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Abstract
In this paper we analyze the stability of the problem of performing a rational QZ
step with a shift that is an eigenvalue of a given regular pencil H − λK in unreduced
Hessenberg–Hessenberg form. In exact arithmetic, the backward rational QZ step
moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained
in Hessenberg–Hessenberg form, which then yields a deflation of the given shift. But
in finite-precision the rational QZ step gets “blurred” and precludes the deflation of
the given shift at the top of the pencil. In this paper we show that whenwe first compute
the corresponding eigenvector to sufficient accuracy, then the rational QZ step can
be constructed using this eigenvector, so that the exact deflation is also obtained in
finite-precision.

Keywords RQZ algorithm · Generalized eigenvalues · Perfect shift

1 Introduction

Computing all eigenvalues of a small to medium-sized matrix pencil H − λK is
nowadays a routine task that shows up in many applications. The method of choice is
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the QZ algorithm which uses implicit QZ -type steps, implementing a bulge chasing
technique. On the other hand, projectionmethods are often used to compute a subset of
the eigenvalues of sparse, large-scale eigenproblems, andKrylov subspacemethods are
probably among the most used methods within this class. Even though the algorithms
are totally different and they target different problems, Krylov and QZ -methods are
intimately linked; theoretical support for the convergence and interpreting the QZ can
be done entirely relying on Krylov theory. The rational QZ algorithm (which we will
abbreviate as RQZ ) is a numerical scheme that extends the ideas of the QZ algorithm
and links to rational Krylov methods. It has been shown to be quite competitive with
the QZ algorithm [3] because of the enhanced convergence behavior. It uses so-called
RQZ steps which are pole swapping techniques on a Hessenberg-Hessenberg pencil,
and not only look like bulge chasing, but also incorporate rational Krylov subspace
ideas [2, 3].

The perfect shift strategy for Hessenberg pencils arises naturally in the downdating
setting of orthogonal rational functions as described by Van Buggenhout, Van Barel,
and Vandebril [10]. Consider a given finite discrete inner product

〈 f , g〉m :=
m∑

i=1

|wi |2g(zi ) f (zi ), (1)

with nodes zi and weights wi . One wishes to construct a set of orthogonal rational
functions, with prescribed poles, for this inner product. Instead of constructing the
orthogonal rational functions, it is often numerically more reliable to store the recur-
rences for generating these functions. These recurrences are stored in a Hessenberg
pencil H − λK , satisfying

V H = �V K , V HV = I , Ve1 = w/‖w‖, (2)

wherew contains the weightswi ,� is a diagonal matrix with nodes zi on the diagonal,
and H − λK is a Hessenberg pencil where the ratio of the subdiagonals equals the
poles. The relations (2) express that the rows of V are the left eigenvectors of the pencil
H −λK and that the diagonal elements of� are their corresponding eigenvalues. The
chosen nodes, weights, and poles are of course problem specific and could possibly
change when, for instance, the problem changes over time. To add or remove nodes,
weights, and poles, we refer to the work of Van Buggenhout, Van Barel, and Vandebril
[8–10]. For removing nodes, one downdates the problem. Say wewant to remove node
z j , for j ∈ {1, . . . ,m}. Then we need to construct unitary transformations, Z and Q
such that the transformed relations

(V Z)(ZH HQ) = �(V Z)(ZH K Q)
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allow to deflate an eigenvalue in the upper left corner1 of the pencil ZH HQ−λZH K Q.
The remaining lower right (n − 1) × (n − 1) part H̃ − λK̃ , satisfies the relation

Ṽ H̃ = �̃Ṽ K̃ , Ṽ H Ṽ = I , Ṽ e1 = w̃/‖w̃‖,

providing the recurrences for the inner product

〈 f , g〉m−1 :=
m∑

i=1,i �= j

|wi |2g(zi ) f (zi ), (3)

where �̃ and w̃ have node z j and weight w j removed. The exact deflation of the
removed eigenvalue corresponds to the problem of deflating a perfect shift using a
backward rational QZ step.

We consider only real matrix pencils and the deflation of a real eigenvalue or of a
pair of complex conjugate eigenvalues. Using complex arithmetic avoids the problems
of treating complex conjugate pairs together and is thus simpler. The extension to
complex pencils is therefore not treated here. We will use the following notations.
Matrices and submatrices are denoted by capital letters, i.e., A, B, H . The entry (i, j)
of the matrix H is denoted by the lowercase letter hi, j . Vectors are denoted by bold
letters, i.e., a,b, . . .. The identitymatrix of order n is denoted by In and its i–th column
by e(n)

i , or, if there is no ambiguity, simply by I and ei , respectively. Generic entries
different from zero in matrices or vectors are denoted by “×.” The machine precision
is denoted by εM . We denote a Givens rotation between two adjacent rows or columns
i and i + 1, by

Gi =

⎡

⎢⎢⎣

Ii−1
c −s
s c

In−i−1

⎤

⎥⎥⎦ ,

[
c −s
s c

] [
c −s
s c

]T

= I2.

The rest of the paper is organized as follows. In Sect. 2, we discuss the special form
of a Hessenberg-Hessenberg pencil, which is the basis for performing a perfect shift
RQZ -step. In Sect. 3, we give the main result of this paper: we derive a more robust
method for implementing the RQZ step so that the perfect shift can be deflated at the
top of the pencil. In Sects. 4 and 5, we look at two important aspects of our algorithm,
namely how to improve the accuracy of an eigenvalue/eigenvector pair and how to
scale the pencil in order to improve the residual of this approximation. In Sect. 6, we
illustrate the performance of our algorithm with several numerical experiments.

