
Towards Model Checking Video Streams using
VoxLogicA on GPUs⋆

Laura Bussi �1,2[0000−0003−1292−4086], Vincenzo Ciancia2[0000−0003−1314−0574],
Fabio Gadducci1[0000−0003−0690−3051], Diego Latella2[0000−0002−3257−9059], and

Mieke Massink2[0000−0001−5089−002X]

1 Università di Pisa, Dipartimento di Informatica
laura.bussi@phd.unipi.it fabio.gadducci@unipi.it

2 Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie
dell’Informazione “A. Faedo”

{l.bussi, v.ciancia, d.latella, m.massink}@isti.cnr.it

Abstract. We present a feasibility study on the use of spatial logic
model checking for real-time analysis of high-resolution video streams
with the tool VoxLogicA. VoxLogicA is a voxel-based image analyser
based on the Spatial Logic for Closure Spaces, a logic catered to deal
with properties of spatial structures such as topological spaces, graphs
and polyhedra. The underlying language includes operators to model
proximity and reachability. We demonstrate, via the analysis of a se-
ries of video frames from a well-known video game, that it is possible
to analyse high-resolution videos in real-time by exploiting the speed-up
of VoxLogicA-GPU, a recently developed GPU-based version of the tool,
which is 1-2 orders of magnitude faster than its previous iteration. Po-
tential applications of real-time video analysis include medical imaging
applications such as ultrasound exams, and other video-based diagnostic
techniques. More broadly speaking, this work can be the first step to-
wards novel information retrieval methods suitable to find information
in a declarative way, in possibly large collections of video streams.

1 Introduction

The topological approach to Spatial Model Checking, introduced in [8, 9], pro-
vides tools and techniques, typical of the Formal Methods community, for the
analysis of graph-based spatial data. Some early, prominent applications of the

⋆ Research partially supported by the MIUR Project PRIN 2017FTXR7S IT-
MaTTerS”.
The authors are listed in alphabetical order, as they equally contributed to this work.
This is a post-print of the paper “Towards Model Checking Video Streams Using
VoxLogicA on GPUs”, by L. Bussi, V. Ciancia, F. Gadducci, D. Latella, and M.
Massink. In: J. Bowles, G. Broccia, R. Pellungrini (editors) From Data to Models
and Back. Lecture Notes in Computer Science, vol. 13268. Springer, Cham. pp. 78
-90, Springer, 2022, available at: https://link.springer.com/chapter/10.1007/978-3-
031-16011-0 6

2 Bussi, Ciancia, Gadducci, Latella, Massink

technique can be found in the area of Smart Cities and Smart Transportation
(see [13, 12], and also the more recent work in [15]). The spatial model check-
ing approach of VoxLogicA3 (see [4] and the tutorial [11]) aims at encoding
Expert Knowledge in executable form in the domain of Medical Imaging. The
focus is on procedures that are intelligible by domain experts and not solely by
programmers. By design, this idea can operate in conjunction with other forms
of analysis; for instance, a VoxLogicA procedure could be used to delimit a larger
area within which a Machine Learning procedure can be used to provide a more
detailed analysis. This would give rise to a form of Hybrid Artificial Intelligence.
Such larger areas could reflect specific domain oriented guidelines or analysis
protocols, for example to make sure that the Machine Learning procedure fo-
cuses on the right region of interest to reduce the number of false positives. The
spatial model checker VoxLogicA automatically computes the result of ImgQL
(Image Query Language) queries on (possibly large) image datasets.

In [4], a ten-lines-long ImgQL specification was used for the segmentation
of Glioblastoma, a common form of brain tumour, in circa 200 cases from the
2017 “Brain Tumour Segmentation (BraTS) challenge” dataset. Spatial Model
Checking is fast, and specifications are intelligible to domain experts and can be
discussed in the wider community for further improvement. In terms of accuracy,
the procedure scores among the top ranking methods of BraTS 2017 – the state
of the art in the field, currently dominated by machine-learning methods – and
it is comparable in quality to manual delineation by human experts (see [4] for
further details comparing our results with the 18 alternative techniques used
in BraTS 2017 that were applied to at least 100 cases of the dataset). The
segmentation procedure takes only a few seconds per case to complete.

