 2
∫
R

x2 f(x, t) dx.

Since u(t) converges exponentially to x0 at a rate λ for t → +∞, we can expect that the solution to the
Fokker–Planck equation (1.1) will converge for large time to the steady state obtained in [1] in the absence
of communications between particles, given by

f∞(x) =

⎧⎪⎪⎨⎪⎪⎩
m1√
2πσ2

exp
{

−|x − x0|2

2σ2

}
|x − x0| ≥ δ, f

m2

2δ
|x − x0| < δ,

(2.9)

here m1, m2 > 0 only depend on the conditions that the total mass is unitary and the steady state is
continuous over the domain. As shown in [1], the masses m1, m2 are uniquely determined in terms of the
elevant parameters δ, σ2 characterizing respectively the diffusion coefficient and the length of the interval.

Hence, the steady state (2.10) is a continuous function resulting from the weighted combination of a Gaussian
density outside D and a uniform density inside D.

To study convergence of the solution to the Fokker–Planck equation (1.1) towards the steady state (2.9) we
remark that, in view of its structure, this equation possesses a quasi-stationary solution, namely a solution,
for a fixed time t > 0, of the first-order differential equation
∂x(κ(x − x̃0(t))f(x, t)) + (x − x̃0(t))f(x, t) = 0.

3
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This solution, in the time-independent case µ = 0, coincides with (2.9), whereas, for µ > 0, it is given by

fq(x, t) =

⎧⎪⎪⎨⎪⎪⎩
m1√
2πσ2

exp
{

−|x − x̃0(t)|2

2σ2

}
|x − x̃0(t)| ≥ δ,

m2

2δ
|x − x̃0(t)| < δ.

(2.10)

. Large-time behavior

Convergence to equilibrium will be mainly based on the study of the time decay of entropy functionals
18–20], and it will be reached in three steps. We remark that all the computations that follow are justified by
he properties of the diffusion coefficient κ(x, t) of the Fokker–Planck equation (1.1), that allow us to apply
roposition 2 of Section 6 of the paper by Le Bris and Lions [21], relative to the existence and uniqueness of

olutions to Fokker–Planck type equations with irregular time dependent coefficients of diffusion and drift.
e have

heorem 3.1. Let us consider the initial value problem for the Fokker–Planck equation (1.1). Then, for
each probability density f0(x) ∈ L1(R) ∩ L∞(R), Eq. (1.1) has a unique solution in the space

f(x, t) ∈ L∞([0, T ], L1 ∩ L∞),
κ(x, t)∂xf(x, t) ∈ L2([0, T ], L2).

he unique solution f(x, t) is a probability density for any subsequent time t > 0. If moreover the initial
atum f0(x) satisfies ∫

R
(1 + |x|2 + log f0(x)) f0(x) dx < +∞, (3.11)

hen, for all t ∈ [0, T ] ∫
R
(1 + |x|2 + log f(x, t)) f(x, t) dx < +∞. (3.12)

roof. The proof of existence and uniqueness follows from a result by Le Bris and Lions [21], since the
rift and diffusion coefficients of Eq. (1.1) satisfy the hypotheses of Proposition 2 of Section 6. Indeed
− x̃0(t) ∈ L1([0, T ], W 1,1

loc (R)) and it has constant derivative. Moreover

x − x̃0(t)
1 + |x|

= 1
(1 + |x|)2 + (x − x̃0(t))(1 + |x|) − 1

(1 + |x|)2 ∈ L1([0, T ], L1 + L∞(R)).

Also κ(x, t) ∈ L2([0, T ], W 1,2
loc (R)) and κ(x, t)

1 + |x|
∈ L2([0, T ], L2 + L∞(R)).

The positivity of the solution may be obtained by rewriting equation to (1.1) in an equivalent way. To
this extent, let us define g(y, t) = f(x, t), where, for x ∈ R, y = x − x̃0(t). then g(y, t) solves

∂tg(y, t) = −K(t)∂yg(y, t) + ∂y [yg(y, t) + ∂y(κ(y)g(y, t))] = Ag(y, t) + Bg(y, t). (3.13)

In (3.13) K(t) = λµ(u(0) − x0)e−λt. The equation is composed of a pure transport operator A and a drift-
diffusion operator B with κ(y) ≥ σ2 > 0. Both operators are linear and positivity preserving. Applying the
splitting method to Eq. (3.13), and Trotter’s formula [22]

et(A+B) = lim
n→+∞

(
eAt/neBt/n

)n

allows to conclude with the positivity of g(y, t), and, consequently of f(x, t). Concerning the validity of
(3.12), since the solution to (1.1) has bounded second order moment, we may argue as in [23] to conclude
that f | log− f | ≤ e−|x|2 + |x|2f ∈ L1(R). Hence, being f log+ f ∈ L1(R), f log f belongs to L1(R). □
4
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We now investigate the asymptotic behavior of the solution. The following result holds

Theorem 3.2. Let f(x, t) be the unique solution to the initial value problem for the one-dimensional Fokker–
lanck equation (1.1), departing from an initial condition f0(x) satisfying the hypotheses of Theorem 3.1.