1 It is compulsory to have the deflation in the upper left corner to maintain the relation between the weight
vector and the matrix V Z ; details can be found in [8]
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2 Preliminary Hessenberg–Hessenberg form

The rational QZ algorithm for the generalized eigenvalue problem of a regular pencil
A − λB assumes that one first reduces the pencil to a Hessenberg–Hessenberg form.
This form can be obtained using orthogonal transformations U and V such that the
transformed pencil H −λK := V T (A−λB)U consists of two Hessenberg matrices :

H − λK :=

⎡

⎢⎢⎢⎢⎣

h1,1 . . . . . . h1,n

h2,1
. . .

...

. . .
. . .

...

hn,n−1 hn,n

⎤

⎥⎥⎥⎥⎦
− λ

⎡

⎢⎢⎢⎢⎣

k1,1 . . . . . . k1,n

k2,1
. . .

...

. . .
. . .

...

kn,n−1 kn,n

⎤

⎥⎥⎥⎥⎦
. (4)

Such a form can be obtained by direct construction or by running a rational Krylov
algorithm [2, 4]. These will be called HH pencils, and the rational QZ algorithm will
be abbreviated as RQZ . The fact that the pencil H − λK is unreduced is equivalent
to asking that the subpencil

Hp − λKp := [
0 In−1

]
(H − λK )

[
In−1
0

]

is regular, or that the scalar pencils hi+1,i − λki+1,i are regular for 1 ≤ i < n. The
subpencil Hp − λKp is called the “pole pencil" of H − λK , as its eigenvalues are the
poles of the RQZ algorithm [3]. We will analyze in the next section the construction
of a backward RQZ step and compare different ways to compute such a step. We go
over a number of assumptions that are used in our analysis.

• Assumption (A1): det(H − λK ) �= 0 for almost all λ. This is well-known to hold
generically and is necessary and sufficient for the definition of the generalized
eigenvalues of H − λK . Such a pencil H − λK is said to be regular.

• Assumption (A2): det(Hp − λKp) �= 0 for almost all λ, meaning that the “pole
pencil" Hp − λKp is regular which also holds generically and is necessary and
sufficient for the definition of the poles of the HH pencil. We call such a HH
pencil unreduced.

• Assumption (A3): H − λK is proper, meaning that the subpencil

[
hn,n−1 hn,n

] − λ
[
kn,n−1 kn,n

]

has no zeros. Again, this holds generically.
• Assumption (A4): The perfect shift λ0 is not a pole of H − λK , i.e., det(Hp −

λ0Kp) �= 0. This also holds generically.

Assumptions (A1) and (A2) will be assumed throughout the paper, since this is
needed for the definition of generalized eigenvalues and poles of the HH pencil.

A possible extension of the above Hessenberg-Hessenberg structure occurs when
the pole pencil Hp − λKp is block upper triangular, with diagonal sub-blocks of
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dimensions ki × ki . Such a block structure will be called a block-HH form. It will be
discussed later on, but only for the case that the diagonal blocks have sizes ki = 1 or
2.

3 Perfect shift of an unreduced HH pencil

In this section, we consider the case that the pole pencil Hp −λKp has all block-sizes
ki equal to 1. This is the simplest case and it allows us to compare the standard RQZ
approach with the eigenvector method presented in this paper.

3.1 Deflating a real eigenvalue �0

We assume here that we are given a regular pencil H − λK that is already in HH
form, and that it is unreduced. If not, the operations described below can be applied to
each unreduced subpencil of a general HH pencil. We also assume that assumptions
(A3) and (A4) hold.

Let λ0 be a real eigenvalue of H − λK , then we represent it as

λ0 := α0/β0, α2
0 + β2

0 = 1, β0 ≥ 0 (α0 = 1, β0 = 0 if λ0 = ∞).

In exact arithmetic, if we then perform one backward RQZ step with shift λ0, the
pencil

Ĥ − λK̂ := ZT (H − λK )Q

is still in HH form with its first column proportional to e1 and Q and Z are both
unreduced Hessenberg matrices formed by the product of n − 1 Givens rotations.
Unfortunately, the shift (α0 − λβ0) may finally not appear accurately in the (1, 1)
position because of a phenomenon known as “blurring of the shift." Therefore, we
need to consider an alternative construction of the RQZ step, which we describe in
the following theorem. Since we want to relate the rotations used in this theorem with
those of the RQZ algorithm, we will make them unique by choosing the sign of s
always positive when s �= 0, and to choose c = 1 when s = 0.

Theorem 1 Let H −λK be a real proper HH pencil with real eigenvalue λ0 = α0/β0
of absolute value | λ0 | bounded by 1 and normalized using α2

0 + β2
0 = 1. Let λ0 not

be a pole of H − λK and define the Hessenberg matrix M := (β0H − α0K ). Then

1. the pencil H − λK has a normalized real eigenvector x corresponding to λ0 =
α0/β0:

(β0H − α0K )x = Mx = 0, || x ||2= 1,

which is unique up to a scale factor ±1, and has a nonzero last compo-
nent xn; therefore, there is an “essentially unique” orthogonal transformation
Q := G(r)

1 . . .G(r)
n−1 that transforms x to Qx = ±e1;
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2. there is a corresponding“essentially unique” sequenceof rotationsG(�)
n−1, . . . ,G

(�)
1

guaranteeing that the products

Q := G(r)
1 G(r)

2 · · ·G(r)
n−1, Z := G(�)

1 G(�)
2 · · ·G(�)

n−1, (5)

are both Hessenberg and transform the triple (H , K , x) to an equivalent one

(Ĥ , K̂ , x̂) := (ZHQT , ZK QT , Qx)

where
x̂ = ±e1, (β0 Ĥ − α0 K̂ )e1 = 0,

and Ĥ − λK̂ is in HH form.