In [3], VoxLogicA has been used for skin lesions segmentation, which is the
first task in melanoma diagnosis. An ImgQL procedure was applied to images
of skin lesions from two datasets released by ISIC (International Skin Imaging
Collaboration) for the 2016 challenge – a training set (900 images) and a test
set (379 images) – obtaining results, in terms of accuracy and computational
efficiency, in line with the state of the art.

Graphical Processing Units (GPUs) are high-performance, massively parallel
computational devices that are available in various sizes (and computing power),
in diverse machines ranging from smart phones, tablets, laptops, workstations
to large-scale cloud-based computing facilities. GPU computing differs from the
multi-core paradigm of modern CPUs in many respects: the execution model is
Single Instruction Multiple Data; the number of computation cores is high; the
memory model is highly localised and synchronisation among parallel threads is
very expensive. In [7] a GPU-based version of VoxLogicA was introduced. The
obtained speedup on synthetic benchmarks, using an office workstation equipped
with a good consumer GPU, was between one and two orders of magnitude.
The main challenges that were faced in [7] concerned the minimisation of the
expensive read/write operations from and to the GPU memory, and turning each

3 VoxLogicA is Free and Open Source Software. Source code and binaries are available
at https://github.com/vincenzoml/VoxLogicA.

Towards Model Checking Video Streams using VoxLogicA on GPUs 3

algorithm into a massively parallel one. To date, VoxLogicA-GPU implements
the core logical primitives of VoxLogicA on GPU, including reachability (based
on connected component labelling). Such effort shares some motivation with a
recent trend on implementing formal methods on GPU [5, 19, 20, 16, 17].

The work in [3, 4] concerns the analysis of individual images. In our future
work, we are interested in extending the technique to the analysis of medical
imaging applications, such as ultrasound exams, and other video-based diagnos-
tic techniques in real time. Such analysis would require processing of videos in
real time. This paper presents a case study that aims at investigating whether
spatial model checking can be used to analyse high-resolution videos in real-
time. As we shall see, the GPU implementation is the key to achieve this. Since
VoxLogicA cannot yet load videos directly, our experiments operate on indi-
vidual video frames, saved on disk as separate png images, but these frames are
loaded in a single model-checking session in batches (say, each one corresponding
to 5 seconds of video) in order to maximise throughput. Loading single frames
introduces a high overhead due to loading and saving separate files. Therefore in
order to measure the “real” execution time, we defined a strategy to mitigate the
impact of such overhead, which will not be present e.g., if frames are streamed
from a webcam. After this, we demonstrate that the GPU implementation op-
erates in real-time with large margins for future improvement.

As an abstract, but still feature-rich, example, we use a video of the Pac-Man
video game4. The results show that with the spatial model checking approach
we are able to precisely identify the video frames where interesting aspects of
gameplay are present.

The paper is organised as follows. Section 2 provides the relevant background
on spatial model checking. Section 3 presents the experimental set-up and Sec-
tion 4 presents the results. Section 5 concludes the work and provides an outlook
on further research.

2 Background: Spatial Model Checking on GPU

We briefly review the syntax of the Spatial Logic for Closure Spaces (SLCS),
defined in [8, 9], and its interpretation, restricted to the case of two-dimensional
images which is currently handled by VoxLogicA-GPU. For the general definition
on so-called closure spaces, and the link between (multi-dimensional) images,
graphs, closure spaces and topological spatial logics we refer the reader to [9, 1,
4]. The syntax of the logic we use in this paper is its most up-to-date rendition,
where the surrounded connective from [9] is a derived one, whereas reachability
is primitive, as in [2, 10, 14]. Given set P of atomic propositions, with p ∈ P , the
syntax of the logic is described by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Nϕ | ρ ϕ1[ϕ2] (1)

The logic is interpreted on the pixels of an image M of fixed dimensions. The
truth values of a formula ϕ on all the pixels can be rendered as a binary image of