Then f(x, t) converges in L1(R) towards the one-dimensional steady solution f∞(x) defined by (2.9) and the
onvergence rate is at least o(t−1/2).

roof. Let H(g|h) be the relative Shannon entropy between two probability density functions g and h

H(g|h) =
∫
R

g(x) log g(x)
h(x) dx. (3.14)

ince f and fq are time-dependent we have

d

dt
H(f(t)|fq(t)) =

∫
R

(
1 + log f(x, t)

fq(x, t)

)
∂tf(x, t) dx −

∫
R

f(x, t)∂t log fq(x, t) dx. (3.15)

Thanks to Theorem 3.1 we obtain that f(x, t) ∈ H1(R) and therefore is sufficiently regular. The first integral
on the right-hand side of Eq. (3.15) coincides with −IH(f(t)|fq(t)), where following Theorem 7 in [18], the
ntropy production term of the relative Shannon entropy is given by

IH(f(t)|fq(t)) = 4
∫
R

κ(x, t)fq(x, t)
(

∂x

√
f(x, t)
fq(x, t)

)2

dx. (3.16)

o evaluate the second term, we observe that, resorting to definition (2.10) one obtains

∂tfq(x, t) =

⎧⎨⎩−fq(x, t)λµ

σ2 (u(0) − x0)(x − x̃0(t))e−λ t |x − x̃0(t)| > δ,

0 |x − x̃0(t)| < δ,
(3.17)

Hence, the second term in (3.15) can be evaluated by resorting to (3.17)

LH(f(t)|fq(t)) = −
∫
R

f(x, t)∂t log fq(x, t) dx = e−λ t λµ

σ2 (u(0) − x0)
∫

|x−x̃0(t)|>δ

(x − x̃0(t))f(x, t) dx =

e−λ t λµ

σ2 (u(0) − x0)
[

λ(u(0) − x0)e−λ t −
∫

|x−x̃0(t)|<δ

(x − x̃0(t))f(x, t) dx

]
.

urthermore, we have⏐⏐⏐⏐⏐
∫

|x−x̃0(t)|<δ

(x − x̃0(t))f(x, t) dx

⏐⏐⏐⏐⏐ ≤
∫

|x−x̃0(t)|<δ

|x − x̃0(t)|f(x, t) dx ≤ δ,

nd the term LH(f(t)|fq(t)) decays exponentially to zero at the rate λt.
As a second step, let us observe that the entropy production term (3.16) bounds from above the square of

he Hellinger distance between f(x, t) and fq(x, t) [1], where the Hellinger distance between two probability
ensity functions g, h is defined as follows

D2(g|h) =
∫
R

(√
g(x) −

√
h(x)

)2
dx.

ndeed, as shown for example in Section 3.2 of [18] one has the inequality

D2(f(t)|fq(t)) ≤ 1
IH(f(t)|fq(t)). (3.18)
2
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As a third step, let us evaluate the variation in time of the Hellinger distance. We have [18]

d

dt
D2(f(t)|fq(t)) =

∫
R

(
1 −

√
fq(x, t)
f(x, t)

)
∂tf(x, t) dx +

∫
R

(
1 −

√
f(x, t)
fq(x, t)

)
∂tfq(x, t) dx. (3.19)

he first integral on the right-hand side of Eq. (3.19) coincides with −ID(f(t)|fq(t)), where the entropy
roduction term of the squared Hellinger distance is given by [18]

ID(f(t)|fq(t)) = 8
∫
R

κ(x, t)fq(x, t)
(

∂x
4

√
f(x, t)
fq(x, t)

)2

dx. (3.20)

The second term on the right-hand side of (3.19) corresponds to

LD(f(t)|fq(t)) =

−e−λ t λµ

σ2 (u(0) − x0)
∫

|x−x̃0(t)|>δ

(x − x̃0(t))
(

fq(x, t) −
√

f(x, t)fq(x, t)
)

dx. (3.21)

ubstituting fq(x, t) on the set |x − x̃0(t)| ≥ δ with a Gaussian density, it is immediate to show, by the
auchy–Schwarz inequality and definition (2.10), that⏐⏐⏐⏐⏐

∫
|x−x̃0(t)|>δ

(x − x̃0(t))fq(x, t) dx

⏐⏐⏐⏐⏐ ≤

[∫
|x−x̃0(t)|>δ

(x − x̃0(t))2fq(x, t) dx

]1/2

≤

(∫
R
(x − x̃0(t))2 m1√

2πσ2
exp

{
−|x − x̃0(t)|2

2σ2

}
dx

)1/2

=
√

m1

σ
.