Proof To prove item 1, we point out that the normalized eigenvector x is unique (up
to a scaling factor ±1) because it is the solution of Mx = 0, where M has rank n − 1
since it is unreduced and Hessenberg, because the pencil H −λK satisfies assumption
(A4). For the same reason, its last component xn is nonzero, since otherwise the whole
vector xwould be zero. The reduction of x to x̂ = Qx = ±e1 then requires a sequence
of Givens rotations

G(r)
i−1 ∈ R

n×n, i = n, n − 1, . . . , 2,

in order to eliminate the entries xi , i = n, n − 1, . . . , 2 of the vector x. By choosing
the sign of s in these Givens rotations positive, we make them unique.

For item 2, we point out that after the first transformationG(r)
n−1 we have an updated

pole pencil

H̃p − λK̃ p = [
0 In−1

]
(H − λK )G(r)T

n−1

[
In−1
0

]
(6)

that is still in generalized Schur form, but its last column has been changed and has
the shift λ0 as new pole in the bottom position. This follows from (6) which implies

[
h̃n,n−1 − λ0k̃n,n−1 h̃n,n − λ0k̃n,n

] [
xn−1
0

]
= 0, where xn−1 �= 0.

It can also be viewed as a special case of Lemma 3 with k = 1 and n = 1. Each
subsequent pair of rotations G(�)

i+1 and G(r)T
i moves then the perfect shift λ0 one

position up in the pole pencil H̃p−λK̃ p. FirstG
(r)
i moves the trailing nonzero element

of x one position up. Then G(r)T
i is applied to the columns of the pencil, creating a

bulge in theHessenbergmatrices H and K , which is then annihilated by the left Givens
transformation G(�)

i+1. The fact that the Hessenberg form is restored in both H and K
follows from Lemma 4 with k = 1 and n = 1. Therefore the pole pencil

[
0 In−1

]
G(�)

2 · · ·G(�)
n−1(Hp − λKp)G

(r)T
n−1 · · ·G(r)T

1

[
In−1
0

]
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has the perfect shift in its top diagonal, and then the final left rotation G(�)
1 moves it to

the top diagonal position of the pencil Ĥ −λK̂ (see Lemma 5 with n = 1). Therefore,
all the poles moved one position down, and the bottom one disappeared. All these
transformations are “essentially” unique, since they implement the swapping of the
eigenvalue λ0 with one of the eigenvalues of Ĥp − λK̂ p. 
�

The reduction described inTheorem1, transforming an eigenvectorx corresponding
to a real eigenvalue λ0 into a multiple of e1, and modifying the matrices H and K ,
is graphically depicted in Fig. 1, for n = 6. We display the evolution of the triple
(H , K , x).

In particular, a generic nonzero entry is denoted by “×,” an entry to be annihilated
by “⊗” and the entries becoming zero, as a consequence of the multiplication by a
Givens matrix, by “�.”

Remark 1 The implicit Q theorem for regular HH pencils is closely related to
Theorem 1. It implies that the transformations Q and Z can also be determined from
the first rotation G(r)

n−1 that computes

[
mn,n−1, mn,n

]
G(r)T

n−1 = [
0 × ]

(7)

Fig. 1 Graphical description of the reduction of an eigenvector x to a multiple of e1. The matrices H and
K were scaled to have norm 1, and εM -small elements were put equal to zero
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and from the fact that the pair (ZHQT , ZK QT ) is still in HH form. This is known as
“swapping the poles" and corresponds to “chasing the bulge” [12] in the QZ algorithm.

Remark 2 Theorem 1 gives an alternative way to determine the sequences of right rota-
tions Q := G(r)

1 G(r)
2 · · ·G(r)

n−1 and left rotations Z := G(�)
1 G(�)

2 · · ·G(�)
n−1 to implement

an implicit RQZ -step. First one determines Q from Qx = ±e1, and then one deter-
mines Z from the restoration of the Hessenberg form of K if | λ0 |≤ 1 and of H
if | λ0 |> 1, as indicated in Lemma 4. These particular choices are made to ensure
numerical stability, as will be shown later on.

Although these different approaches are equivalent under exact arithmetic, their
numerical behavior is different. We refer for this to Example 2.1 of [6], where a 3× 3
Hessenberg matrix H of a standard eigenvalue problem is given which can be seen as
a special case of a Hessenberg–Hessenberg pencil H − λK with K = I and all its
poles at infinity. The RQZ algorithm then reduces to the standard QR and will yield
the same results. It was shown in [6] that the eigenvector approach is then the more
reliable method for implementing the perfect shift.

3.2 Importance of the assumptions

In this subsection, we give two examples to illustrate the differences between the RQZ
and the eigenvector method. The first example shows that when assumption (A4) is
dropped, these two methods are not equivalent anymore.

Example 1 Consider the pencil

⎡

⎢⎢⎣

1 1 0 0
1 0 0 0
0 0 0 0
0 0 2 0

⎤

⎥⎥⎦ − λ

⎡

⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎥⎥⎦ .

and the shift λ0 = 0. Its eigenvalues are 0, 0, 1 and 2 and the two eigenvalues 0 belong
to one Jordan block. Therefore, λ0 has only one eigenvector x = e4. Assumption
(A3) is satisfied, but assumption (A4) not. The eigenvector method will then use
three adjacent permutations to transform e4 to e1 yielding the transformed HH pencil
(where c = √

2/2)

⎡

⎢⎢⎣

0 −c −c −2c
0 c c −2c
0 1 0 0
0 0 0 0

⎤

⎥⎥⎦ − λ

⎡

⎢⎢⎣

2c 0 0 −c
0 0 0 −c
0 1 0 0
0 0 1 0

⎤

⎥⎥⎦ .
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The RQZ method, on the other hand, will obtain after the first column rotation G(r)
3

the pencil ⎡

⎢⎢⎣

1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 2

⎤

⎥⎥⎦ − λ

⎡

⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎥⎥⎦

and has to perform swapping on the 2 × 2 subpencil

[
0 0
0 0

]
− λ

[
1 0
0 1

]
, which is an

ill-posed problem and has non-unique solutions. Therefore the RQZ method does not
have a unique way to proceed further when Assumption (A4) does not hold.