4 PAC-MAN™ & ©1980 BANDAI NAMCO Entertainment Inc.

4 Bussi, Ciancia, Gadducci, Latella, Massink

the same dimensions of M. Therefore, in particular, atomic propositions cor-
respond to binary images. However, concretely, when working on images, atomic
propositions also include constraints (e.g., thresholds) on imaging features, such
as intensity, or red, green, blue colour components. Boolean operators are
defined pixel-wise: ¬ϕ is the complement of the binary image representing ϕ,
and ϕ1 ∧ ϕ2 is binary image intersection. The modal formula Nϕ is satisfied
by a pixel x that shares a vertex or an edge with any of the pixels that satisfy
ϕ (adopting the so-called Moore neighbourhood); in imaging terminology, this is
the dilation of the binary image corresponding to ϕ. The reachability formula
ρ ϕ1[ϕ2] is satisfied by a pixel x if there is a pixel y, a path π and an index ℓ such
that π0 = x, πℓ = y, y satisfies ϕ1, and all the intermediate pixels π1, . . . , πℓ−1

(if any, hence the notation for optional [...]) satisfy ϕ2.
Note that Nϕ can be derived from ρ, and viceversa. In this paper we use N
explicitly because of its specific implementation in the tool.
From the basic operators, several interesting notions can be derived, such as:

– interior corresponding to the imaging primitive of erosion;
– surroundedness ;
– contact between regions (see also [10]) denoted as T (from ‘touch’).

Concerning region based analysis, the discrete Region Connection Calculus
RCC8D of [18] has been encoded in a variant of SLCS with operators on sets of
points instead of single points [10].

In ImgQL, the input language of VoxLogicA, these operators have their own
syntax. In particular, in the context of the present work we will use:

– |, &, ! for the boolean operators disjunction, conjunction and negation,
respectively;

– N for the near operator;
– I for the interior operator, where I (x) = !(N !x);
– mayReach(x,y) for the reachability operator ρ x [y];
– touch(x,y) = a & mayReach(y,x) for the contact operator;
– .<= , .>= and so on for constraints involving constant bounds (on the side

of the dot) and pixel attributes such as intensity or colour.

The tool VoxLogicA-GPU is a global, explicit state model checker for SLCS,
aiming at high efficiency and maximum portability. VoxLogicA-GPU is imple-
mented in FSharp, using the Microsoft dotnet infrastructure, and exploiting the
imaging library SimpleITK and the portable GPU computing library OpenCL5.

Efficiency is one of the major challenges, as outperforming the CPU imple-
mentation of VoxLogicA [4] inherently means designing in-GPU imaging primi-
tives faster than the state-of-the-art library ITK. The focus of the first release
of VoxLogicA-GPU has been on demonstrating its scalability. The tool takes as
input an ImgQL specification and automatically creates a computing pipeline,

5 FSharp: see https://fsharp.org. NET Core: see https://dotnet.microsoft.om.
OpenCL: see https://www.khronos.org/opencl. ITK: see https://itk.org.

Towards Model Checking Video Streams using VoxLogicA on GPUs 5

consisting of a set of tasks to be run. Each task corresponds to a basic primitive
(including SLCS operators, and basic imaging primitives such as thresholds).
Each arrow denotes a dependency between two tasks, namely that the output
of the source task should be fed as the input to the target one. Such task graph
is then sent to the GPU, exploiting the so-called events mechanism of OpenCL
to describe the dependencies. The pipeline is then run on the GPU, respecting
the input/output dependencies created by the events mechanism, but otherwise
without a specified order.

3 Experimental Setup

The huge speedup attained with the switch to GPUs is theoretically capable of
processing video streams in real time. Our work aims at verifying up to which
extent this is true using VoxLogicA-GPU, and at establishing preliminary use
cases for experimentation. Video streams are composed of several frames, each
one capturing an instant of a whole scene.

Our envisaged future applications mainly concern two scenarios: that of med-
ical imaging, as mentioned in the introduction, and the field of smart transporta-
tion (see e.g. [12]). However, first of all a preliminary study is needed, in order to
assess effectiveness of the proposed method, e.g. in terms of complexity of logic
formulas, interesting logical operators, and so on.