he same inequality holds for the second integral in (3.21). Therefore we get

|LD(f(t)|fq(t))| ≤ 2
√

m1

σ
e−λ t λµ

σ2 |u(0) − x0| = −2
√

m1µ

σ3 |u(0) − x0| d

dt
e−λ t. (3.22)

The previous bound, combined with (3.19) implies

d

dt
D2(f(t)|fq(t)) + 2

√
m1µ

σ3 |u(0) − x0| d

dt
e−λ t ≤ −ID(f(t)|fq(t)) ≤ 0. (3.23)

o conclude, it is enough to remark that, integrating the Eq. (3.15) in time from 0 to ∞ shows that the
ntropy production IH(f(t)|fq(t)) is integrable over the positive real line. Hence, thanks to inequality (3.18),

we realize that D2(f(t)|fq(t)) is integrable in time on the positive real line. On the other hand, thanks to
(3.23), we know that the function

D2(f(t)|fq(t)) + 2
√

m1µ

σ3 |u(0) − x0|e−λ t

s non-increasing and integrable in time. Consequently, the square of the Hellinger distance decays to zero as
ime goes to infinity at least at a rate o(1/t). This shows that the Hellinger distance, and consequently the
1(R)-norm, between the solution f(x, t) of the Fokker–Planck equation (1.1) and its quasi-steady solution
ecays to zero as time goes to infinity at a rate at least of order o(t−1/2). It remains to prove that fq(x, t)
onverges in L1(R)-norm, as time tends to infinity, towards the equilibrium solution f∞(x), as given by (2.9),
o conclude with the convergence in L1(R)-norm of the solution to the Fokker–Planck equation (1.1) towards
∞(x).

Rather than directly demonstrating the convergence in L1(R)-norm of fq(x, t) towards f∞(x), we evaluate
he Shannon entropy of f∞(x) relative to fq(x, t), that is

H(f∞|fq(t)) =
∫

f∞(x) log f∞(x)
dx.
R fq(x, t)
6
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Owing to definition (2.10), to the definition of x̃0(t) given in (1.2), and to (2.8), we realize that, for t > 0
large enough, x̃0(t) is sufficiently close to x0, and the above integral can be evaluated by splitting it in four
domains. We consider the case in which u(0) − x0 > 0, the other case can be treated likewise, and let us set
B(t) = (u(0) − x0)e−λt. The domains are defined by

E1(t) = {x < x0 − δ; x > x0 + δ + B(t)} ; E2(t) = {x0 − δ + B(t) < x < x0 + δ} ;
E3(t) = {x0 − δ < x < x0 − δ + B(t)} ; E4(t) = {x0 + δ < x < x0 + δ + B(t)} .

(3.24)

On the domain E1(t) the functions f∞(x) and fq(x, t) coincide with the exponential functions. Consequently∫
E1(t)

f∞(x) log f∞(x)
fq(x, t) dx = (x̃0 − x)

∫
E1(t)

f∞(x) 1
2σ2 (x̃0(t) + x0 − 2x) dx,

hich converges to zero exponentially in time since all moments of the exponential distribution f∞ are
ounded.

On the set E2(t) the functions f∞(x) and fq(x, t) coincide with the same constant and the integral is
herefore equal to zero. Finally, let us remark that the sets E3(t) and E4(t) have measure B(t), that decays
xponentially to zero. Since the functions inside the integrals are bounded in absolute value, by the mean
alue theorem we conclude with the exponential decay to zero of the integrals evaluated on these two sets.

In conclusion, the relative entropy H(f∞|fq(t)) decays exponentially to zero. We remark that an explicit
ound can be provided, at the expense of additional computations.

On the other hand, convergence in relative entropy implies, thanks to the Csiszar–Kullback-Leibler
nequality [18], convergence in L1(R). Indeed, for any pair of probability density functions g and h with
he same mass, this inequality reads

∥g − h∥2
L1(R) ≤ 2H(g|h).

his concludes the proof of convergence. □

oncluding remarks

Starting from a Fokker–Planck-type model with discontinuous drift describing large swarms of agents that
pread uniformly over the surface of a domain, we have introduced a communication between agents that
an sense each other and align towards the center of the target domain. The introduced modeling approach
as been inspired by printing tasks and mimics the deposition of a single layer in additive manufacturing
rocesses, and the goal is to exploit the cooperative nature of the interacting systems to define robust and
istributed strategies.

As shown in [1], the right target can be achieved by resorting to a Fokker–Planck type equations like (1.1),
hich shares the key property to possess a continuous drift. For this equation, existence and uniqueness of

he solution is known [21]. Here, we studied the large time behavior of the solution, obtaining an explicit
ate of convergence in the prototypical case of unitary communication strength. The results extend the ones
eveloped in [1] to the case of variable diffusion coefficient. Future works will extend the results to variable
ommunication functions.
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