Remark 3 When the pencil H − λK has one or more poles coalescent with the shift
λ0, the matrix M := β0H − α0K is no longer unreduced, and the proof that xn is
nonzero does not hold anymore. But it is easy to verify that if the eigenvector x is
unique, then one (and only one) of the unreduced Hessenberg blocks of M , is singular,
and that xn �= 0 if and only if this is the last block. In the above example, this was
indeed the case. But evenwhen xn = 0, the eigenvectormethodwould still work, when
starting with the unreduced Hessenberg block that is singular, since the eigenvector
corresponding to that subblock will have a trailing nonzero component.

In the next example, the assumption (A3) is dropped and again these two methods
are not equivalent anymore.

Example 2 Consider the pencil

⎡

⎢⎢⎣

1 1 0 0
1 0 0 0
0 0 0 0
0 0 2 0

⎤

⎥⎥⎦ − λ

⎡

⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥⎥⎦ .

Its eigenvalues are still 0, 0, 1 and 2 and the two eigenvalues 0 belong to one Jordan
block. Therefore, the perfect shift λ0 = 0 has a single eigenvector x = e4. The
eigenvector method will then use three adjacent permutations to transform e4 to e1
yielding the transformed HH pencil

⎡

⎢⎢⎣

0 −1 −1 0
0 0 0 −2
0 1 0 0
0 0 0 0

⎤

⎥⎥⎦ − λ

⎡

⎢⎢⎣

1 0 0 0
0 0 0 −1
0 1 0 0
0 0 1 0

⎤

⎥⎥⎦ .

The RQZ method, on the other hand, will obtain after the first column rotation G(r)
3

the pencil ⎡

⎢⎢⎣

1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 2

⎤

⎥⎥⎦ − λ

⎡

⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .
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Since Assumption (A3) does not hold, the RQZ method will not be able to introduce
the shift properly in order to move it to the top. Therefore, it will rather attempt to do
an early deflation of the bottom eigenvalue 2.

This example shows that the eigenvector method still works when assumption (A3)
fails, provided xn �= 0.

3.3 Deflating a complex conjugate pair (�0,�0)

We assume now that we are given two complex conjugate eigenvalues (λ0, λ0) of a
regular and unreduced pencil H − λK that is in HH form and therefore has only
real poles. This implies that assumption (A4) holds. Let us represent the eigenvalues
and eigenvectors by their real and imaginary parts : α0 ± ıβ0 and x ± ıy. Then the
eigenvector/eigenvalue equations (H − (α0 ± ıβ0)K )(x ± ıy) = 0 can be expressed
as

HX = K X�, where � :=
[

α0 β0
−β0 α0

]
, X := [

x y
]

(8)

indicating that X spans a two-dimensional deflating subspace of the pencil H − λK .
When multiplying X with an invertible matrix R, the new basis XR can be made
orthonormal and the matrix� then becomes R−1�R, which preserves its eigenvalues,
as expected.

The following theorem extends essentially the ideas of Theorem 1 to the case of a
complex conjugate pair of shifts. Therefore, we restricted the proof to the issues that
are different in the two proofs.

Theorem 2 Let H − λK be a real, regular, proper and unreduced HH pencil with
two complex conjugate eigenvalues (α0 ± ıβ0) of absolute value | λ0 | bounded by 1.
Then the following holds:

1. There exists an “essentially unique” basis X of the two-dimensional deflating
subspace of the eigenvalue pair α0 ± ıβ0 such that

XT X = I2, X =

⎡

⎢⎢⎢⎣

x1 y1
...

...

xn−1 yn−1
0 yn

⎤

⎥⎥⎥⎦ , where xn−1 �= 0, yn �= 0.

Moreover there exists a matrix Q := G(r ,2)G(r ,1), consisting of 2 essentially
unique sequences of Givens rotations

G(r ,i) = G(r ,i)
i . . .G(r ,i)

n+i−3, i = 1, 2

such that their product Q gives the QR factorization X = QT R;
2. There is a matrix Z := G(�,2)G(�,1), consisting of 2 essentially unique sequences

of Givens rotations

G(�,i) = G(�,i)
i . . .G(�,i)

n+i−3, i = 1, 2,
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and a matrix Q := G(r ,2)G(r ,1), consisting of 2 essentially unique sequences of
Givens rotations

G(r ,i) = G(r ,i)
i . . .G(r ,i)

n+i−3, i = 1, 2,

such that the triple (H , K , X), is transformed into an equivalent one

(Ĥ , K̂ , X̂) := (ZHQT , ZK QT , QX),

where X̂ is upper triangular, and (Ĥ − λK̂ ) is in HH form with a leading 2 × 2
block [I2, 0](Ĥ − λK̂ )[I2, 0]T that is decoupled and contains the eigenvalues
α0 ± ıβ0.

Proof Clearly the complex eigenvector x+ ıy has a non-zero last component because
H − λK is unreduced Hessenberg; and hence, the last row of X is nonzero. After the
normalization, this is still the case; and hence, there exists a rotation on the columns of
X that annihilates xn . The fact that xn−1 is then non-zero follows from the properness
assumption (A3): if xn−1 = 0, then there exists a rotation such that

Gn−1

[
0 yn−1
0 yn

]
=

[
0 ŷn−1
0 0

]
implying

[
hn,n−1 hn,n

]
GT

n−1

[
0 ŷn−1
0 0

]
= [

kn,n−1 kn,n
]
GT

n−1

[
0 ŷn−1
0 0

]
�.