To this aim, we propose an example based on a video game, namely Pac-Man.
We provide here a detailed description of the experimental setting, including how
execution times are measured, and why we chose to use a footage of a video game
as a benchmark.
Pac-Man is a famous 2D video game, released in 1980 by Bandai-Namco. The
main character is Pac-Man, represented by a yellow circle, whose goal is to eat
all the dots in a maze, avoiding to be captured by the coloured ghosts (Blinky,
Pinky, Inky and Clyde) following him. Pac-Man can also eat energiser pellets
(bigger, blinking dots on the same path as the smaller dots) to gain in turn
the ability to catch ghosts. Once caught by Pac-Man, ghosts will re-appear in
the centre of the maze. There are various reasons why this simple video game
represents an interesting benchmark. The topology of the space remains the
same over time, but there are several entities appearing and disappearing. These
entities can be effectively specified via a declarative procedure. For this reason,
the analysis does not require any kind of preprocessing: video footages have been
recorded and split into multiple frames in the png format, and then processed
directly using VoxLogicA.

The ImgQL specification of the game elements is shown in Specification 1.
Pac-Man is yellow. This is specified by thresholds on the intensity of the red,
green and blue components of each pixel. Similarly, for the ghosts and the dots
and energiser pellets.

As can be observed in a typical video frame of the game (see Fig. 1), any
auxiliary lives of Pac-Man are indicated by small Pac-Man images at the bottom
of the frame. Pac-Man itself is inside the maze, so sufficiently far from the border

6 Bussi, Ciancia, Gadducci, Latella, Massink

ImgQL Specification 1: Pac-Man game elements.

1 //find all characters and other elements

2 let pacmans = (252 .<= red(img)) & (252 .<= green(img)) &

3 (10 .>= blue(img))

4 let blinky = (250 .<= red(img)) & (10 .>= green(img)) &

5 (10 .>= blue(img))

6 let pinky = (250 .<= red(img)) & (175 .<= green(img)) &

7 (190 .>= green(img)) & (245 .<= blue(img))

8 let inky = (15 .>= red(img)) & (240 .<= green(img)) &

9 (240 .<= blue(img))

10 let clyde = (240 .<= red(img)) & (190 .>= green(img)) &

11 (165 .<= green(img)) & (90 .>= blue(img))

12 let dotsAndPellets = (240 .<= red(img)) & (200 .>= green(img)) &

13 (175 .<= green(img)) & (190 .>= blue(img)) &

14 (165 .<= blue(img))

of the frame. In ImgQL ‘border’ is an atomic proposition that holds at all pixels at
the extremes of the image. So, Pac-Man itself can be characterised by satyisfing
the formula pacmans, but being sufficiently far from the border, i.e. not touching
an area composed of pixels that are at a distance of less than 12 pixels from the
border. The ImgQL specification is shown in Specification 2.

ImgQL Specification 2: Active Pac-Man.

1 let N12 (x) = N N N N N N N N N N N N x

2 let pacman = (pacmans & !touch(pacmans, N12 (border)))

Pellets and dots have the same colour, but pellets are larger than dots. This
information can be used to distinguish them. Taking the area characterised by
dotsAndPellets and shrinking this area in several steps using the interior oper-
ator results in an area comprising only the inner parts of the bigger pellets. The
pellets themselves can then be retrieved by extending the thus obtained area by
pixels near the remaining area (i.e. centres of the pellets) within 4 steps. This is
shown in the second line of Specification 3. The dots are those pixels satisfying
dotsAndPellets that are not satisfying pellets. Figure 1.3 shows the result of
dots, and Figure 1.4 shows the result of pellets. As we will see, we need to
introduce the concept of “uninterrupted paths of dots”, specified via the formula
auxDots, consisting of all pixels that are at most 13 steps (13 times N) from a
dot (including dots themselves). Figure 1.5 shows all pixels satyisfing auxDots.

The key points of the game constitute interesting spatial properties. Let’s
focus on the behaviour of ghosts: each of them will try to catch Pac-Man, fol-
lowing different routes. We can specify the situation in which Pac-Man is caught
by a ghost using ImgQL as follows:

Towards Model Checking Video Streams using VoxLogicA on GPUs 7

ImgQL Specification 3: Dots and pellets.