So both
[
hn,n−1 hn,n

]
and

[
kn,n−1 kn,n

]
are parallel to the last row of Gn−1 and this

violates assumption (A3). The only degree of freedom left over is a scaling of the
columns of X with ±1. Once the properties of X are established, the existence of the
sequences of Givens rotationsG(r ,i) = G(r ,i)

i , . . . ,G(r ,i)
n−i−1, for i = 1, 2, follow: these

are the rotations needed for the classical QR factorization of X . This then completes
the proof of Item 1.

The proof of Item 2 is very similar to that of Item 2 in Theorem 1, except that n = 2
when using Lemma 3, 4 and 5, and that we need two rotationsG(r ,2)

i+1 G(r ,1)
i to annihilate

the two bottom positions of thematrix X̂ , and then two rotationsG(�,2)
i+1 G(�,1)

i to restore
the Hessenberg form of K if | λ0 |≤ 1 and of H , otherwise. 
�

The reduction described in Theorem 2, transforming an orthogonal basis of the
real and the imaginary part of an eigenvector x corresponding to a complex conju-
gate eigenvalue λ0 into a multiple of [e1, e2] and modifying the matrices H and K ,
is graphically depicted in Fig. 2, for n = 6. We display the evolution of the triple
(H , K , x).

3.4 Perfect shift of a block HH pencil

Let us now consider the case of complex conjugate poles in the pencil H − λK .
We then have a real block-HH pencil where the diagonal blocks of the pole pencil
Hp −λKp are 1×1 or 2×2. Again, we describe the method for a shift λ0 of modulus
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Fig. 2 Graphical description of the reduction of the real and the imaginary parts of an eigenvector corre-
sponding to a complex conjugate eigenvalue to a multiple of [e1, e2]. The matrices H and K were scaled
to have norm 1, and εM -small elements were put equal to zero

smaller or equal to 1. In that case, we assume Kp to be upper-triangular (and hence
K is Hessenberg), while Hp is block triangular (and hence H is block Hessenberg) :

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 H1,2 . . . . . . H1,n−1 H1,n

H2,1 H2,2 . . . . . . H2,n−1 H2,n

H3,2
. . . H3,n−1 H3,n
. . .

. . .
...

...

Hn−1,n−2 Hn−1,n−1 Hn−1,n
Hn,n−1 Hn,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Theorems 1 and 2 are still valid, except that the HH form is now replaced by a
block HH form for the pencil H − λK . We briefly discuss the differences of the
algorithm for both the case of a real shift and a complex conjugate pair. The proofs of
our arguments follow from Lemmas 3, 4, and 5.

3.5 A single real shift

If the bottom block Hn,n−1 is 1× 1 then a single Givens rotation G(r)T
n−1 will rotate the

shift λ0 to position (n, n − 1). If, on the other hand, the bottom block Hn,n−1 is 2× 2,
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two Givens transformations G(r)T
n−1 and G(r)T

n−2 and one Givens rotation G(�)
n−1 have to

be applied to H − λK to move the shift to position (n − 1, n − 2).
After this preliminary step, λ0 is swapped with the next block on the diagonal of

the pole pencil. If this block is 1 × 1 a rotation G(r)T
i−1 followed by a rotation G(�)

i

moves the shift one position up. If this block is 2 × 2, two rotations G(r)T
i−1 and G(r)T

i−2

followed by 2 rotations G(�)
i and G(�)

i−1 moves the shift two positions up.

The RQZ step is finalized by a single rotation G(�)
1 moving the shift to position

(1, 1) in H − λK .

3.6 Two complex conjugate shifts

Here again there are two different starting scenarios. If the bottom block Hn,n−1 is
2 × 2 or if the two bottom blocks are both 1 × 1, then a pair of Givens rotations
G(r ,1)T

n−2 G(r ,2)T
n−1 will move the shifts (λ0, λ0) to a new 2 × 2 block Hn,n−1. If this is

not the case, two pairs of Givens rotations G(r ,1)T
n−2 G(r ,2)T

n−1 and G(r ,1)T
n−3 G(r ,2)T

n−2 and one

pair of Givens rotations G(�,2)
n−2 G

(�,1)
n−1 have to be applied to H − λK to move the pair

(λ0, λ0) to position (n − 1, n − 2).
After this preliminary step, the pair (λ0, λ0) is swapped with the next block on the

diagonal of the pole pencil. If this block is 1 × 1, a pair of rotations G(r ,1)T
i−2 G(r ,2)T

i−1

followed by a pair of rotationG(�,2)
i−1 G(�,1)

i moves the shift one position up. If this block
is 2 × 2, two such pairs of rotations are used to move the pair (λ0, λ0) two positions
up.

The RQZ step is finalized by a single pair of rotations G(�,1)
1 G(�,2)

2 moving the
pair (λ0, λ0) to the (1, 1) block in H − λK .

The graphical description of the former reduction, transforming an orthogonal basis
of the real and the imaginary parts of an eigenvector x corresponding to a complex
conjugate eigenvalue λ0 into a multiple of [e1, e2] and modifying the matrices H and
K , is depicted in Fig. 3, for n = 7. The evolution of the triple (H , K , x) is displayed
in that figure.

4 Approximation of eigenvalue/eigenvector pair

In this section, we show how to find or improve an approximation (λ̃, x̃) to an exact
eigenpair (λ, x) of a pencil H − λK that is in proper HH form. This section applies
to both real and complex eigenvalues. The eigenvalue λ̃ is given as the ratio

λ̃ = α̃/β̃ with |̃α|2 + ∣∣β̃
∣∣2 = 1

and the eigenvector x̃ is supposed to have norm ‖ x̃ ‖2= 1. We want to improve this
approximation by reducing the norm ‖r‖2 of the residual r defined by

(α̃H − β̃K )x̃ =: r, (9)
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Fig. 3 Graphical description of the reduction of the real and the imaginary parts of an eigenvector corre-
sponding to a complex conjugate eigenvalue to a multiple of [e1, e2], with K in Hessenberg form and H in
block Hessenberg form. The matrices H and K were scaled to have norm 1, and εM -small elements were
put equal to zero

where r is assumed to be small, but nonzero. If the vector x̃ is given, then the mini-
mization of ‖r‖2 is equivalent to

min

‖
[
α̃

β̃

]
‖
2

=1

‖ [Hx̃ − K x̃]

[
α̃

β̃

]
‖
2
,

which is a total least squares problem [1] that can be solved by choosing

[
α̃

β̃

]
= v2

using the right singular vector v2 of the singular value decomposition of the matrix

[
H x̃ −K x̃

] = [
u1 u2

] [
σ1 0
0 σ2

] [
v1 v2

]H
.
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If the vectors H x̃ and K x̃ are not parallel, this update is guaranteed to decrease the
norm ‖r‖2 (see [1]).

Let us now suppose that λ̃ is given, then the best choice for x̃ to reduce the residual
‖r‖2 in (9) is the n-th singular vector vn of the singular value decomposition of
M̃ := (α̃H − β̃K ), but this may be too expensive when incorporated in an iteration
where λ̃ and x̃ are updated recursively. A simpler scheme is to apply inverse iteration

z := M̃−1(M̃−1)H x̃, x̃new := z/‖z‖2,

which is again guaranteed to decrease the norm of the residual if the singular values
of M̃ are distinct (see [5]).

The procedure explained in this section, to refine the pair (λ, x) to (λ̃, x̃), is primarily
aimed at improving the residual of a scaled eigenvalue problem, as explained in the
next section.

5 Improving the scaled residual

Let us suppose now that the pair (λ̃, x̃) yields a residual (9) that is of the order of
εM‖(H , K )‖F . The backward error analysis of [6, 7] then shows that we need the
stronger bounds

| ri+1 |≤ εM‖(H , K )‖F‖x̃(i : n)‖2, i = 1, . . . , n − 1 (10)

to ensure that the structured backward error2 of the RQZ step with perfect shift is
also of the order of εM‖(H , K )‖F . This can be achieved as follows. We first update
the eigenvalue using the procedure explained in Sect. 4. This will already reduce the
residual. For simplicity, we do not change the notation for this simple step. Then define
the vector d as

d1 = 1, di+1 = 2round log2 ‖x̃(i :n)‖2 ,

then di+1/
√
2 ≤ ‖x̃(i : n)‖2 ≤ di+1

√
2 and the vector d is non-increasing (i.e.

di+1 ≤ di ) since ‖x̃(i : n)‖2 ≤ ‖x̃(i − 1 : n)‖2. Also the pencil matrices

Hd := D−1HD, Kd := D−1K D, with D := diag(d1, . . . , dn)

satisfy the bounds

‖(Hd , Kd)‖F ≤ γ ‖(H , K )‖F , where γ := max
1≤i≤n−1

di/di+1 ≥ 1,

and the equation
(α̃Hd − β̃Kd)D

−1x̃ = D−1r.

2 A structured backward error of an HH pencil is one that has zero elements where the pencil has zero
elements.
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The scaled subvectors of x̃d := D−1x̃ then have approximately the same norm (see
Appendix Scaling) :

1

γ
√
2

≤ ‖x̃d(n − 1 : n)‖2 ≤ . . . ≤ ‖x̃d(1 : n)‖2 ≤ √
2n,

which implies that the norm of x̃d is of the order of 1. After performing one step
of inverse iteration on x̃d to improve that computed eigenvector, we obtain a scaled
residual rd,new = (α̃Hd − β̃Kd)x̃d,new satisfying (for a moderate value of c)

‖rd,new‖2 ≤ cεM‖(Hd , Kd)‖F ≤ cγ εM‖(H , K )‖F .

Multiplying the above equation with D yields in the original coordinate system

x̃new := Dx̃d,new, r̃new := Drd,new, (α̃H − β̃K )x̃new = r̃new.

The (i + 1)-th element of r̃new then satisfies the required bound since

eTi+1r̃new = di+1eTi+1rd,new ≤ di+1‖rd,new‖2 ≤ cγ di+1εM‖(H , K )‖F .

If the constant factor cγ is large, the scaled refinement step may not yield the
expected error bound (10) and an additional refinement step may be needed. In the
numerical experiments section, we show that one step of refinement often yields a
satisfactory result.

The above method can also be applied to complex eigenvectors, but its impact of
the properties of a real deflating subspace X used in the case of complex conjugate
pairs of eigenvalues is not clear.

The efficacity of the above approximations, and their use for complex conjugate
pairs, is verified in the “Numerical results” section.

6 Numerical results

In this section, we report some numerical experiments. All the computations were
performed with Matlab ver. R2022a with machine precision εM ≈ 2.22 ×
10−16.

We consider 10,000 HH matrix pencils (H (i), K (i)), of size 100, with pseudo-
random values drawn from the standard normal distribution (generated by the function
randn of Matlab) as entries, and scaled such that ‖H (i)‖2 = ‖K (i)‖2 = 1. For
each matrix, we randomly pick a real and a complex conjugate eigenpair (λ(i), x(i)),

and apply the perfect shift technique to deflate that particular eigenvalue from the
matrix pencil obtaining the new HH matrix pencils (H̃ (i), K̃ (i)). Furthermore, we
also apply the improved scaled residual approach, described in Sect. 5, to compute a
better approximation of the eigenpair, obtaining (λ̂(i), x̂(i)), and deflate it by means
of the perfect shift technique obtaining the HH matrix pencils (Ĥ (i), K̂ (i)).
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We define b(i) = 1/
√
1 + λ(i)2 , a(i) = λ(i) b(i), b̂(i) = 1/

√
1 + λ̂(i)2 , â(i) =

λ̂(i) b̂(i). Moreover, we adopt the Matlab function tril(F, k) to denote the lower
triangular part of the matrix F below the kth subdiagonal.