1 let N13 (x) = N N N N N N N N N N N N N x

2 let pellets = N N N N I I I dotsAndPellets

3 let dots = N N (dotsAndPellets & !pellets)

4 let auxDots = N13 (dots)

touch(pacman, blinky) | touch(pacman, pinky)

| touch(pacman, inky) | touch(pacman, clyde)

Another significant property, involving reachability, is the fact that Pac-Man
can follow a path of dots and reach a pellet (recall that for a game level to be
completed, Pac-Man is required to eat all dots in the maze):

touch(pacman, mayReach(pellets, auxDots))

Intuitively, the property is true if Pac-Man “touches” the beginning of a path
of dots leading to a pellet. This is shown in Specification 4. In the second line
of the specification the operator mayReach is used, denoting the ρ-operator of
SLCS. auxReach is satisfied by all pixels of pellets and paths formed by enlarged
dots as specified in the last line of Specification 3. In the last line one only needs
to check whether Pac-Man touches the pixels identified by auxReach.

ImgQL Specification 4: Pac-Man reaches pellets and Pac-man caught by ghost.

1 let auxReach = mayReach(pellets, auxDots)

2 let result = touch(pacman, auxReach)

3 let caught = touch(pacman, blinky) | touch(pacman, pinky) |

touch(pacman, inky) | touch(pacman, clyde)

This concludes the ImgQL specification of the spatial analysis for Pac-Man.
The intermediate results of all definitions can be saved separately and numerical
information on each frame can be printed as shown in Specification 5. This is
how the images in Figure 1 have been obtained.

In order to check the results for each frame, a simple Python script has
been written. The script accepts as input a specification fragment such as the
ones we have shown so far, and generates a (possibly very large) VoxLogicA

specification that repeats the given fragment for each video frame, loading each
time a different one. In order to identify the result of the analysis on different
frames, the placeholder ($NUMFRAME) can be used when naming the result values
(see also the last line in Specification 5). This placeholder will be replaced with
the number of the frame by the Python script while generating the specification.
Note also that the result can be both saved as an image or printed as a boolean

8 Bussi, Ciancia, Gadducci, Latella, Massink

ImgQL Specification 5: Saving and printing.

1 save "00 pacman.png" pacman

2 save "01 dots.png" dots

3 save "02 pellets.png" pellets

4 save "03 auxDots.png" auxDots

5 save "05 result.png" result

6 print "pathToPellets $NUMFRAME" volume(result) .>. 0

7 print "pacmanCaught $NUMFRAME" volume(caught) .>. 0

value. The boolean image False corresponds to a completely black image, so we
can print the truth value of the formula volume(resultImage) . > . 0. As the
volume of an image is the sum of its non-zero components, the result will clearly
mirror the truth value of the formula. All tests were performed on a workstation
equipped with:

– An Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz (16 cores, 32 threads);
– An NVIDIA GeForce RTX 3080 1785MHz, 10GB global memory.

Each test has been run 5 times, in such a way to get an approximate aver-
age running time. In our experimental setup, execution times cannot be mea-
sured directly by just running the specification. The fact that our video has
been expanded to single frames on disk makes input/output times dominate
over computation, thus rendering it impossible to measure in a direct way how
much time exactly is spent on computation. To overcome this, VoxLogicA and
VoxLogicA-GPU have been modified to accept a command line switch that will
let the tool load just one image and reuse it multiple times. Note that this
methodology is only used to measure performance and gives a good approxima-
tion of the processing time, whereas the loading time is negligible, as only one
image is loaded. By carefully choosing, as the representative image, one that
exhibits a reasonable complexity, the obtained measurements are representative
enough to get a sensible indication of the total computation time. In future work,
we will cater for loading video files directly, and unpacking each video frame in
memory using optimized (possibly in-hardware) functionality, so that on the one
hand, loading of single frames from disk will no longer affect video processing in
VoxLogicA-GPU, and on the other hand the model checking result will be correct.
By the above considerations, we expect the obtained performance to be in line
with the measurements that we present in this paper.

4 Results

In this section, we report the results of our experiments. We recall that both the
CPU and the GPU versions are tested against contact and reachability formulas,
as described in the previous section. In the considered frame (Figure 1.1), there

Towards Model Checking Video Streams using VoxLogicA on GPUs 9

is a way for Pac-Man to reach the bottom-right pellet by only eating dots, thus
the result image will highlight Pac-Man.

We restricted the tests to a benchmark of 150 frames. This is due to the
fact that the CPU version of VoxLogicA does not feature any kind of memory
management mechanism, thus it suffers from memory limits (on the other hand
the memory management mechanism embedded in VoxLogicA-GPU allows for
larger tests to be run). Videos are RGBA videos, with a resolution of 1600x1200
and 30fps, namely, 150 frames capture circa 5 seconds. In Table 1, execution
times for the above mentioned formula are reported.