The results are depicted in the histograms displayed in the following pictures. In
each figure, the histogram to the left refers to the matrices (H̃ (i), K̃ (i)), while the one
to the right refers to the HH matrix pencils (Ĥ (i), K̂ (i)).

The first five figures concern the deflation of a real eigenpair, while the last three
figures refer to the complex conjugate case.

InFig. 4, the histogramsof log10

√
c̃(i)
1 + c̃(i)

2 (left),with c̃(i)
1 = ‖tril(H̃ (i),−2)‖22

+‖tril(K̃ (i),−2)‖22, and c̃(i)
2 =| H̃ (i)

2,1 |2 + | K̃ (i)
2,1 |2, and log10

√
ĉ(i)
1 + ĉ(i)

2 (right),

with ĉ(i)
1 = ‖tril(Ĥ (i),−2)‖2 + ‖tril(K̂ (i),−2)‖2 and ĉ(i)

2 =| Ĥ (i)
2,1 |2 + |

K̂ (i)
2,1 |2, are displayed. It can be noticed that if the improved scaled residual approach

is not applied, the part below the first subdiagonal of the computed HH matrices often
gets blurred.

In Fig. 5, the histograms of log10 | bH̃1,1−aK̃1,1 | (left) and log10 | b̂ Ĥ1,1−â K̂1,1 |
(right), are displayed.

In Fig. 6, the histograms of the logarithms of the residuals log10 ‖(aK̃ − bH̃)x‖2
(left) and log10 ‖(â K̂ − b̂ Ĥ)x̂‖2 (right), are displayed.

The histograms in Fig. 7 show the accuracy of the poles in the HH matrices
after deflation. In particular, using the definition p j = Hj+1, j/K j+1, j , p̃ j =

Fig. 4 Histograms of log10

√
c̃(i)1 + c̃(i)2 (left), with c̃(i)1 = ‖tril(H̃ (i), −2)‖22 + ‖tril(K̃ (i),−2)‖22,

and c̃(i)2 =| H̃ (i)
2,1 |2 + | K̃ (i)

2,1 |2, and log10

√
ĉ(i)1 + ĉ(i)2 (right), with ĉ(i)1 = ‖tril(Ĥ (i), −2)‖2 +

‖tril(K̂ (i), −2)‖2 and ĉ(i)2 =| Ĥ (i)
2,1 |2 + | K̂ (i)

2,1 |2, real eigenvalue
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Fig. 5 Histograms of log10 | bH̃1,1 − aK̃1,1 | (left) and log10 | b̂ Ĥ1,1 − â K̂1,1 | (right), real eigenvalue

H̃ j+2, j+1/K̃ j+2, j+1, and p̂ j = Ĥ j+2, j+1/K̂ j+2, j+1, j = 1, . . . , n − 2, the values

of log10 max j
|p j− p̃ j |

|p j | (left) and log10 max j
|p j− p̂ j |

|p j | (right), are displayed.
The next three figures report the histograms corresponding to the complex conjugate

eigenvalue pair (λ(i), λ̄(i)). The histograms of log10

√
c̃(i)
1 + c̃(i)

2 (left), with c̃(i)
1 =

Fig. 6 Histograms of the logarithms of the residuals, log10 ‖(aK−bH)x‖2 (left) and log10 ‖(âK−b̂H)x̂‖2
(right), real eigenvalue
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Fig. 7 Accuracy of the poles in the HH matrices after deflation, real eigenvalue

‖tril(H̃ (i),−2)‖22 + ‖tril(K̃ (i),−2)‖22, and c̃(i)
2 =| H̃ (i)

2,1 |2 + | K̃ (i)
2,1 |2, and

log10

√
ĉ(i)
1 + ĉ(i)

2 (right), with ĉ(i)
1 = ‖tril(Ĥ (i),−2)‖2+‖tril(K̂ (i),−2)‖2 and

ĉ(i)
2 =| Ĥ (i)

2,1 |2 + | K̂ (i)
2,1 |2, are displayed in Fig. 8. Similar to the real case, it can be

Fig. 8 Histograms of log10

√
c̃(i)1 + c̃(i)2 (left), with c̃(i)1 = ‖tril(H̃ (i), −2)‖22 + ‖tril(K̃ (i),−2)‖22,

and c̃(i)2 =| H̃ (i)
2,1 |2 + | K̃ (i)

2,1 |2, and log10

√
ĉ(i)1 + ĉ(i)2 (right), with ĉ(i)1 = ‖tril(Ĥ (i), −2)‖2 +

‖tril(K̂ (i), −2)‖2 and ĉ(i)2 =| Ĥ (i)
2,1 |2 + | K̂ (i)

2,1 |2, complex conjugate eigenpair
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Fig. 9 Histograms of the logarithms of the residuals log10 ‖(ãK − b̃H)x‖2 (left) and log10 ‖(â K̂ − b̂ Ĥ)x̂‖2
(right), complex conjugate eigenpair

noticed that if the improved scaled residual approach is not applied, the part below the
first subdiagonal of the computed HH matrices gets blurred.

In Fig. 9, the histograms of the logarithms of the residuals log10 ‖(aK − bH)x‖2
(left) and log10 ‖(âK − b̂H)x̂‖2 (right), are displayed.

Fig. 10 Accuracy of the poles in the HH matrices after deflation, complex conjugate eigenpair
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The histograms in Fig. 10 display the accuracy of the poles in the HH matri-
ces after deflation. In particular, using the definition p j = Hj+1, j/K j+1, j , p̃ j =
H̃ j+3, j+2/K̃ j+3, j+2, and p̂ j = Ĥ j+3, j+2/K̂ j+3, j+2, j = 1, . . . , n − 3, the values

of log10 max j
|p j− p̃ j |

|p j | (left) and log10 max j
|p j− p̂ j |

|p j | (right), are displayed.

Appendix

A. Deflations and perturbations

In this section, we assume that the pencil H − λK has coefficients of norm bounded
by 1, that X has full column rank and has norm bounded by 1, and that � is a square
matrix with spectral radius bounded by 1. Therefore, when applying orthonormal
transformations to H , K or X , the numerical errors will be of the order of εM .We show
how the perfect shift propagates in the backward RQZ step by tracking the residual of
the deflating subspace equation R := HX − K X�. When applying the orthonormal
transformations Q and Z , the residual R changes to a new residual R̂ := Ĥ X̂− K̂ X̂�,
which can be evaluated as follows. Let us superpose the errors performed during the
transformations on the data X , H , and K :

X̂ := Q(X + 
X ), K̂ := Z(K + 
K )QT , Ĥ := Z(H + 
H )QT ,

then
R̂ = Z [R + 
H X + H
X − (
K X + K
X )�] + O(ε2M )

which shows they are of the same order of magnitude, provided ‖�‖2 is of the order
of 1.

Lemma 3 Let H X = K X�, where the pencil H − λK is k × (k + 1) and the matrix
X is (k + 1) × n, where the matrix K X and hence also X, have full column rank n
and the n × n matrix � has spectral radius bounded by 1. If Q is an orthonormal

transformation satisfying X̂ := QX =
[
X̂1
0

]
where X̂1 is n × n and invertible, and

then we partition

Ĥ − λK̂ := (H − λK )QT = [
Ĥ1,1 Ĥ1,2

] − λ
[
K̂1,1 K̂1,2

]
,

where the pencil Ĥ1,1 − λK̂1,1 is n × n, then the resulting equation

[
Ĥ1,1 Ĥ1,2

] [
X̂1
0

]
= [

K̂1,1 K̂1,2
] [

X̂1
0

]
�

implies that the spectrum of the pencil Ĥ1,1 − λK̂1,1 is that of the matrix �.

Proof This follows immediately from Ĥ1,1 X̂1 = K̂1,1 X̂1� and the fact that K̂1,1 X̂1
has full rank n. 
�
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Lemma 4 Let H X = K X� where the (k+n)× (k+n) pencil H −λK is regular, the
(k+n)×n matrix X has full column rank n and the n×n matrix� has spectral radius

bounded by 1. If Q is an orthonormal transformation satisfying X̂ := QX =
[
X̂1
0

]

where X̂1 is n × n and invertible, and Z is an orthonormal matrix such that

K̂ := ZK QT =
[
K̂1,1 K̂1,2

0 K̂2,2

]
, Ĥ := ZHQT =

[
Ĥ1,1 Ĥ1,2

Ĥ2,1 Ĥ2,2

]
,

where K̂1,1 is n × n, then the resulting equation

[
Ĥ1,1 Ĥ1,2

Ĥ2,1 Ĥ2,2

] [
X̂1
0

]
=

[
K̂1,1 K̂1,2

0 K̂2,2

] [
X̂1
0

]
�

implies that Ĥ2,1 = 0 and the spectrum of the pencil Ĥ1,1−λK̂1,1 is that of the matrix
�. The correponding deflating subspace has then been transformed to the top block.
If, on the other hand, there is a nonzero residual R̂ := Ĥ X̂ − K̂ X̂� then ‖Ĥ2,1‖2 =
O(εM ) and Ĥ2,1 can safely be dismissed if ‖R̂ X̂−1‖2 = O(εM ).

Proof The result with zero residual follows from the equation Ĥ2,1 X̂1 = 0. The
result with nonzero residual follows from Ĥ2,1 X̂1 = [

0 Ik
]
R̂, which isO(εM ) when

‖R̂ X̂−1
1 ‖2 = O(εM ). 
�

Lemma 5 Let H X = K X� where H − λK is a (n + 1) × n pencil and the n × n
matrix X has full rank n and � has spectral radius bounded by 1. Let Z be an

orthonormal matrix such that K̂ := ZK =
[
K̂1,1
0

]
, where K̂1,1 is n × n, then

Ĥ := ZH =
[
Ĥ1,1
0

]
and the spectrum of Ĥ1,1 − λK̂1,1 is that of the matrix �.

If, on the other hand, there is a nonzero residual R̂ := Ĥ X̂ − K̂ X̂� then ‖Ĥ2,1‖2 =
O(εM ) and Ĥ2,1 can safely be dismissed if ‖R̂ X̂−1

1 ‖2 = O(εM ).

Proof This follows immediately from Ĥ2,1 X̂ = [
0 Ik

]
R̂. 
�

B. Scaling

Lemma 6 Let x̃n �= 0, then the scaling d1 = 1, di+1 = 2round log2 ‖x̃(i :n)‖2 and scaled
vector x̃d of the normalized vector x̃, satisfies d1 ≥ . . . ≥ dn and

1

γ
√
2

≤ ‖x̃d(n − 1 : n)‖2 ≤ . . . ≤ ‖x̃d(1 : n)‖2 ≤ √
2n.
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Proof Clearly, each element of x̃d is upper bounded by
√
2 because of the rounding,

and therefore ‖x̃d(i : n)‖2 ≤ √
2n. The smallest of the subvectors ‖x̃d(n − 1 : n)‖2

is lower bounded by

1/(γ
√
2) ≤ dn/(dn−1

√
2) ≤ ‖x̃(n − 1 : n)‖2/dn−1 ≤ ‖x̃d(n − 1 : n)‖2.
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