Table 1. Comparison between CPU and GPU execution times, reported in millisec-
onds.

Execution time of sample formulas (150 frames)

Formula GPU CPU

Pac-Man is caught by a ghost (caught) 3,800ms 12,200ms
Pac-Man can reach a pellet via dots (result) 3,000ms 54,000ms

The comparison of results shows that using GPUs enable real-time analysis.
In this case, we load a pre-recorded video, but our results suggest that monitoring
video streaming might be feasible using our technology. It is also interesting to
note that the more involved formula actually requires less time on GPU than
the simpler collision detection one. This type of results, that may be counter
intuitive, depends on the operators involved in the computation:

– in the reachability formula result, connected components are computed
only once per frame, namely to check if the desired path exists, and “prox-
imity” operators, like Interior and Near, are massively used to find dots and
pellets and to enlarge them, in such a way that they form a path. GPUs
are more beneficial to this kind of operators, as devices’ parallelism can be
exploited at its best.

– in the collision detection formula caught, connected components must be
computed four times for each frame; in fact, we must compute touch (which
requires computing Connected Components) between Pac-Man and each
ghost. Such computation affects the performance of the GPU, as multiple
kernels must be called and randomised write and read on the global device
memory are required.

Despite these considerations, the execution time stays far below the required
real-time threshold. Note that currently it is not possible to state spatio-temporal
properties in ImgQL, and no temporal analysis is performed in VoxLogicA. We
leave the possibility to add temporal operators as a future work, possibly still
exploiting GPUs.

One may have noted that step 5 in Figure 1 could cause some false positives.
This is due to the fact that enlarging dots using the Near operator causes the

10 Bussi, Ciancia, Gadducci, Latella, Massink

1: Original frame 2: 00 pacman.png

3: 01 dots.png 4: 02 pellets.png

5: 03 auxDots.png 6: 05 result.png

Fig. 1. Analysis of a video frame (1). Using thresholds, we isolate Pac-Man (2), dots
(3) and energy pellets (4). We then enlarge dots in such a way that they touch each
other, thus forming a path (5). The result for the formula Pac-Man can reach a pellet
via dots represents Pac-Man itself (6), as it touches a path leading to a pellet.

paths to touch each other in proximity of pellets. This can be actually avoided
by replacing Near with a distance operator based on Euclidean distance (see
Figure 2), whose implementation is currently in progress on VoxLogicA-GPU.

Another interesting point to note is GPU memory and cores occupation.
Figure 3 shows that the GPU load is actually quite low. The nvtop tool, which is
used to monitor processes currently running on GPU, shows that the occupation

Towards Model Checking Video Streams using VoxLogicA on GPUs 11

Fig. 2. Path found via the Euclidean distance operator.

is circa 25% for both memory and cores, suggesting that the GPU may be used to
process larger images and benchmarks, and possibly to monitor 3D simulations.

Fig. 3. Memory and cores occupation on GPU, while processing 300 frames.

5 Conclusions

In current work-in-progress, the results obtained in [7] have been vastly im-
proved (ranging from a speed-up of 50x on case studies to 500x on artificial
benchmarks). The aim of such optimisation was initially focused on enabling in-
teractive calibration of analysis parameters in ImgQL specifications by end-users
of VoxLogicA, and a faster analysis development cycle by domain experts, also

12 Bussi, Ciancia, Gadducci, Latella, Massink

in conjunction with a dedicated user interface. The latter is currently being de-
veloped taking also cognitive aspects of usability into account (see [6]). However,
our preliminary experiments confirmed that this encouraging result can also be
used for a real time analysis of video streams. Despite the fact that temporal
operators are currently not available in VoxLogicA, it is possible to state and
check interesting properties, and this can be done on high resolution videos, in
real-time. Furthermore, we showed that the GPU is far from being stressed by
the task, thus we expect the speedup to be even larger in case of higher quality
videos, 3D animated simulations, or more complex properties.
Still, a large amount of execution time is devoted to I/O operations (in particu-
lar loading frames as png files). Therefore, a major goal of future work will be to
provide VoxLogicA with a video loader, possibly exploiting the state-of-the-art
OpenCV library 6.
As mentioned above, another goal is to implement temporal operators and a tem-
poral model checking algorithm in VoxLogicA-GPU. This will widen the set of
properties amenable to spatio-temporal model checking of video-streams, open-
ing possibilities of new scenarios.
Our experiments will also be useful in future work for expanding the logical
language with dynamic binding predicates, giving the language the ability to
capture the concept of a “new entity”, different from all the previously known
ones which appears in a video stream at a given instant, and that may reappear
later. In our physical simulation example, binding can be used e.g. to answer
queries like “was Pac-Man caught twice by the same ghost x”, independently
from the moment in which x appears for the first time, and the identity of x.

References

1. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Software Tools for Technology
Transfer 22(2), 195–217 (2020)

2. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Talpin, J., Derler, P., Schneider, K. (eds.)
MEMOCODE 2017. pp. 146–155. ACM (2017)

3. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: 2021 IEEE/ACM 9th Interna-
tional Conference on Formal Methods in Software Engineering (FormaliSE). pp.
1–12 (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Voxlogica: A spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer (2019)

5. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: GPU-based runtime verification.
In: IPDPS 2013. pp. 1025–1036. IEEE Computer Society (2013)

6. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations in Systems and Software Engineering
15(3-4), 169–190 (2019)

6 See: https://opencv.org/

Towards Model Checking Video Streams using VoxLogicA on GPUs 13

7. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on gpu. In:
Peters, K., Willemse, T.A.C. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems. pp. 188–196. Springer International Publishing, Cham
(2021)

8. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 Inter-
national Conference, TCS 2014, Rome, Italy, September 1-3, 2014. Proceedings.
LNCS, vol. 8705, pp. 222–235. Springer (2014). https://doi.org/10.1007/978-3-662-
44602-7“˙18

9. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Logical Methods in Computer Science 12(4) (2016)

10. Ciancia, V., Latella, D., Massink, M.: Embedding RCC8D in the Collective Spatial
Logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Rosario, P. (eds.) To
be defined, pp. 251–266. LNCS, Springer Berlin Heidelberg (2019), accepted for
publication

11. Ciancia, V., Belmonte, G., Latella, D., Massink, M.: A hands-on introduction to
spatial model checking using voxlogica. In: Laarman, A., Sokolova, A. (eds.) Model
Checking Software. pp. 22–41. Springer International Publishing, Cham (2021)

12. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Soft-
ware Tools for Technology Transfer 20(3), 289–311 (2018)

13. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain
for statistical spatio-temporal model checking of bike sharing systems. In: Mar-
garia, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verifi-
cation and Validation: Foundational Techniques - 7th International Symposium,
ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I.
LNCS, vol. 9952, pp. 657–673 (2016). https://doi.org/10.1007/978-3-319-47166-
2“˙46, https://doi.org/10.1007/978-3-319-47166-2 46

14. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Towards spatial bisimilarity for
closure models: Logical and coalgebraic characterisations. CoRR abs/2005.05578
(2020), https://arxiv.org/abs/2005.05578

15. Ma, M., Bartocci, E., Lifland, E., Stankovic, J.A., Feng, L.: A
novel spatial–temporal specification-based monitoring system for smart
cities. IEEE Internet of Things Journal 8(15), 11793–11806 (2021).
https://doi.org/10.1109/JIOT.2021.3069943

16. Neele, T., Wijs, A., Bošnački, D., van de Pol, J.: Partial-order reduction for GPU
model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 357–374. Springer (2016)

17. Osama, M., Wijs, A.: Parallel SAT simplification on GPU architectures. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 21–40. Springer (2019)

18. Randell, D.A., Landini, G., Galton, A.: Discrete mereotopology for spatial rea-
soning in automated histological image analysis. IEEE Trans. Pattern Anal.
Mach. Intell. 35(3), 568–581 (2013). https://doi.org/10.1109/TPAMI.2012.128,
https://doi.org/10.1109/TPAMI.2012.128

19. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties
using GPUs. Software Tools for Technology Transfer 18(2), 169–185 (2016)

20. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: Unleashing GPU explicit-state
model checking. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer (2016)

